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Abstract

Asymptotic expansions are derived as power series in a small coefficient entering a nonlinear multi-
plicative noise and a deterministic driving term in a nonlinear evolution equation. Detailed estimates on
remainders are provided.
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1. Introduction

A description of the evolution of dynamical systems of concern in disciplines like physics,
biology, chemistry, ecology, geology, engineerings, economics in terms of differential equations
is often appropriate. Sometimes it is natural to investigate to which extent an external small
perturbation (forcing) can change the deterministic evolution. This can be discussed in the sense
of asymptotic expansions in powers of a small parameter in front of the perturbation.

This problem has been studied in particular for the case where the perturbation is an addi-
tive noise of the Brownian or, more generally, Lévy type. In the case of evolution equations
in a Hilbert space with global Lipschitz coefficient and Brownian additive noise, see [49]. For
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stochastic partial differential equations, related to evolutions on a Hilbert resp. Banach space, the
problem has been discussed with non globally Lipschitz coefficients in a situation of dissipativity
in [3] for the case where the additive noise is given by Brownian motion, and in [15] for the case
of additive Lévy type noise. For related work determining the invariant measures in such cases,
see, [4] resp. [3,5,6], (see also [50] for the special case of globally Lipschitz coefficients and
additive Gaussian white noise).

In the present work we consider the finite dimensional case with multiplicative noise of Gaus-
sian or Lévy type. Even for this relatively simple case to the best of our knowledge rigorous
mathematical results seem quite scarce, despite the conceptual importance of the perturbation
problem in relation, e.g., to classical mechanics. Rigorous “perturbation theory” is either limited
to (general) linear systems and associated semi groups in Hilbert spaces, where a rich mathe-
matical theory has been developed, particularly in connection with spectral problems in quantum
theory (see, e.g., [35,45,51,56]), or else to particular nonlinear cases (see, e.g., [32,34,42,57]).
For further motivations, mainly from physics,biology, engineerings and mathematical finance,
see, e.g., [37,47,62].

A classical area where asymptotic perturbation methods originally arise is classical celestial
mechanics (since the work by, e.g., S. Laplace, S. Poisson, C.F. Gauss, H. Poincaré). Here
nonlinear and singularity effects are essential and particular methods have been developed, see,
e.g., [25,27]. These are also related to perturbation theory around the solutions of the classical
motion of harmonic oscillators, see, e.g., [28,29,57]. The stochastic case of Hamiltonian systems
is studied in [11,10,63,64].

Perturbation theory in infinite dimensional systems has been studied in connection with
hydrodynamics(small viscosity expansions, see, e.g. [7], small time expansions [32]), quantum
field theory [8,9,12,35,42,40,41,60], neurobiological systems [2,3,15,53,61].

Let us also briefly mention connections with Laplace and stationary phase methods, see,
e.g. [1,12,13,17,20,30,61].

The present paper considers deterministic, resp. stochastic finite dimensional differential
equations, which are first order in time, and have smooth coefficients satisfying growth restric-
tions. The driving multiplicative forcing term resp. noise is of the general Lévy type. An asymp-
totic expansion in powers of a small parameter on which the diffusion coefficient depends is
exhibited with good detailed control on remainders.

Some possible applications are mentioned at the end.
The structure of this paper is as follows:
In Section 2 we present the concrete small noise expansion (once it is assumed to exist) of

the original stochastic differential equation, in terms of solutions of linear random differential
equations, assuming that solutions exist and are unique.

In Section 3 we discuss existence and uniqueness of solutions of the original SDE. In Section 4
we discuss the solutions of the random equations for the expansion coefficients.

In Section 5 we prove the asymptotic character of the expansion. Section 6 is reserved to some
comments on applications.

2. Small noise expansion of an evolution equation

We consider the evolution equation:u(t) = u(0) +

 t

0
β (u(s)) ds +

 t

0
σε (u(s)) η(ds)

u(0) = u0, u(t) ∈ Rd , t ∈ [0, ∞), ε > 0.

(1)
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β(.) : Rd
−→ Rd , d ∈ N, σε(.) : Rd

−→ Rd×d are measurable functions resp. d × d matrix
functions satisfying some additional assumptions (e.g., globally Lipschitz conditions).

η can be a signed bounded variation measure (in which case the integral is understood as a
Stieltjes integral) or the heuristic derivative of a Lévy process in Rd (in which case the integral
should be interpreted as a stochastic integral). For simplicity of notations we use the unified
notation η(ds), e.g., η(ds) = d B(s), if B is a Brownian motion. Moreover if η has a jump
component u(s) in (1) should be understood as u(s−). We hope the meaning is always clear
from the context in which we operate. See Section 3 for precise assumptions.

Our purpose is to show that under certain assumptions on β, σε, η the solution u = uε of the
evolution equation (1), assumed to exist, can be written as:

uε(t) = u0(t) + εu1(t) + · · · + εmum(t) + Rm(t, ε), (2)

with ui : [0, ∞) −→ Rd measurable and ∥Rm(t, ε)∥ ≤ Cm(t)εm+1, for all m ∈ N and ε > 0
sufficiently small, for some Cm(t) > 0 independent of ε. Here ∥.∥ denotes the norm in Rk , for
any k ∈ N.

To obtain the desired expansion we shall assume that there are Taylor expansions of β(x) and
σε(x) in their variable x ∈ Rd and, moreover, ε −→ σε(x) is C M+1, M ∈ N, for every fixed
x ∈ Rd .

Let us first introduce some useful notations:
For α = (α1, . . . , αd) ∈ Nd

0 (with N0 = {0} ∪ N, N = {1, 2, . . .}), and x = (x1, . . . , xd) ∈

Rd , we define:

• The length of α by |α| = α1 + α2 + · · · + αd .

• α! := α1!α2! · · · αd !

• xα
:= xα1

1 xα2
2 · · · xαd

d .

The derivative of a function f of order |α| ∈ N0 is defined by:

f (α)
= Dα f =

∂ |α| f

∂xα1
1 ∂xα2

2 · · · ∂xαd
d

, D0 f = f. (3)

We have the following lemma:

Lemma 2.1. Let f be a complex-valued function in C p+1 (B(x0, r)), r > 0, x0 ∈ Rd , for some
p ∈ N0, n ∈ N, where B(x0, r) is the open ball in Rd of center x0 and radius r .

Then for any x ∈ B(x0, r) we have Taylor’s expansion formula:

f (x) =


|α|≤p

Dα f (x0)

α!
(x − x0)

α
+ Rp


f (p+1)(x0, x)


, (4)

with Dα f (x0) the evaluation of Dα f at x = x0 and Rp


f (p+1)(x0, x)


=


|α|=p+1 (x −

x0)
α Dα f (x0 + τ (x − x0)), with τ ∈ (0, 1). Alternatively

Rp


f (p+1)(x0, x)


=


|α|=p+1

(x − x0)
α

p!

 1

0
(1 − s)p Dα f (x0 + s (x − x0)) ds


.
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Moreover, setting for |α| = p + 1:

C p(x0, x) =
1
p!

 1
0 (1 − s)p

∥Dα f (x0 + s(x − x0)) ∥ds


, we have the bound

∥Rp


f (p+1)(x0, x)


∥ ≤ C p(x0, x)∥x − x0∥

p+1, (5)

with ∥C p(x0, x)∥ ≤
1

p+1 sups∈ [0,1] ∥Dα f (x0 + s(x − x0))∥.

