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Abstract

Let X = {X (t), t ∈ T } be a non-centered, unit-variance, smooth Gaussian random field indexed on
some parameter space T , and let Au(X, T ) = {t ∈ T : X (t) ≥ u} be the excursion set. It is shown that,
as u → ∞, the excursion probability P{supt∈T X (t) ≥ u} can be approximated by the expected Euler
characteristic of Au(X, T ), denoted by E{χ(Au(X, T ))}, such that the error is super-exponentially small.
The explicit formulae for E{χ(Au(X, T ))} are also derived for two cases: (i) T is a rectangle and X − EX
is stationary; (ii) T is an N -dimensional sphere and X − EX is isotropic.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Let X = {X (t), t ∈ T } be a real-valued Gaussian random field living on some parameter
space T . The excursion probability P{supt∈T X (t) ≥ u} has been extensively studied in the
literature due to its importance in both theory and applications in many areas. We refer to
the survey Adler [1] and monographs Piterbarg [11], Adler and Taylor [2] and Azaı̈s and
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Wschebor [5] for the history, recent developments and related applications on this subject. To
approximate the excursion probability for high exceeding level u, many authors have developed
various powerful tools, including the double sum method [11], the tube method [15], the expected
Euler characteristic approximation [1,16,17,2] and the Rice method [3–5].

In particular, the expected Euler characteristic approximation establishes a very general and
profound result, building an interesting connection between the excursion probability and the
geometry of the field. It was first rigorously proved by Taylor et al. [17] (see also Theorem 14.3.3
in [2]), showing that for a centered, unit-variance, smooth Gaussian random field, under certain
conditions on the regularity of X and topology of T ,

P


sup
t∈T

X (t) ≥ u


= E{χ(Au(X, T ))}


1 + o


e−αu2

as u → ∞, (1.1)

where χ(Au(X, T )) is the Euler characteristic of the excursion set Au(X, T ) = {t ∈ T : X (t) ≥

u} and α > 0 is some constant. This verifies the “Expected Euler Characteristic Heuristic” for
centered, unit-variance, smooth Gaussian random fields. Similar results can be found in [5] where
the Rice method was applied. It had also been further developed by Cheng and Xiao [8] that (1.1)
holds for certain Gaussian fields with stationary increments which have nonconstant variances.
However, to the best of our knowledge, among the existing works on deriving the expected Euler
characteristic approximation (1.1), the Gaussian field X is always assumed to be centered. In
fact, the study of excursion probability for non-centered Gaussian fields is also very valuable
since the varying mean function plays an important role in many models. Especially, when the
Gaussian field is non-smooth, several results on the excursion probability have been obtained via
the double sum method (see, for examples, [11,13,10]).

In this paper, we study the excursion probability P{supt∈T X (t) ≥ u} for non-centered, unit
variance, smooth (see condition (H1) below) Gaussian random fields. As the first contribution,
we obtain in Theorem 3.5 that, in general, the expected Euler characteristic approximation 2.5
holds for such non-centered Gaussian fields when T ⊂ RN is a compact rectangle. It shows that,
comparing with the double sum method for non-smooth non-centered Gaussian fields (see [13]
for example), we are able to obtain a much more accurate approximation for the excursion
probability of smooth non-centered Gaussian fields such that the error is super-exponentially
small. This is because the expected Euler characteristic approximation takes into account the
effect of X over the boundary of T , which is ignored in the double sum method. By similar
arguments in [3], such approximation can also be easily extended to the cases when T ⊂ RN

is a compact and convex set with smooth boundary or a compact and smooth manifold without
boundary, see Theorem 2.6.

To apply the approximation in practice, one needs to find an explicit formula for the expected
Euler characteristic E{χ(Au(X, T ))}. Under the assumption of centered Gaussian fields, Taylor
and Adler [16] showed a very nice formula for E{χ(Au(X, T ))} (see also [2]), involving the
Lipschitz–Killing curvatures of the excursion set Au(X, T ). However, there is lack of research to
evaluate E{χ(Au(X, T ))} for non-centered Gaussian fields. We provide here explicit formulae of
E{χ(Au(X, T ))} for two cases of non-centered Gaussian fields: (i) T is a rectangle and X − EX
is stationary; (ii) T is an N -dimensional sphere and X − EX is isotropic; see respectively
Theorems 3.5 and 3.11. The results show that, the mean function of the field does make the
formula of E{χ(Au(X, T ))} much more complicated than that of the centered field. In real
applications, one usually needs to use the Laplace method to obtain explicit asymptotics for
E{χ(Au(X, T ))}.
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2. Excursion probability