Proof. This is an easy consequence of, e.g. [38]. �

Using the previous lemma, we have the following:

Proposition 2.2. Let u(ε) be a C N+1 function of 0 ≤ ε ≤ ε0 for some N ∈ N0, with values in
Rd . Then

u(ε) = u0 + εu1 + ε2u2 + · · · + εN uN + Ru
N (ε), (6)

with ui ∈ Rd , independent of ε, and ∥Ru
N (ε)∥ ≤ Cu

N εN+1, with 0 < Cu
N ≤ C̃u

N :=

1
N+1 sups∈ [0,1] supε∈ [0,ε0]

∥DN+1 u(s ε)∥, where C̃u
N is independent of ε. Moreover for any

f ∈ C p+1(Rd), with p ∈ N0, we have:

f (u(ε)) =


|α|≤p

Dα f (u0)

α!
(u(ε) − u0)

α
+ Ru(ε)

p


f (p+1) (u0, u(ε))



=


|α|≤p

Dα f (u0)

α!


N

l=1

εlul + Ru
N (ε)

α

+ Ru(ε)
p


f (p+1) (u0, u(ε))


, (7)

with Ru(ε)
p


f (p+1) (u0, u(ε))


defined as Rp in (4) with f (x) replaced by f (u(ε)).

On Ru(ε)
p


f (p+1) (u0, u(ε))


we have the bound:

Ru(ε)
p


f (p+1) (u0, u(ε))


≤ ε p+1 C p(u0, u(ε))


p

j=1

u j ε j
+ Ru

p(ε)


p+1

≤ ε p+1 C p(u0, u(ε))


p

j=1

∥u j∥ ε
j
0 + Cu

p ε
p+1
0

p+1

, (8)

and

0 < C p(u0, u(ε))

≤
1

p + 1
sup

s∈ [0,1]

sup
|α|=p+1

sup
ε∈ [0,ε0]

Dα f


u0 + s


p

j=1

u j ε j
+ Ru

p(ε)

 , (9)

Cu
p ≤ C̃u

p, with C̃u
p =

1
p+1 sups∈ [0,1] supε∈ [0,ε0]

∥D p+1 f (u(s ε))∥.

Proof. This is immediate from Lemma 2.1, with x ∈ Rd replaced by u(ε) ∈ Rd and x0 replaced
by u0 ∈ Rd , and denoting the remainder Rp in (4) by Ru(ε)

p , to recall that it refers to the function
f (u(ε)) instead of f (x), and using (6). �
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Remark 2.3. We point out that the remainder Ru
N (ε) in (6), referring to the asymptotic expansion

of u(ε) as a function of ε, should not be confused with the remainder Ru(ε)
p


f (p+1) (u0, u(ε))


in (7), for p = N (which refers to the function f (u(ε))).

Now for any N ∈ N0 we have, by the definition of xα given before and the binomial formula
for the powers of the components yi of the vector y =

N
l=1 εlul + Ru

N (ε) in Rd on the left hand
side of (10), to be taken to the multi power α, i.e. yα

=
d

i=1 yαi
i :

N
l=1

εlul + Ru
N (ε)

α

=

d
i=1

 αi
α1,i ,...,αN+1,i =0

α1,i +···+αN+1,i =αi

αi !

α1,i ! · · · αN+1,i !
εα1,i +2α2,i +···+NαN ,i u

α1,i
1,i u

α2,i
2,i

· · · u
αN ,i
N ,i


Ru

N ,i (ε)
αN+1,i


. (10)

u j,i , i = 1, . . . , d is the i th component of the vector u j ∈ Rd , j = 1, . . . , N , and Ru
N ,i (ε) is the

i th component of the vector Ru
N (ε) ∈ Rd .

Note that


Ru
N ,i (ε)

αN+1,i
is bounded in norm by a positive constant


Cu

N

αN+1,i times

ε(N+1)αN+1,i (since ∥Ru
N (ε)∥ ≤ Cu

N εN+1, Cu
N ≥ 0 from (6)). We also point out that αi ∈ N0, i =

1, . . . , d are the components of α ∈ Nd
0 . We have α j,. ∈ Nd

0 with α j,i ∈ N0, j = 1, . . . , N + 1
restricted by the conditions appearing under the summation.

Thus we get, from Eqs. (7), (10) and by the assumption on u(ε) in Proposition 2.2, for
N ∈ N0, p ∈ N0:

f (u(ε)) =


|α|≤p

Dα f (u0)

α!

d
i=1

 αi
α1,i ,...,αN+1,i =0

α1,i +···+αN+1,i =αi

αi !

α1,i ! · · · αN+1,i !
εα1,i +2α2,i +···+NαN ,i

× u
α1,i
1,i u

α2,i
2,i · · · u

αN ,i
N ,i


Ru

N ,i (ε)
αN+1,i


+ Ru(ε)

p


f (p+1) (u0, u(ε))


, (11)

with α = (α1, . . . , αd) ∈ Nd
0 .

We can rewrite (11) by grouping the terms with the same power k of ε, 0 ≤ k ≤ N . Denote the
term of exact order k, 0 ≤ k ≤ N , in ε appearing on the right hand side of (11) by [ f (u(ε))]k .
To compute it we first observe that we have to take αN+1,i = 0, i = 1, . . . , d, otherwise, due

to the bound on RN , the effective presence of


Ru
N ,i (ε)


would give a term small of order at

least N + 1 (by the nature of Ru
N ,i (ε), and N + 1 > k). Then we have to take the sum over the

α j,i ∈ {0, 1, . . . , αi }, j = 1, . . . , N , i = 1, . . . , d restricted by αi ∈ N0 and satisfying:

1.
d

i=1
N

j=1 j α j,i = k,

2. αi =
N

j=1 α j,i .

For k = 0 we must then have α j,i = 0 for all j, i and thus:

[ f (u(ε))]0 = f (u0). (12)

For k = 1 we have from 1 that α1,i = 1 for some i , all other α j,l , l ≠ i being 0, for all
j = 1, . . . , N . This implies α1,i = 1, i = 1, . . . , d, α j,i = 0, j = 2, . . . , N , i = 1, . . . , d .
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Inserting this into (11) we get [ f (u(ε))]1 =
d

i=1
∂

∂ yi
f (y)|y=u0

u1,i , (where we introduced

the short notation ∂i f (u0) :=
∂

∂ yi
f (y)|y=u0

). We have thus:

[ f (u(ε))]1 =

d
i=1

∂i f (u0) u1,i . (13)

For k = 2 we have from 1:
d

i=1
N

j=1 j α j,i =
d

i=1
2

j=1 j α j,i = 2. This gives the
possibility j = 2 and α2,i = 1 for some i, α2,k = 0, k ≠ i, k ≠ i, αl,l ′ = 0, l ≠

2, l ′ = 1, . . . , d. This provides the contribution
d

i=1 ∂i f (u0) u2,i to [ f (u(ε))]2. Another
contribution is given by the case j = 1 and α1,i = 1, α1,i ′ = 1 for some i, i ′ = 1, i ≠ i ′,
with α j,l = 0, ∀ j ≠ 1, l = 1, . . . , d and α1,m = 0, ∀ m ≠ i ′, m = 1, . . . , d or α1,l = 2, α1,l ′ =

0, l, l ′ = 1, . . . , d, l ≠ l ′. In this case we get the contributions:

d
i=1

d
i ′=1

∂2

∂yi ∂yi ′
f (y)|y=u0

u1,i u1,i ′ , to [ f (u(ε))]2. (14)

Denoting ∂i∂i ′ f (u0) :=
∂2

∂yi ∂yi ′
f (y)|y=u0

, we have in total:

[ f (u(ε))]2 =

d
i=1

∂i f (u0) u2,i +
1
2!

d
i=1

d
i ′=1

∂i∂i ′ f (u0) u1,i u1,i ′ . (15)

In a similar way we can get the contribution [ f (u(ε))]k of order k ≥ 3. It is easy to see that it
contains the term uk,i only linearly and that it depends in a homogeneous way of total order k in
components of the coefficients uk−1, uk−2, . . . , u1, u0. Thus introducing the short notation:

∂1 · · · ∂k f (u0) :=
∂k

∂y1 · · · ∂yk
f (y)|y=u0

, (16)

we have

[ f (u(ε))]k =

d
i=1

∂i f (u0) uk,i +
1
k!

d
i1,...,ik=1

∂i1 · · · ∂ik f (u0) u1,i1u1,i2 · · · u1,ik

+ B f
k (u0, . . . , uk−1), (17)

for some function B f
k which is a sum of monomials in components of the variables u0, . . . , uk−1.

Let us summarize what we obtained from (6) to (17) in the following:

Proposition 2.4. Let f, u(ε) be as in Proposition 2.2. Then, for any ε ∈ [0, ε0], the asymptotic
expansion of f (u(ε)) in powers of ε ∈ [0, ε0] up to order p (with N ≤ p) is given by (11), with
the estimates

|

Ru

N ,i (ε)
αN+1,i

| ≤ Cu
N ,i ε(N+1) αN+1,i , (18)

where

0 < Cu
N ,i ≤ C̃

u(i)
N ,i :=

1
N + 1

sup
s∈ [0,1]

sup
ε∈ [0,ε0]

∥


DN+1 u(i)


(s ε)∥, (19)

with C̃
u(i)
N ,i independent of ε, and u(i)(s ε) denoting the i th component of u(sε), i = 1, . . . , d.
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The term Ru(ε)
p


f (p+1) (u0, u(ε))


in (11) satisfies the estimate (8) with (9) and Ru

p(ε)

satisfying ∥Ru
p(ε)∥ ≤ Cu

p ε p+1, 0 < Cu
p ≤ C̃u

p =:
1

p+1 sups∈ [0,1] supε∈ [0,ε0]
∥


D p+1 u


(s ε)∥.

We can also write the asymptotic expansion in powers of ε up to order p in the following
form

f (u(ε)) =

p
k=0

[ f (u(ε))]k εk
+ R̃u(ε)

p , (20)

with [ f (u(ε))]k defined by (12)–(17), R̃u(ε)
p being defined as the sum of all terms in (11) having

absolute bound of order at least p + 1 in ε. More precisely

R̃u(ε)
p =


|α|≤p

Dα f (u0)

α!

×

d
i=1

 ⋆
α j,i

αi !

α1,i ! · · · αN+1,i !
ε

N
j=1

j α j,i

u
α1,i
1,i u

α2,i
2,i · · · u

αN ,i
N ,i


Ru

N ,i (ε)
αN+1,i


+ Ru(ε)

p


f (p+1) (u0, u(ε))


, (21)⋆

α j,i
meaning sum over α j,i ∈ {0, . . . , αi }, j = 1, . . . , N + 1, αN+1,i ∈ {1, . . . , αi },N+1

j=1 α j,i = αi ,
d

i=1 αi = |α|.
The following bound holds:

∥R̃u(ε)
p ∥ ≤ ε p+1


|α|≤p

∥Dα f (u0)∥

α!

d
i=1

 ⋆
α j,i

αi !

α1,i ! · · · αN+1,i !

ε

N
j=1

j α j,i

0 u
α1,i
1,i u

α2,i
2,i · · · u

αN ,i
N ,i

Ru
N ,i (ε)

αN+1,i


+

Ru(ε)
p


f (p+1) (u0, u(ε))

 , (22)

with the estimates on Ru
N ,i (ε) and Ru(ε)

p


f (p+1) (u0, u(ε))


given by (18), (19) resp. (8), (9).

∥R̃u(ε)
p ∥ ≤ ε p+1 sup

|α|≤p
sup

ε∈ [0,ε0]

Dα f (u0)

α!

 d
i=1

 ⋆
α j,i

αi !

α1,i ! · · · αN+1,i !
ε

N
j=1

j α j,i

0

×

N
j=1

∥u j,i∥
α j,i

1
N + 1

sup
s∈ [0,1]

sup
ε∈ [0,ε0]

DN+1 f


u(i)(s ε)
, i = 1, . . . , d. (23)

In an entirely similar way we prove the following:

Proposition 2.5. Let f ∈ C p+1(Rd) and consider for N ∈ N0, ε ∈ [0, ε0], y ∈ Rd , y j ∈

Rd , j = 0, . . . , N ; f
N

j=0 ε j y j + εN+1 y


. This function has an asymptotic expansion in

powers of ε. Calling f j (y0, . . . , y j ) the coefficient in the term of exact order j in the asymptotic
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expansion of f
N

j=0 ε j y j + εN+1 y


in powers of ε, we have

f
 N

j=0

ε j y j + εN+1 y


=

p
j=0

ε j f j (y0, . . . , y j ) + A f
p (y; ε), (24)

with y := (y0, . . . , yN , y) ∈ R(N+2)d and |A f
p (y; ε)| ≤ ε p+1 K p,N ,ε0 , with

K p,N ,ε0 := sup
|α|≤p

sup
ε∈ [0,ε0]

Dα f (u0)

α!

 d
i=1

 ⋆
α j,i

αi !

α1,i ! · · · αN+1,i !
ε

N
j=1

j α j,i

0

N
j=1

|u j,i |
α j,i

×
1

N + 1
sup

s∈ [0,1]

sup
ε∈ [0,ε0]

DN+1 f
 N

j=0

s j ε j y j,(i) + s N+1 εN+1 y(i)

, (25)

y j,(i) resp. y(i) standing for the i th components of the vectors y j resp. y ∈ Rd , i = 1, . . . , d.

Moreover, limε↓0 ε−(p+1) A f
p (y; ε) exists and is equal to

Dα f (u0)

α!

d
i=1

⋆
α j,i

αi !

α1,i ! · · · αN+1,i !

N
j=1

(y j,(i))
α j,i DN+1 f (y(i)(sε))|ε=0 . (26)

Proof. It suffices to replace u(ε) resp. u j resp. Ru
N (ε) in Proposition 2.4 by

N
j=0 ε j y j +εN+1 y

resp. y j , resp. εN+1 y. Then f j (y0, . . . , y j ) = [ f
N

j=0 ε j y j + εN+1 y

] j are given by (12)–

(17). We also have A f
p (y; ε) = R̃p

N
j=0 ε j y j + εN+1 y


, with R̃p

N
j=0 ε j y j + εN+1 y


denoting R̃u(ε)

p as defined by (21) with u(ε) replaced by
N

j=0 ε j y j + εN+1 y.
The final estimates follow from (23) with the estimate on the right hand side as in the estimate

of (22) in Proposition 2.4. �

Assume now the components βl , l = 1, . . . , d of β in (1) are in C N+1(Rd). By replacing
simply f by βl formula (17) yields the term of exact order 0 ≤ k ≤ N , in the asymptotic
expansion (20) in powers of ε of the lth components of the coefficient β(u(ε)) in (1), with
remainders estimates given by (22).