2.1. Gaussian random fields on rectangles

We first consider the Gaussian field X = {X (t), t ∈ T } with mean function m(t) = E{X (t)},
where T ⊂ RN is a compact rectangle. Throughout this paper, unless specified otherwise, X
is assumed to be unit-variance, m(·) denotes the mean function of X and T denotes an N -
dimensional compact rectangle. For a function f (·) ∈ C2(T ), we write ∂ f (t)

∂ti
= fi (t) and

∂2 f (t)
∂ti ∂t j

= fi j (t). Denote by ∇ f (t) and ∇
2 f (t) the column vector ( f1(t), . . . , fN (t))T and the

N × N matrix ( fi j (t))i, j=1,...,N , respectively. We shall make use of the following smoothness
condition (H1) and regularity condition (H2) for approximating the excursion probability,
and also a weaker regularity condition (H2′) for evaluating the expected Euler characteristic
E{χ(Au(X, T ))} (note that (H2) implies (H2′)).

(H1) X (·) ∈ C2(T ) almost surely and its second derivatives satisfy the uniform mean-square
Hölder condition: there exist constants L > 0 and η ∈ (0, 1] such that

E(X i j (t) − X i j (s))
2

≤ Ld(t, s)2η, ∀t, s ∈ T, i, j = 1, . . . , N , (2.1)

where d(t, s) is the distance of t and s.
(H2) For every pair (t, s) ∈ T 2 with t ≠ s, the Gaussian random vector

(X (t), ∇ X (t), X i j (t), X (s), ∇ X (s), X i j (s), 1 ≤ i ≤ j ≤ N )

is non-degenerate.
(H2′) For every t ∈ T , (X (t), ∇ X (t), X i j (t), 1 ≤ i ≤ j ≤ N ) is non-degenerate.

We may write T =
N

i=1[ai , bi ], −∞ < ai < bi < ∞. Following the notation on page 134
in [2], we shall show that T can be decomposed into several faces of lower dimensions, based on
which the Euler characteristic of the excursion set can be formulated.

A face J of dimension k is defined by fixing a subset σ(J ) ⊂ {1, . . . , N } of size k (if k = 0,
we have σ(J ) = ∅ by convention) and a subset ε(J ) = {ε j , j ∉ σ(J )} ⊂ {0, 1}

N−k of size
N − k, so that

J = {t = (t1, . . . , tN ) ∈ T : a j < t j < b j if j ∈ σ(J ),

t j = (1 − ε j )a j + ε j b j if j ∉ σ(J )}.

Denote by ∂k T the collection of all k-dimensional faces in T . Then the interior of T is given by
◦

T = ∂N T and the boundary of T is given by ∂T = ∪
N−1
k=0 ∪J∈∂k T J . For J ∈ ∂k T , denote by

∇ X |J (t) and ∇
2 X |J (t) the column vector (X i1(t), . . . , X ik (t))

T
i1,...,ik∈σ(J ) and the k × k matrix

(Xmn(t))m,n∈σ(J ), respectively.
If X (·) ∈ C2(T ) and it is a Morse function a.s. (cf. Definition 9.3.1 in [2]), then according to

Corollary 9.3.5 or pages 211–212 in [2], the Euler characteristic of the excursion set Au(X, T ) =

{t ∈ T : X (t) ≥ u} is given by

χ(Au(X, T )) =

N
k=0


J∈∂k T

(−1)k
k

i=0

(−1)iµi (J ) (2.2)

with

µi (J ) := #

t ∈ J : X (t) ≥ u, ∇ X |J (t) = 0, index (∇2 X |J (t)) = i,
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ε∗

j X j (t) ≥ 0 for all j ∉ σ(J )

,

where ε∗

j = 2ε j −1 and the index of a matrix is defined as the number of its negative eigenvalues.
For t ∈ J ∈ ∂k T , let

ΛJ (t) = (λi j (t))i, j∈σ(J ) := (Cov(X i (t), X j (t)))i, j∈σ(J ) = Cov(∇ X |J (t), ∇ X |J (t)),

{J1, . . . , JN−k} = {1, . . . , N } \ σ(J ),

E(J ) = {(tJ1 , . . . , tJN−k ) ∈ RN−k
: t jε

∗

j ≥ 0, j = J1, . . . , JN−k}.