In order to get a corresponding expansion in powers of ε for the matrix elements (σε)l,l ′(u(ε)),

l, l ′ = 1, . . . , d of the matrix σε in powers of ε we have to take care of the fact that, as opposite
to f and βl , (σε)l,l ′ also depends on ε, not only on its argument.

Let us assume that, for ε ∈ [0, ε0):

σε( x ) =

M
j=0

σ j ( x )ε j
+ Rσ

M (ε)(x), for any x ∈ Rd (27)

with supx∈Rd ∥Rσ
M ( x, ε)∥ ≤ CM,σ εM+1, (∥.∥ denoting here the norm of the matrix Rσ

M ( x, ε)),
and CM,σ ≥ 0. Note that the σ j are coefficients of σε, the expansion in powers of ε, and
should not be confused with the values of σε for ε = j . Let us also assume that the elements
(σ j (x))l,l ′ , l, l ′ = 1, . . . , d of the matrix σ j (x), j = 1, . . . , N , belong to C s+1(Rd) as functions
of x ∈ Rd .
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For any M, N ∈ N0, s ∈ N0 we have, from (2), (27), using the right hand side of (11):

σε (u(ε)) =

M
j=0

σ j (u(ε)) ε j
+ Rσ

M (ε)

=

M
j=0

σ j


N

k=0

εkuk + Ru
N (ε)


ε j

+ Rσ
M (ε)

=

M
j=0

ε j


|γ |≤s

Dγ σ j (u0)

γ !


N

k=0

εkuk + Ru
N (ε) − u0

γ

+ R
σ j
s


+ Rσ

M (ε)

=

M
j=0

ε j


|γ |≤s

Dγ σ j (u0)

γ !

d
i=1

γi
γ1,i ,...,γN+1,i =0

γ1,i +···+γN+1,i =γi

γi !

γ1,i !γ2,i ! · · · γN+1,i !
εγ1,i +2γ2,i +···+NγN ,i

× u
γ1,i
1,i u

γ2,i
2,i · · · u

γN ,i
N ,i


Ru(ε)

N (ε)
γN+1,i

+ R
σ j
s

+ Rσ
M (ε). (28)

Here R
σ j
s is a short notation for R

σ j
s

N
k=0 εk uk + Ru

N (ε)


.

Let us note that (28) is a relation between matrices, to be understood element by element.
Dγ σ j (u0) has to be interpreted as Dγ applied to the elements (σ j )l,l ′ , l, l ′ = 1, . . . , d of the
matrix σ j , evaluated then at u0.

Proceeding as in the case of the expansions of f and βl we exhibit the coefficient [σε (u(ε))]k
of the power k, 0 ≤ k ≤ min(M, N ) in the development of σε,l,l ′ (u(ε)) on the right hand
side of (28). We shall write [σε (u(ε))]k in matrix form, but it should be understood element
by element. As we did for f , for this we have to set γN+1,i = 0, i = 1, . . . , d. More-
over we observe that (28) contains a sum of products of ε j times a sum of terms with powerd

i=1


γ1,i + 2 γ2,i + · · · + N γN ,i


in ε, hence the analogues of (1), (6) we had for [ f (u(ε))]k

are:

1. j +
d

i=1
N

l=1 l γl,i = k, j = 0, . . . , M .

2. γi =
N

l=1 γl,i , with γl,i = {0, 1, . . . , γi }, l = 1, . . . , N , i = 1, . . . , d, γi ∈ N0.

We see from 1. that we must have j ≤ k. Let us first compute the terms for k = 0, 1, 2. We
have:

[σε (u(ε))]0 = σ0 (u0) , (29)

since k = 0 implies j = 0, γ j,i = 0 for all j, i . To obtain [σε (u(ε))]1 we observe that from 1. we
have the possibilities (a) j = 0 and γ1,i = 1 for some i, γ1,l = 0 ∀l ≠ i, γ2,i = · · · = γN ,i = 0,
for all i = 1, . . . , d, or (b) j = 1, γl,i = 0, ∀l, i . Thus we have:

[σε (u(ε))]1 =

d
i=1

∂i σ0 (u0) u1,i + σ1 (u0) . (30)
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For k = 2, we have for j = 0 only the possibilities we already discussed for [ f (u(ε))]2, so we
get a contribution

d
i=1

∂i σ0(u0) u2,i +
1
2!

d
i,i ′=1

∂i∂i ′ σ0(u0) u1,i u1,i ′ . (31)

For j = 1 we have the possibilities given by
d

i=1


γ1,i + 2 γ2,i + · · · + N γN ,i


= 1, which

are those discussed for [ f (u(ε))]1, and the possibility γ j,i = 0, ∀ j, i . Hence we get the
contribution

d
i=1 ∂i σ1(u0) u1,i + σ2(u0). In total then we get for any l, l ′ = 1, . . . , d:

[σε (u(ε))]2 =

d
i=1

∂i σ0(u0) u2,i +
1
2!

d
i,i ′=1

∂i∂i ′ σ0(u0) u1,i u1,i ′

+

d
i=1

∂i σ1(u0) u1,i + σ2(u0). (32)

In the general case k ≥ 2 we see that

[σε (u(ε))]k =

d
i=1

∂i σ0(u0) uk,i

+
1
k!

d
i1,...,ik=1

∂i1 · · · ∂ik σ0(u0) u1,i1u1,i2 · · · u1,ik + σk(u0) + Aσ
k (u0, . . . , uk−1), (33)

where Aσ
k (u0, . . . , uk−1) is a d × d matrix which depends only on the indicated variables. Note

that (33) is also valid for k = 2, with Aσ
2 (u0, u1) =

d
i=1 ∂i σ1(u0) u1,i .

We shall now apply the formulae we have obtained for [β (u(ε))]k and [σε (u(ε))]k, k ∈ N0,
to the case where u(ε) is replaced by the pathwise solution uε(s) of (1), assumed first to exist
and to have an asymptotic expansion in ε of the form (6), (see Section 5 for the justification of
this assumption). By matching coefficients of the same order k on both sides of (1), i.e. uk(t)
resp. [u(0)]k +

 t
0 [β (uε(s))]k ds and

 t
0 [σε (uε(s))]k η(ds), we get the following proposition:

Proposition 2.6. Let us assume that the coefficient σε is C M+1 in ε ∈ [0, ε0) for some ε0 > 0,
in the sense that (27) holds. Moreover assume that β ∈ C p+1(Rd), σε ∈ C s+1(Rd), for any
ε ∈ [0, ε0), for some p ∈ N0, s ∈ N0. Furthermore assume that the stochastic equation (1) has
a pathwise solution uε for all t ∈ [0, T ], T > 0, and the solution uε(t) is C m+1, for some
m ∈ N, in ε ∈ [0, ε0), i.e. (6) holds for u(ε) = uε(t). Then the expansion coefficients uk(t) of
the solution uε(t) of (1) satisfy the following equations:

u0(t) = u0
+

 t

0
β(u0) ds +

 t

0
σ0(u0)η(ds); (34)

u1(t) =

d
i=1

 t

0
∂i β(u0) u1,i ds +

 t

0
∂i σ0 (u0) u1,i η(ds)


+

 t

0
σ1 (u0) η(ds)

=

 t

0
[β (uε(s))]1 ds +

 t

0
[σε (uε(s))]1 η(ds), (35)



S. Albeverio, B. Smii / Stochastic Processes and their Applications 125 (2015) 1009–1031 1019

with

[β (uε(s))]1 =

d
i=1

∂i β(u0) u1,i , [σε (uε(s))]1 = ∂i σ0(u0) u1,i + σ1(u0);

u2(t) =

d
i=1

 t

0
∂i β(u0) u2,i ds +

1
2!

 t

0

d
i,i ′=1

∂i∂i ′ β(u0) u1,i u1,i ′ds


+

d
i=1

 t

0


∂i σ0(u0) u2,i +

1
2!

d
i,i ′=1

∂i∂i ′ σ0(u0) u1,i u1,i ′

+ ∂i σ1(u0) u1,i


η(ds) +

 t

0
σ2(u0) η(ds)

=

 t

0
[β (uε(s))]2 ds +

 t

0
[σε (uε(s))]2 η(ds), (36)

with

[β (uε(s))]2 = ∂i β(u0) u2,i +
1
2!

∂i∂i ′ β(u0) u1,i u1,i ′ (37)

and

[σε (uε(s))]2 = ∂i σ0(u0) u2,i +
1
2!

d
i,i ′=1

∂i∂i ′ σ0(u0) u1,i u1,i ′

+ ∂i σ1(u0) u1,i + σ2(u0); (38)

and for all 1 ≤ k ≤ min(Mp, Ns):

uk(t) =

 t

0
[β (uε(s))]k ds +

 t

0
[σε (uε(s))]k η(ds), (39)

where [β (uε(s))]k and [σε (uε(s))]k are given in (17), (by replacing f by β and u(ε) by uε(s)),
resp. in (33) (u(ε) being replaced by uε(s)).

Proof. The proof was already carried through before the proposition. �

Remark 2.7. 1. For the existence and uniqueness of solutions of (1) see Section 3.
2. If β( x ) = Ax + b, (with b ∈ Rd independent of x and A a d × d-matrix independent of x)

and σε(x) = σ0 + εσ1(x), with σ0 = c and (σ1(x))l,l ′ = λl,l ′ xl ′ , x ∈ Rd , with c, λ constant
d × d-matrices, then σi = 0, i = 1, . . . , d and ∂i1 · · · ∂in β = 0, n = 2, . . . , d. Moreover,
(∂iβ)l(x) =

∂
∂xi

d
k=1 Alk xk = Ali , i, l = 1, . . . , d and thus

d
i=1

∂iβ(u0) uk,i = A uk, k ∈ N. (40)

Moreover,

∂i1 · · · ∂ik σ0(x) = 0, ∀ k ∈ N, x ∈ Rd , (∂iσ1(x))l,l ′ = λl,i δi,l ′ , (41)

with δi,l ′ the Kronecker symbol, l, l ′, i = 1, . . . , d .
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Furthermore ∂i1 · · · ∂ik σ1(x) = 0, ∀ k ≥ 2, ∂i1 · · · ∂ik σ j (x) = 0, ∀ j ≥ 2, k ∈ N0.
Hence from Proposition 2.6 we get:

u0(t) = u0
+

 t

0
Au0(s) ds + b

 t

0
u0(s) ds + cη(t), (42)

and

(uk(t))l =

 t

0
(A uk(s))l ds +

d
i=1

λl,i

 t

0
(uk−1(s))iηi (ds),

l = 1, . . . , d, k ∈ N. (43)

3. β and σε are as in 2., however with σ0 = c replaced by σ0(x) = Π x, Π a constant
d × d-matrix, x ∈ Rd , then (40) holds, the first equation in (41) is for k = 1 replaced by
(∂i1 Π x)l = Πl,i1 , thus (42) is replaced by

u0(t) = u0
+

 t

0
Au0(s) ds + b

 t

0
u0(s) ds + Π η(t), (44)

and

(u1(t))l = A
 t

0
( u1(s))l ds +

d
i=1

λl,l ′

 t

0
(u0(s))iηi (ds)

+

d
i=1

Πl,i

 t

0
u1, i ηi (ds), (45)

for k ≥ 2, l = 1, . . . , d:

(uk(t))l =

 t

0
(A uk(s))l ds +

d
l ′=1

λl,l ′

 t

0
(uk−1(s))l ′ηl ′(ds)

+

d
i=1

Πl,i

 t

0
uk, i ηi (ds). (46)

4. If β(x) = Ax + F(x), A as in 2., F ∈ C p+1(Rd) and σ0 = 0, σ1(x) = Λ, with Λ a constant
d × d matrix, so that (1) has additive noise, then

u0(t) = u0
+

 t

0
Au0(s) ds +

 t

0
F(u0) ds, (47)

and

u1(t) =

 t

0
Au1 ds +

d
i=1

 t

0
∂i F(u0) u1,i ds + Λ η(t). (48)

The uk(t), k ≥ 2 are in this case given by linear nonhomogeneous stochastic equations with
random coefficients, depending only on the u0, . . . , uk−1, without any external noise term.
The expansion is then a particular case of the one explicitly given in [6] (specialized to our
present case where the Hilbert space is Rd ).

5. Eq. (34) is of the same type as Eq. (1) with ε = 0. Only for σ0 ≡ 0 we have a purely
deterministic equation. For σ0 ≠ 0 the expansion in powers of ε of the solution of (1)
is really useful whenever (34) can be better handled than the original equation (1), which
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happens whenever σ0 has a simpler dependence on x than σε itself. See Section 6, for some
examples.

Let us also underline that Eqs. (35)–(39) for the uk(t) are linear nonhomogeneous, with
random coefficients involving only u0, . . . , uk−1, hence to be solved recursively.

6. If the coefficient β in (1) depends itself on ε ∈ [0, ε0) and is in C M̃+1 as a function of ε, thus

has an expansion β(x) =
M̃

i=1 βi (x) εi
+ Rβ

M̃
(ε, x), ∀ x ∈ Rd , then the expansion (12)–

(17) with f replaced by any component of β has to be replaced by (29)–(33), with the matrix
elements of σε replaced by the components of βε, i.e. [βε(u(ε))]0 = β0(u0), [βε(u(ε))]1 =d

i=1 ∂i β0 (u0) u1,i + β1 (u0) and correspondingly for (32). (33) holds for β replaced by
β0, whereas in the equations for the uk(t), k ∈ N we have to replace [β (u(s, ε))]k by
[βε (u(s, ε))]k , with

[βε (u(s, ε))]k =

d
i=1

∂i β0(u0) uk,i +
1
k!

d
i1,...,ik=1

∂i1 · · · ∂ik β0(u0) u1,i1u1,i2 · · · u1,ik

+ βk(u0) + Aβ
k (u0, . . . , uk−1). (49)

3. Existence and uniqueness results for the original SDE

Let β : Rd
→ Rd , β = (β1, . . . , βd), βi : Rd

→ R, i = 1, . . . , d , and let σ =


σ i

j


, with

σ i
j : Rd

→ R, i, j = 1, . . . , d.

We assume that β is globally Lipschitz, i.e. ∥β(x) − β(y)∥ ≤ kβ∥x − y∥, for all x, y ∈ Rd ,
for some constant kβ > 0.