(2.3)

Since X has unit variance, Cov(X (t), ∇2 X |J (t)) = −Cov(∇ X |J (t), ∇ X |J (t)) = −ΛJ (t), which
is negative definite. Define the number of extended outward maxima above level u as

M E
u (J ) := #


t ∈ J : X (t) ≥ u, ∇ X |J (t) = 0, index (∇2 X |J (t)) = k,

ε∗

j X j (t) ≥ 0 for all j ∉ σ(J )


= #

t ∈ J : X (t) ≥ u, ∇ X |J (t) = 0, index (∇2 X |J (t)) = k,

(X J1(t), . . . , X JN−k (t)) ∈ E(J )

. (2.4)

Notice that M E
u (J ) = µk(J ) if J is a k-dimensional face. It can be seen from Lemma A.1 in the

Appendix that E{M E
u (J )}, the expected number of extended outward maxima, has a very close

relation to the excursion probability. In fact, Lemma A.1 is a crucial technique for showing our
desired approximation, see the arguments below.

We call a function h(u) super-exponentially small (when compared with P(supt∈T X (t) ≥

u)), if there exists a constant α > 0 such that h(u) = o(e−αu2
−u2/2) as u → ∞. The sketch for

proving the expected Euler characteristic approximation (1.1) consists of two steps. The first step,
which is established in Lemma 2.1, is to show that the difference between the upper bound in
(A.1) and the expected Euler characteristic E{χ(Au(X, T ))} is super-exponentially small. Then
we prove that the upper bound in (A.1) makes the major contribution since the last two terms in
the lower bound in (A.1) are super-exponentially small, see Lemmas 2.2–2.4.

The approach described above is similar to that for proving the case of centered Gaussian
fields. The main difference is that, for a non-centered Gaussian field, one also needs to deal
with the mean function, especially its interaction with the covariance and the geometry of T .
In particular, the proofs of Lemmas 2.1 and 2.4 contain certain new techniques for showing
the error terms involving the mean function are still super-exponentially small. The important
intuitive idea behind these rigorous proofs is that the mean function will make the error terms to
be o(e−α′(u−b)2

−u2/2) for some positive constants α′ and b as u → ∞, where b is related to the
mean function. This error is still o(e−αu2

−u2/2) for α ∈ (0, α′).

Lemma 2.1. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1) and (H2′).
Then for each J ∈ ∂k T with k ≥ 1, there exists some constant α > 0 such that

E


M E
u (J )


= E


(−1)k

k
i=0

(−1)iµi (J )


(1 + o(e−αu2

)). (2.5)

Proof. To simplify the notation, without loss of generality, we assume σ(J ) = {1, . . . , k} and
that all elements in ε(J ) are 1, which implies E(J ) = RN−k

+ . Let Di be the collection of all k ×k
matrices with index i . By the Kac–Rice metatheorem (cf. Theorem 11.2.1 or Corollary 11.2.2
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in [2]), E{M E
u (J )} equals

J
E{| det ∇2 X |J (t)|1{∇2 X |J (t)∈Dk }

1{X (t)≥u}1{(Xk+1(t),...,X N (t))∈RN−k
+ }

|∇ X |J (t) = 0}

×p∇ X |J (t)(0)dt

= (−1)k


J
dt


∞

u
dx


∞

0
dyk+1 · · ·


∞

0
dyN

E{det ∇2 X |J (t)1{∇2 X |J (t)∈Dk }
|X (t) = x,

Xk+1(t) = yk+1, . . . , X N = yN , ∇ X |J (t) = 0}

× pX (t),Xk+1(t),...,X N (t)(x, yk+1, . . . , yN |∇ X |J (t) = 0)p∇ X |J (t)(0). (2.6)

Since ΛJ (t) is positive definite for every t ∈ J , there exists a k × k positive definite matrix
Qt such that QtΛJ (t)Qt = Ik , where Ik is the k × k identity matrix. We write ∇

2 X |J (t) =

Q−1
t Qt∇

2 X |J (t)Qt Q−1
t and let al

i j (t) = Cov(Xl(t), (Qt∇
2 X |J (t)Qt )i j ) for l = 1, . . . , N .

Recall that m(·) is the mean function of X , applying Lemma A.2 yields

E{(Qt∇
2 X |J (t)Qt )i j |X (t) = x, ∇ X |J (t) = 0,

Xk+1(t) = yk+1, . . . , X N (t) = yN }

= (Qt∇
2m|J (t)Qt )i j + (−δi j , a1

i j (t), . . . , aN
i j (t))(Cov(X (t), ∇ X (t)))−1

· (x, 0, . . . , 0, yk+1, . . . , yN )T . (2.7)

Make change of variables V (t) = (Vi j (t))1≤i, j≤k , where

Vi j (t) = (Qt∇
2 X |J (t)Qt )i j − (Qt∇

2m|J (t)Qt )i j + xδi j ,

i.e.,

Qt∇
2 X |J (t)Qt = V (t) + Qt∇

2m|J (t)Qt − x Ik . (2.8)

Denote the density of

((Vi j (t))1≤i≤ j≤k |X (t) = x, ∇ X |J (t) = 0, Xk+1(t) = yk+1, . . . , X N (t) = yN )

by ht,yk+1,...,yN (v), v = (vi j : 1 ≤ i ≤ j ≤ k) ∈ Rk(k+1)/2. It follows from (2.7) and the
independence of X (t) and ∇ X (t) that ht,yk+1,...,yN (v) is independent of x . Let (vi j ) be the
abbreviation of matrix (vi j )1≤i, j≤k . Applying (2.8) yields

E{det(Qt∇
2 X |J (t)Qt )1{∇2 X |J (t)∈Dk }

|X (t) = x, ∇ X |J (t) = 0,

Xk+1(t) = yk+1, . . . , X N (t) = yN }

= E{det(Qt∇
2 X |J (t)Qt )1{Qt ∇2 X |J (t)Qt ∈Dk }

|X (t) = x, ∇ X |J (t) = 0,

Xk+1(t) = yk+1, . . . , X N (t) = yN }

=


{v:(vi j )+Qt ∇2m|J (t)Qt −x Ik∈Dk }

det

(vi j ) + Qt∇

2m|J (t)Qt − x Ik


× ht,yk+1,...,yN (v) dv. (2.9)

Since Qt∇
2m|J (t)Qt is continuous in t and T is compact, there exists some constant c > 0 such

that the following relation holds for all t ∈ T and x large enough:

(vi j ) + Qt∇
2m|J (t)Qt − x Ik ∈ Dk, ∀ ∥(vi j )∥ <

x

c
. (2.10)
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Let

W (t, x, yk+1, . . . , yN )

=


{v:(vi j )+Qt ∇2m|J (t)Qt −x Ik ∉Dk }

det

(vi j ) + Qt∇

2m|J (t)Qt − x Ik


ht,yk+1,...,yN (v) dv.

Then (2.9) becomes
Rk(k+1)/2

det

(vi j ) + Qt∇

2m|J (t)Qt − x Ik


ht,yk+1,...,yN (v) dv

− W (t, x, yk+1, . . . , yN ). (2.11)

It follows from (2.10) that

I (t, x) :=


∞

0
dyk+1 · · ·


∞

0
dyN pX (t),Xk+1(t),...,X N (t)(x, yk+1, . . . , yN |∇ X |J (t) = 0)

× |W (t, x, yk+1, . . . , yN )|

≤


∞

0
dyk+1 · · ·


∞

0
dyN pX (t),Xk+1(t),...,X N (t)(x, yk+1, . . . , yN |∇ X |J (t) = 0)

×


∥(vi j )∥≥

x
c

det

(vi j ) + Qt∇

2m|J (t)Qt − x Ik

 ht,yk+1,...,yN (v)dv

≤ pX (t)(x |∇ X |J (t) = 0)


∥(vi j )∥≥

x
c

det

(vi j )+Qt∇

2m|J (t)Qt −x Ik

 ft (v)dv,

(2.12)

where ft (v) is the density of ((Vi j (t))1≤i≤ j≤k |X (t) = x, ∇ X |J (t) = 0) and the last inequality
comes from replacing the integral domain RN−k

+ by RN−k . Notice that the last integral in (2.12) is

o(e−αx2
) for some α > 0 as x → ∞, implying


J


∞

u I (t, x)dxdt = o(e−αu2
−u2/2) as u → ∞.

Plugging this, together with (2.9) and (2.11), into (2.6), we see that E{M E
u (J )} becomes

(−1)k


J
det(ΛJ (t))dt


∞

u
dx


∞

0
dyk+1 · · ·


∞

0
dyN

× E{det(Qt∇
2 X |J (t)Qt )1{∇2 X |J (t)∈Dk }

|X (t) = x,

Xk+1(t) = yk+1, . . . , X N = yN , ∇ X |J (t) = 0}

× pX (t),Xk+1(t),...,X N (t)(x, yk+1, . . . , yN |∇ X |J (t) = 0)p∇ X |J (t)(0)dt.