We also assume σ i
j are globally Lipschitz, i.e. ∥σ i

j (x) − σ i
j (y)∥ ≤ kσ i

j
∥x − y∥, for some

constant kσ i
j

> 0 (independent of x, y) and all x, y ∈ Rd , i, j = 1, . . . , d.

Let L̃(t) be a Lévy process on Rd , without Gaussian and deterministic component, i.e. with
characteristic function:

E


ei⟨u,L̃(t)⟩


= e

Rd \{0}


ei⟨u,y⟩

−1−i⟨u,y⟩ χB (y)

ν(dy)

, (50)

u ∈ Rd , B the unit ball in Rd . ν is the intensity measure, also called Lévy measure, satisfying
Rd\{0}

(|y|
2

∧ 1) ν(dy) < ∞. For information on Lévy processes and related equations, see,
e.g., [23,31,48,52,58].

The following Lévy–Itô decomposition holds (see, e.g., [18,19], ([23, p. 108–109]), [48]):

L̃ t =


B

x Ñ (t, dx) +


Rd\B

x N (t, dx), t ≥ 0, (51)

with N a Poisson random measure on R+ × (Rd
− {0}) (the Poisson random measure associated

with the jumps 1Z t := L̃ t − L̃ t− , i.e. N ([0, t) × A) = {0 ≤ s < t |1Zs ∈ A}, for each t ≥

0, A ∈ B(Rd
\{0}), Ñ (t, A) := N (t, A) − tν(A), for all A ∈ B(Rd , {0}), 0 ∈ A, A the closure

of A). We have ν(A) = E(N (1, A)); for each t > 0, ω ∈ Ω , Ñ (t, ·)(ω) is the compensated
Poisson random measure (to N (t, ·)(ω)) on the Borel σ -algebra B(Rd

\{0}); Ñ (t, A), t ≥ 0 is,
in particular, a martingale-valued measure.
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It is known that the solution u(t) of (1) with η(ds) = d L̃s + b ds + d BA(s), b ∈ Rd , BA a
Brownian motion in Rd with covariance matrix A, can be identified with the solution X t of the
following equation, see, e.g. [23]:

X t (x) = x +

 t

0
β(Xs−) ds + b t + σε (X t−) d BA(t) +


0<|x |≤1

σε(X t−)Ñ (dt, dx)

+


|x |>1

σε(X t−)N (dt, dx). (52)

The following theorem holds:

Theorem 3.1. If the coefficients β, σ satisfy the above global Lipschitz conditions and η is as
above then there exists a strong, càdlàg, adapted solution of the SDE (1) or (52) and the solution
is unique, for any initial condition u0 resp. x ∈ Rd .

Proof. This is a particular case of results given, e.g., in ([39, pp. 237]), [55], ([43, p. 231])
and [14]. �

Remark 3.2. Other existence and uniqueness conditions are known. Particularly the Lipschitz
conditions can be relaxed to local ones, with a condition of at most linear growth at infinity see,
e.g., [39,59]. This (and the previous result) also holds for the non autonomous case where β, σ

have an additional explicit measurable dependence on t and all constants entering the Lipschitz
and additional growth conditions are uniform in t .

4. Discussion of the equations for the expansion coefficients

In this section we shall provide solutions as explicit as possible to Eqs. (39), for the expansion
coefficients of the solution of (1) in powers of the small parameter ε. We first observe that (39)
is a nonhomogeneous linear equation in uk of the form:

duk,l(t) =


F̃k,l(t) +

d
l ′=1

γ̃k,l,l ′(t, u0)(t) uk,l ′(t)


dt

+

d
j=1

G̃k,l, j (t, u0(t), uk(t)) dη j (t)

+

d
l ′=1

g̃k,l,l ′(t, u0) dηl ′(t), k ∈ N, k ≤ K , for some K > 0, l = 1, . . . , d, (53)

with 

F̃k,l (t) := [βl (u(t, ε))]k (with, [.]k given by (12)–(17), for k ≥ 2), F̃1,l (t) := 0;

γ̃k,l,l ′(t, u0) = ∂l ′βl (u0), l = l ′ = 1, . . . , d, k ∈ N;

G̃k,l, j (t, u0(t), uk(t)) =

d
i=1

∂i σ0,l, j (u0(t)) uk,i , and, for k ≥ 2,

g̃k,l,l ′(t) =
1
k!

d
i1,...,ik=1

∂i1 · · · ∂ik σ0(u0) u1,i1 u1,i2 · · · u1,ik + σk(u0) + Aσ
k (u0, . . . , uk−1).

(54)
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We observe that (54) constitutes a set of recursive equations, where the kth order equation,
for Xk,l , l ∈ {1, . . . , d}, only involves the components of Xk , in a linear way, with random
coefficients fk, gk depending on the vectors X0, . . . , Xk−1, and with a random inhomogeneity
depending on Xk,l ′ , l ′ ≠ l. It is thus of the form

d Xk,l(t) = fk(X0, . . . , Xk−1) Xk,l dt + gk(X0, . . . , Xk−1) Xk,l η(dt) + hk(X0) η(dt)

+ hk(X0,l ′ , . . . , Xk−1,l ′) dt, l ′ = 1, . . . , d, l ′ ≠ l, l = 1, . . . , d, k = 1, . . . , K . (55)

Under Lipschitz assumptions and at most polynomial growth at infinity in the space variable
for β, σε and their derivatives up to order K , we can apply methods similar to the one used
in [6,15] (in the infinite dimensional case, however with additive noise) to show that existence
and uniqueness of solutions hold. Also proofs can be adopted to cover our case starting from
literature on the martingale method, see, e.g., [54].

Yet still in the additive noise case and even for η a Brownian motion no “explicit” solutions
are known.

In general, even in the 1-dimensional case, it is difficult to find explicit solutions. In fact
already the equation for u1 is a nonhomogeneous linear stochastic differential equation involving
random coefficients and an inhomogeneity depending on the solution u0, and the coefficients are
in general nonlinear in u0.

In the special d-dimensional case where σ1(y) = a y and σ0(y) = b y for some constant d×d
matrices a, b, and β(x) = c x + d , for some constant coefficient matrix c and d ∈ Rd , x ∈ Rd ,
then the linear equations for u0, u1 have constant coefficients and it is easy from (39), (17) and
(33), to see that also the equations for the uk, k ≥ 2 are of this type. In this case, at least for
η = B a Brownian motion, we can apply results on systems of linear equations with terms of at
most first order in the state variables, which are to be found, e.g., in [24,36], to find an explicit
expansion for uk .

In this special case we can thus apply to the discussion of (39) results on the solution of linear
deterministic resp. stochastic evolution equations, according to the following proposition:

Proposition 4.1. Consider a system of K coupled linear stochastic evolution equation with
random coefficients, the coefficients of the equation for the kth component k = 1, . . . , K being
only dependent of the components of index 0, 1, 2, . . . , k −1. The equation for the lth component
of the kth vector, Xk,l is of the form:

d Xk,l(t) =


Fk,l(t) +

d
l ′=1

γk,l,l ′(t) Xk,l ′(t)


dt +

m
j=1

Gk,l, j (t, Xk(t)) d B j (t)

+

d
l ′′=1

gk,l,l ′′(t) d Bl ′′(t), (56)

with all components of γk, gk independent of Xk , and Fk,l as well as Gk,l, j linear in the
components Xk,l of Xk and independent of other state variables.

All coefficients F, γ, G, g are supposed to be locally Lipschitz and satisfy the linear growth
conditions, with constant uniform in t. The explicit dependence of all coefficients on t is supposed
to be measurable.