= (−1)k


J
dt


∞

u
dx


∞

0
dyk+1 · · ·


∞

0
dyN

× E{det ∇2 X |J (t)|X (t) = x, Xk+1(t) = yk+1, . . . , X N = yN , ∇ X |J (t) = 0}

× pX (t),Xk+1(t),...,X N (t)(x, yk+1, . . . , yN |∇ X |J (t) = 0)p∇ X |J (t)(0)


+ o(e−αu2

−u2/2)

= E


(−1)k

k
i=0

(−1)iµi (J )


(1 + o(e−αu2

)),

where the last line is due to the Kac–Rice metatheorem and the fact that
k

i=0

(−1)i
| det ∇2 X |J (t)|1{∇2 X |J (t)∈Di }

= det ∇2 X |J (t), a.s. �
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Let Sk−1 be the (k − 1)-dimensional unit sphere in Rk . The following result shows that the
factorial moments of M E

u (J ) are super-exponentially small.

Lemma 2.2. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1) and (H2).
Then for all J ∈ ∂k T , E{M E

u (J )(M E
u (J ) − 1)} are super-exponentially small.

Proof. If k = 0, then M E
u (J ) is either 0 or 1 and hence E{M E

u (J )(M E
u (J ) − 1)} = 0. If k ≥ 1,

then, thanks to Lemma A.3, it suffices to show β2
J < 1. By Lemma A.2, for every e ∈ Sk−1 and

t ∈ T , Var(X (t)|∇ X |J (t), ∇2 X |J (t)e) ≤ 1. On the other hand,

Var(X (t)|∇ X |J (t), ∇2 X |J (t)e) = 1 =⇒ Cov(X (t), ∇2 X |J (t)e) = 0. (2.13)

Note that the right hand side of (2.13) is equivalent to ΛJ (t)e = 0. However, by (H2), ΛJ (t)
is positive definite, which implies ΛJ (t)e ≠ 0 for all e ∈ Sk−1. Thus for every e ∈ Sk−1

and t ∈ T , Var(X (t)|∇ X |J (t), ∇2 X |J (t)e) < 1. Combining this with the continuity of
Var(X (t)|∇ X |J (t), ∇2 X |J (t)e) in (e, t), we conclude β2

J < 1. �

By similar arguments for showing Lemma 4.5 in [8], one can easily obtain that the cross
terms E{M E

u (J )M E
u (J ′)} in (A.1) are super-exponentially small if J and J ′ are not adjacent. In

particular, as the main step therein, Eq. (4.13) is essentially not affected by the mean function of
the field. We thus have the following result.

Lemma 2.3. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1) and (H2). Let
J and J ′ be two faces of T such that their distance is positive, i.e., inft∈J,s∈J ′ ∥s − t∥ > δ0 for
some δ0 > 0. Then E{M E

u (J )M E
u (J ′)} is super-exponentially small.

Next we turn to the alternative case when J and J ′ are adjacent. In such case, it is more
technical to prove that E{M E

u (J )M E
u (J ′)} is super-exponentially small. To shorten the arguments

for deriving Lemma 2.4, we will quote certain results in the proof of Theorem 4.8 in [8] (or
Theorem 4 in [3]).

Lemma 2.4. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1) and (H2).
Let J and J ′ be two faces of T such that they are adjacent, i.e., inft∈J,s∈J ′ ∥s − t∥ = 0. Then
E{M E

u (J )M E
u (J ′)} is super-exponentially small.

Proof. Let I := J̄ ∩ J̄ ′ ≠ ∅. Without loss of generality, we assume

σ(J ) = {1, . . . , l, l + 1, . . . , k}, σ (J ′) = {1, . . . , l, k + 1, . . . , k + k′
− l}, (2.14)

where 0 ≤ l ≤ k ≤ k′
≤ N and k′

≥ 1. Recall that, if k = 0, then σ(J ) = ∅. Under assumption
(2.14), we have J ∈ ∂k T , J ′

∈ ∂k′ T and dim(I ) = l. Assume also that all elements in ε(J ) and
ε(J ′) are 1, which implies E(J ) = RN−k

+ and E(J ′) = RN−k′

+ .
We first consider the case k ≥ 1. Applying the Kac–Rice metatheorem and removing

the indicator functions for negative definiteness of the Hessian of the field, we obtain that
E{M E

u (J )M E
u (J ′)} is bounded from above by

J
dt


J ′

ds


∞

u
dx


∞

u
dy


∞

0
dzk+1 · · ·


∞

0
dzk+k′−l


∞

0
dwl+1 · · ·


∞

0
dwk

E

| det ∇2 X |J (t)| | det ∇2 X |J ′(s)|

X (t) = x, X (s) = y, ∇ X |J (t) = 0, Xk+1(t) = zk+1,

. . . , Xk+k′−l(t) = zk+k′−l , ∇ X |J ′(s) = 0, Xl+1(s) = wl+1, . . . , Xk(s) = wk

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× pt,s(x, y, 0, zk+1, . . . , zk+k′−l , 0, wl+1, . . . , wk)

:=


J×J ′

A(t, s) dtds, (2.15)

where pt,s(x, y, 0, zk+1, . . . , zk+k′−l , 0, wl+1, . . . , wk) is the density of

(X (t), X (s), ∇ X |J (t), Xk+1(t), . . . , Xk+k′−l(t), ∇ X |J ′(s), Xl+1(s), . . . , Xk(s))

evaluated at (x, y, 0, zk+1, . . . , zk+k′−l , 0, wl+1, . . . , wk).
Let {e1, e2, . . . , eN } be the standard orthonormal basis of RN . For each t ∈ T , let Λ(t) =

(λi j (t))1≤i, j≤N , where λi j (t) = Cov(X i (t)X j (t)) as defined in (2.3). For t ∈ J and s ∈ J ′, let
et,s = (s − t)T /∥s − t∥ and let αi (t, s) = ⟨ei ,Λ(t)et,s⟩. Then

Λ(t)et,s =

N
i=1

⟨ei ,Λ(t)et,s⟩ei =

N
i=1

αi (t, s)ei . (2.16)

Notice that Λ(t) = Cov(∇ X (t), ∇ X (t)) is positive definite for each t ∈ T . On the other hand,
Λ(·) is continuous as a function in t and T is compact, thus Λ(t) are uniformly positive definite
for all t ∈ T . Therefore, there exists some α0 > 0 such that

⟨et,s,Λ(t)et,s⟩ ≥ α0 (2.17)

for all t and s. Let

Di = {(t, s) ∈ J × J ′
: αi (t, s) ≥ βi }, if l + 1 ≤ i ≤ k,

Di = {(t, s) ∈ J × J ′
: αi (t, s) ≤ −βi }, if k + 1 ≤ i ≤ k + k′

− l,

D0 =


(t, s) ∈ J × J ′

:

l
i=1

αi (t, s)⟨ei , et,s⟩ ≥ β0


,

(2.18)

where β0, β1, . . . , βk+k′−l are positive constants such that β0+
k+k′

−l
i=l+1 βi < α0. It follows from

(2.18) that, if (t, s) does not belong to any of D0, Dm, . . . , Dk+k′−m , then by (2.16) and (2.14),

⟨Λ(t)et,s, et,s⟩ =

N
i=1

αi (t, s)⟨ei , et,s⟩ ≤ β0 +

k+k′
−l

i=l+1

βi < α0,

contradicting (2.17). Therefore, D0 ∪ ∪
k+k′

−l
i=l+1 Di is a covering of J × J ′. By (2.15),

E{M E
u (J )M E

u (J ′)} ≤


D0

A(t, s) dtds +

k+k′
−l

i=l+1


Di

A(t, s) dtds.

It follows from the same arguments in the proof of Theorem 4.8 in [8] that


D0
A(t, s) dtds

is super-exponentially small. Next we show that


Di
A(t, s) dtds is super-exponentially small

for i = l + 1, . . . , k.
It follows from (2.15) that


Di

A(t, s) dtds is bounded above by
Di

dtds


∞

u
dx


∞

0
dwi pX (t),∇ X |J (t),X i (s),∇ X |J ′ (s)(x, 0, wi , 0)

× E{| det ∇2 X |J (t)| | det ∇2 X |J ′(s)| |X (t) = x,

∇ X |J (t) = 0, X i (s) = wi , ∇ X |J ′(s) = 0}. (2.19)
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Notice that if a subset B ⊂ Di satisfies inft∈B∩J, s∈B∩J ′ ∥s − t∥ > η0 for some η0 > 0,
then similarly to Lemma 2.3,


B A(t, s) dtds is super-exponentially small. Therefore, in the

arguments below, we only treat the case when t and s are close enough or ∥t − s∥ → 0.
There exists some positive constant C1 such that

pX (t),∇ X |J (t),X i (s),∇ X |J ′ (s)(x, 0, wi , 0)

= p∇ X |J ′ (s),X1(t),...,X i−1(t),X i+1(t),...,Xk (t)(0|X (t) = x, X i (s) = wi , X i (t) = 0)

× pX (t)(x |X i (s) = wi , X i (t) = 0)pX i (s)(wi |X i (t) = 0)pX i (t)(0)

≤ C1(detCov(X (t), ∇ X |J (t), X i (s), ∇ X |J ′(s)))−1/2

× exp

−

(x − ξ2(t, s))2

2σ 2
2 (t, s)


exp


−

(wi − ξ1(t, s))2

2σ 2
1 (t, s)


, (2.20)

where

ξ1(t, s) = E{X i (s)|X i (t) = 0} = mi (s),

σ 2
1 (t, s) = Var(X i (s)|X i (t) = 0) =

detCov(X i (s), X i (t))

λi i (t)
,

ξ2(t, s) = E{X (t)|X i (s) = wi , X i (t) = 0},

σ 2
2 (t, s) = Var(X (t)|X i (s) = wi , X i (t) = 0).