1024 S. Albeverio, B. Smii / Stochastic Processes and their Applications 125 (2015) 1009–1031

The solution of (56) is given by:

Xk,l(t) =


k′,l ′

Φk,l,k′,l ′(t)


k′′,l ′′

 t

0
Φ−1

k′,l ′,k′′,l ′′(s)[Fk′′,l ′′(s) − Gk′′,l ′,l ′′(s) gk′′,l ′,l ′′(s)]ds

+


k′′,l ′′

 t

0
Φ−1

k′,l ′,k′′,l ′′(s) gk′′,l ′,l ′′(s) d Bl ′′(s)


, (57)

the summation being over k′, k′′
= 1, . . . , K and l ′, l ′′ = 1, . . . , d, for all k = 1, . . . , K , l =

1, . . . , d. For k = 0, X0,l(t) is the solution of (34).
Φ is the fundamental K d × K d matrix of the corresponding homogeneous equation, i.e.

Eq. (56) with F = g = 0, normalized so that Φ(0) is the unit matrix, and the integrals being
understood in Itô’s sense.

Proof. The proof uses Itô′s formula to identify d X t as given by the derivative of the right hand
side of (57) with the right hand side of (56). The presence of Φ(t) is for similar reasons as in
Lagrange’s method for systems of ODEs, see [24,36], to which we refer for details. �

Remark 4.2. For K = 1, d = 1, the fundamental K d × K d matrix reduces to a scalar Φ. In
this case we have (see e.g., [36, p. 113]):

Φ(t) = exp
 t

0


γ (s) −

1
2

G2(s)

ds +

 t

0
G(s) d B(s)


. (58)

In the case where η is the sum of B and a jump component ηJ we have instead:

Φ(t) = exp
 t

0


γ (s) −

1
2

G2(s)

ds +

 t

0
G(s) d B(s)

 
0<s≤t

(1 + 1ηJ (s))e−1ηJ (s),

(59)

where 1ηJ (s) := ηJ (s) − ηJ (s−), is the jump of ηJ between s− and s. The product term is the
Doléans-Dade exponential of a Lévy jump process, see, e.g. [23, p. 247], and [59].

Remark 4.3. 1. The corresponding results hold also in the deterministic case where B is
replaced by a function η of bounded variation.

The concrete expression for Φ changes, due to the fact that there is no correction term in
the exponents as in the Brownian motion exponential. For example instead of (58) we simply
have then

Φ(t) = exp
 t

0
γ (s) ds +

 t

0
G(s) η(ds)


, (60)

the second integral being a Stieltjes one.
2. In the case where η contains a nontrivial jump component, we were not able to find in the

literature a general result of the type of (57).
For particular cases, see however [46,33]. As in (59) in the expression for Φ an additional

Doléans-Dade term (stochastic exponential of a Lévy jump process) appears.

As we stated before Proposition 4.1, that proposition can be applied to the case where
η = B and, as in Remarks 2.7.2 and 2.7.3, β(x) = Ax + b, σε(x) = σ0(x) + ε σ1(x), with
σ1(x) = λ x, σ0(x) = Π x for all x ∈ Rd , b ∈ Rd .



S. Albeverio, B. Smii / Stochastic Processes and their Applications 125 (2015) 1009–1031 1025

From Proposition 4.1 and (54) we get the following:

Proposition 4.4. Let β(x) = Ax + b, σε(x) = σ0(x) + ε σ1(x), σ1(x) = λ x, σ0(x) = Π x for
all x ∈ Rd , b ∈ Rd . A, λ, Π are constant d ×d matrices. Consider the solution of the equation
du = β(u) dt + σε(u) η(ds).

Let uk, k ∈ N0 be the expansion coefficients which satisfy the equations in Proposition 2.6.
Then the lth component uk,l of uk is given, for k = 1, . . . , N, by

uk,l(t) =


k′,l ′

Φk,l,k′,l ′(t)

−


k′′,i

 t

0
Φ−1

k′,l ′,k′′,i (s) uk−1,i (s)

×


λl,i uk′′,i (s) ds + λl ′,i d Bi (s)

 
. (61)

Φ is the fundamental matrix of the system

duk,l(s) = (Auk)l(s) ds +

d
i=1

Πl,i uk,i d Bi (s), k = 1, . . . , N , l = 1, . . . , d. (62)

Moreover u0(t) (with components u0,i , i = 1, . . . , d) solves (34).

5. The asymptotic character of the expansion

In this section we shall prove the asymptotic character of the expansion of the solution uε of
(1) in powers of ε.

Let β ∈ C p+1(Rd
; Rd), for some p ∈ N. Consider as in Proposition 2.5, y = (y0, . . . ,

yN , y) ∈ R(N+2)d . Let Aβ
p(y; ε) = β(

N
j=0 ε j y j + εN+1 y) −

p
j=0 ε j β j (y0, . . . , y j ), β j

being the coefficients in the term of exact order j in the asymptotic expansion of β(
N

j=0 εi yi +

εN+1 y) in powers of ε ∈ [0, ε0]. By Proposition 2.5 applied to the components β(i), i =

1, . . . , d of β we get ∥ Aβ
p(y; ε)∥ ≤ ε p+1 K β

p,N ,ε0
, with K β

p,N ,ε0
defined according to Proposi-

tion 2.5, with f replaced by β(i), by:

K β
p,N ,ε0

:= max
i=1,...,d

K
β(i)
p,N ,ε0

, (63)

with

K
β(i)
p,N ,ε0

:= sup
|α|≤p

sup
ε∈ [0,ε0]

Dα β(i)(u0)

α!

 d
i=1

 ⋆
α j,i

αi !

α1,i ! · · · αN+1,i !
ε

N
j=1

j α j,i

0

×

N
j=1

∥u j,i∥
α j,i

1
N + 1

sup
s∈ [0,1]

sup
ε∈ [0,ε0]

DN+1β(i)

 N
j=0

s j ε j y j,(i) + εN+1 s N+1 y(i)

.
(64)

From this we have ε−(p+1)
∥Aβ

p(y; ε)∥ ≤ K β
p,N ,ε0

, 0 < ε ≤ ε0.

Similarly we show that ε−(p+1)
∥Aσ

p(y; ε)∥ ≤ K σ
p,N ,ε0

, 0 < ε ≤ ε0, with Aσ
p(y; ε) resp.

K σ
p,N ,ε0

defined in a corresponding way with β replaced by σ = σε.
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The quantities K β
p,N ,ε and K σ

p,N ,ε are by construction independent of ε ∈ [0, ε0]. Hence we
have

lim
ε↓0

sup ε−(p+1)
∥Aγ

p(y; ε)∥ ≤ K γ

p,N ,ε0
, (65)

with γ standing for β resp. σ .
On the other hand, since by assumptions β and σε are smooth, we also have (from the expres-

sion for A f
p in the proof of Proposition 2.5 with f replaced by γ ) that limε↓0 ε−(p+1) Aγ

p(y; ε)

exists and from (22) it is equal to the expression given by (26) (for f replaced by γ ).
Let us now consider the case where y0 = u0, y j = u j (t), j ∈ N, with u j (t) solutions of the

recursive system of equations in Section 3, which we assume to exist. Let us consider

yN (t, ε) := ε−(N+1)

uε(t) −

N
j=0

ε j u j (t)

. (66)

Since uε satisfies by assumption Eq. (1) we have

yN (t, ε) = ε−(N+1)

u(0) +

 t

0
β (uε(s)) ds

+

 t

0
σε (uε(s)) η(ds) −

N
j=0

ε j u j (t)

. (67)

By the definition (66) of yN (t, ε) we have t

0
β (uε(s)) ds =

 t

0
β

εN+1 yN (s, ε) +

N
j=0

ε j u j (s)

ds, (68)

and correspondingly t

0
σε (uε(s)) η(ds) =

 t

0
σε


εN+1 yN (s, ε) +

N
j=0

ε j u j (s)

η(ds). (69)

Inserting this into (67) we get (minding u(0) = u0):

yN (t, ε) = ε−(N+1)

u0

+

 t

0
β

εN+1 yN (s, ε) +

N
j=0

ε j u j (s)

ds

+

 t

0
σε


εN+1 yN (s, ε) +

N
j=0

ε j u j (s)

η(ds) −

N
j=0

ε j u j (t)

. (70)

From Proposition 2.4 we have, on the other hand, for j ∈ N:

u j (t) =

 t

0
[β(uε(s))] j ds +

 t

0
[σε(uε(s))] j η(ds). (71)
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Inserting into (70) we get:

yN (t, ε) = ε−(N+1)

u0

+

 t

0
β

εN+1 yN (s, ε) +

N
j=0

ε j u j (s)

ds

+

 t

0
σε


εN+1 yN (s, ε) +

N
j=0

ε j u j (s)

η(ds)

−

N
j=0

ε j
 t

0
[β(uε(s))] j ds +

 t

0
[σε(uε(s))] j η(ds)


. (72)

Recalling the definitions of Aβ
N (y; ε) and Aσ

N (y; ε), as A f
N in Proposition 2.5, with f replaced by

β resp. σ , we can write this as

yN (t, ε) = ε−(N+1)

u0

+

 t

0
Aβ

N (y; ε) ds +

 t

0
Aσ

N (y; ε) η(ds)

, (73)

with y = y(s) =


u0(s), u1(s), . . . , uk(s), εN+1 yN (s, ε)


.

From this, noting that from (66) we have yN (0, ε) = 0 for all ε ∈ [o, ε0], we see that yN
satisfies the stochastic differential equation

dyN (t, ε) = aβ
N (y(t); ε)dt + aσ

N (y(t); ε)η(dt), t ≥ 0.

yN (0, ε) = 0,
(74)

with aγ

N (y(t); ε) = ε−(N+1) Aγ

N (y; ε), where γ stands for β resp. σ .
We saw before that the coefficients aγ

N (y(t); ε) satisfy:

sup
ε ∈[0,ε0]

sup
[0,T ]

|aγ

N (y; ε)| ≤ K γ

N ,ε0
, (75)

with K γ

N ,ε0
independent of ε, and converge P-almost surely as ε ↓ 0 (P-being the underlying

probability measure).

Remark 5.1. We only obtain P-a.s convergence since our solutions u j in Section 3, are, in
general, only P-a.s.

Assuming the noise η in (1) is either a Brownian motion or is deterministic, or has also a
jump component given by a Poisson process as in [39, p. 279], then because of our smoothness
assumptions on β, σε and the results on the u j in Section 3, we can apply Theorem 4 in chapter
2, Section 8, p. 279 in [39] (cfs. also Theorem 2 and Corollary 1, p. 52–53, for the case where η

is a Brownian motion,) and obtain that there exists yN (t, 0) ∈ L2(P) such that

lim
ε↓0

sup
0≤t≤T

E

∥yN (t, ε) − yN (t, 0)∥2


= 0. (76)

Let us summarize these results in the following

Theorem 5.2. Let us consider the stochastic differential equation (1) with β, σε which are
C k+1, k ∈ N0 in the space variables and such that σε is C M in ε, ε ∈ [0, ε0], for some M ≥ k+1,
with uniformly bounded derivatives.
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Assume that η is such that solutions uε(t) of (1) and the u j (t) of the equations in Section 3 ex-
ist in L2(P), with P the underlying probability measure. Moreover assume that the solution
of (1) depends L2(P)-continuously on ε, ε ∈ [0, ε0]. Then the solution uε(t) of (1) has the
following asymptotic expansion in powers of ε ∈ [0, ε0]:

uε(t) =

N
j=0

ε j u j (t) + εN+1 yN (t, ε), t > 0, (77)

with yN (t, ε) ∈ L2(P) for all t ≥ 0, with

lim
ε↓0

E


sup
0≤t≤T

∥yN (t, ε) − yN (t, 0)∥2


= 0. (78)

The remainder yN (t, ε) satisfies the estimate

sup
0≤t≤T


E∥yN (t, ε)∥2

 1
2

≤ K̃N ,T,ε0 , (79)

with K̃N ,T,ε0 > 0 independent of ε for all ε ∈ [0, ε0].

Remark 5.3. The idea of the proof comes from a sketch given in [37]. The same basic conclu-
sions can be drawn whenever one has an L2(P)-result on continuity of solutions of stochastic dif-
ferential equations with respect to parameters appearing in the coefficients. Gihman–Skorohod’s
result is only one among other possible results. Let us note that it is formulated with intrinsi-
cally random coefficients only for η being a one-dimensional Brownian motion (cf. Theorem. 2,
in [39, pp. 52–53]). In the case of Rd and with non intrinsically random coefficients this problem
is discussed in [39, p. 279]. An adaptation to our case is possible, but we are not aware of any
specific reference.

The case of dissipative semi-linear stochastic equations with additive Lévy-type noise has
been treated by us in details in finite or infinite dimensions, [15,6].

Similar results should be obtainable replacing the L2(P)-continuity by other types of continu-
ity in the probabilistic sense. However we were not able to locate specific references in this sense.

6. A remark on some applications

Heuristic asymptotic expansions in small parameters, to a certain order and more often without
any proof of their asymptotic character (because of lack of suitable estimates on the remainders)
appear often in the literature. E.g, in neurobiology, stochastic models of the Fitz Hugh Nagumo
type without space dependence have been discussed extensively, at least with additive Gaussian
noise. Our method can be applied to them. Examples are discussed basically with additive noise,
e.g., in [2,61].

Another area where we find examples is mathematical finance. If we take σ0 = 0, σ1(x) =

σ̃ x, σ̃ > 0, β(x) = r x, x ∈ R, i.e., we take the model of example 2 in Remark 2.7, then uε

satisfies the equation of a Black–Scholes model with volatility parameter ε σ̃ and our expansion
is then a small volatility expansion, see also [47]. If we take instead σ0(x) = σ̃ x, σi (x) ≠ 0
for some i ∈ N, β(x) = r x, x ∈ R, then we have a stochastic volatility model with leading
order given by the Black–Scholes solution and the expansions yields corrections around the
Black–Scholes model.



S. Albeverio, B. Smii / Stochastic Processes and their Applications 125 (2015) 1009–1031 1029

Similar applications can be given to the multidimensional Black–Scholes model, see, e.g.,
[47,62] and the AS-model for interacting assets discussed in [16,21,22,47].

For other applications in this area see also [26,44].
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[35] J.-P. Eckmann, H. Epstein, J. Fröhlich, Asymptotic perturbation expansion for the S-matrix and the definition of

time ordered functions in relativistic quantum field models, Ann. Inst. H. Poincaré Phys. Theor. 25 (1976) 1–34.
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