In particular, applying Taylor’s formula to X i (s) (see Eq. (4.23) in [8] or [12]), one has

ξ2(t, s) = E{X (t)|⟨∇ X i (t), et,s⟩ = wi/∥s − t∥ + o(1), X i (t) = 0},

= m(t) + (Cov(X (t), ⟨∇ X i (t), et,s⟩), 0)


1

Var(⟨∇ X i (t), et,s⟩)
0

0
1

λi i (t)


·


wi/∥s − t∥ + o(1) − ⟨∇mi (t), et,s⟩

−mi (t)


= m(t) −

αi (t, s)[wi/∥s − t∥ − ⟨∇mi (t), et,s⟩ + o(1)]

Var(⟨∇ X i (t), et,s⟩)
(2.21)

and

σ 2
2 (t, s) = Var(X (t)|⟨∇ X i (t), et,s⟩, X i (t)) + o(1) ≤ 1 − δ0 (2.22)

for some δ0 > 0.
Also, by the same arguments in the proof of Theorem 4.8 in [8], there exist positive constants

C2, C3, N1 and N2 such that

detCov(∇ X |J (t), X i (s), ∇ X |J ′(s)) ≥ C2∥s − t∥2(l+1) (2.23)

and

E

| det ∇2 X |J (t)| | det ∇2 X |J ′(s)|

X (t) = x, ∇ X |J (t)=0, X i (s) = wi , ∇ X |J ′(s)=0


= E

| det ∇2 X |J (t)| | det ∇2 X |J ′(s)|

X (t) = x, ∇ X |J (t) = 0,

⟨∇ X i (t), et,s⟩ = wi/∥s − t∥ + o(1), ∇ X |J ′(s) = 0


≤ C3(x N1 + |wi/∥s − t∥ |
N2 + 1). (2.24)
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Combining (2.19)–(2.24), and making change of variable w = wi/∥s − t∥, we obtain that there
exist positive constants C4, C5, C6 and C7 such that


Di

A(t, s) dtds is bounded above by

C4


Di

dtds∥s − t∥−l−1


∞

u
dx


∞

0
dwi (x N1 + |wi/∥s − t∥ |

N2 + 1)

× exp


−

(x − ξ2(t, s))2

2σ 2
2 (t, s)


exp


−

(wi − mi (s))2

2σ 2
1 (t, s)


= C4


Di

dtds∥s − t∥−l


∞

u
dx


∞

0
dw(x N1 + |w|

N2 + 1)

× exp

−


x − m(t) +

αi (t,s)[w−⟨∇mi (t),et,s ⟩+o(1)]

Var(⟨∇ X i (t),et,s ⟩)

2

2σ 2
2 (t, s)

 exp

−

(w − mi (t, s))2

2σ 2
1 (t, s)



≤ C4


Di

dtds∥s − t∥−l


∞

u
exp


−

[x − C5 + βi (C6w − C7)]2

2(1 − δ0)


dx

×


∞

0
(x N1 + |w|

N2 + 1) exp

−

(w − mi (t, s))2

2σ 2
1 (t, s)


dw,

where σ1(t, s) = σ1(t, s)/∥s − t∥, mi (t, s) = mi (s)/∥s − t∥ and we have used the fact
αi (t, s) ≥ βi > 0 for the last inequality. This, in turn, ensures that there exists some δ1 ∈ (0, δ0)

such that for sufficiently large u,
Di

A(t, s) dtds

≤ C4 exp

−

u2

2(1 − δ1)


Di

∥s − t∥−ldtds

×


∞

0
exp


−

β2
i C2

6w2

2(1 − δ1)


(uN1 + |w|

N2 + 1) exp

−

(w − mi (t, s))2

2σ 2
1 (t, s)


dw

≤ C4 exp

−

u2

2(1 − δ1)


Di

∥s − t∥−ldtds


∞

0

× exp

−

β2
i C2

6w2

2(1 − δ1)


(uN1 + |w|

N2 + 1)dw.

Since ∥s − t∥−l is integrable on J × J ′, we conclude that


Di
A(t, s) dtds is finite and super-

exponentially small.
It is similar to show that


Di

A(t, s) dtds is super-exponentially small for i = k +1, . . . , k +

k′
− l. The case when k = 0 can also be proved similarly. �

Now we can derive our main result of this section.

Theorem 2.5. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1)

and (H2). Then there exists some α > 0 such that the expected Euler characteristic
approximation (1.1) holds.

Proof. The result follows immediately from combining (A.1), Lemmas 2.1–2.4. �
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2.2. Gaussian random fields on other sets

Adler and Taylor [2] obtained the expected Euler characteristic approximation (1.1) for
centered Gaussian fields living on quite general manifolds. Since the method used in this paper
is different, and it may require more powerful techniques and careful arguments to extend the
parameter sets to general manifolds, we will not attempt to achieve such extension here. However,
similarly to Azaı̈s and Delmas [3], we can easily extend the approximation to the cases of smooth
and compact manifolds without boundary or convex and compact sets with smooth boundary.

We first introduce some notation. Let (T, g) be an N -dimensional Riemannian manifold,
where g is the Riemannian metric, and let f be a real-valued smooth function on T . Then
the gradient of f , denoted by ∇ f , is the unique continuous vector field on T such that
g(∇ f, ξ) = ξ f for every vector field ξ . The Hessian of f , denoted by ∇

2 f , is the double
differential form defined by ∇

2 f (ξ, ζ ) = ξζ f − ∇ξ ζ f , where ξ and ζ are vector fields and ∇ξ

is the Levi-Civitá connection of (T, g). To make the notation consistent with the Euclidean case,
we fix an orthonormal frame {Ei }1≤i≤N , and let

∇ f = ( f1, . . . , fN ) = (E1 f, . . . , EN f ),

∇
2 f = ( fi j )1≤i, j≤N = (∇2 f (Ei , E j ))1≤i, j≤N .

Note that if t is a critical point, i.e. ∇ f (t) = 0, then ∇
2 f (Ei , E j )(t) = Ei E j f (t), which is

similar to the Euclidean case. As in the Euclidean space, we denote by d the distance function
induced by Riemannian metric g, which is also called the geodesic distance on (T, g).

If X (·) ∈ C2(T ), where T is a smooth and compact manifold without boundary, and it is
a Morse function a.s., then according to Corollary 9.3.5 in [2], the Euler characteristic of the
excursion set Au(X, T ) = {t ∈ T : X (t) ≥ u} is given by

χ(Au(X, T )) = (−1)N
N

i=0

(−1)iµi (T ) (2.25)

with

µi (T ) := #

t ∈ T : X (t) ≥ u, ∇ X (t) = 0, index (∇2 X (t)) = i


.

If T is a convex and compact sets with smooth boundary, then we have

χ(Au(X, T )) = (−1)N
N

i=0

(−1)iµi (
◦

T ) + (−1)N−1
N−1
i=0

(−1)iµi (∂T )

with

µi (
◦

T ) := #

t ∈

◦

T : X (t) ≥ u, ∇ X (t) = 0, index (∇2 X (t)) = i

,

µi (∂T ) := #

t ∈ ∂T : X (t) ≥ u, ∇ X |∂T (t) = 0, index (∇2 X |∂T (t)) = i


.

By similar arguments for Gaussian fields on rectangles in the previous section, together with
the projection technique in [3] or the argument by charts in Theorem 12.1.1 in [2], we can obtain
the following extension, whose proof is omitted here.

Theorem 2.6. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1) and (H2),
where T is a smooth and compact manifold without boundary or a convex and compact set with
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smooth boundary. Then there exists some α > 0 such that the expected Euler characteristic
approximation (1.1) holds.

3. The expected Euler characteristic

We now turn to computing the expected Euler characteristic E{χ(Au(X, T ))}. To do this, we
need some preliminary results on calculations of certain Gaussian matrices.

3.1. Preliminary computations on Gaussian matrices

The following lemma can be obtained by elementary calculations. See also Lemma 11.6.1
in [2] for reference.

Lemma 3.1 (Wick Formula). Let (Z1, Z2, . . . , Z N ) be a centered Gaussian random vector. Then
for any integer k,

E{Z1 Z2 · · · Z2k+1} = 0,

E{Z1 Z2 · · · Z2k} =


E{Zi1 Zi2} · · · E{Zi2k−1 Zi2k },

where the sum is taken over the (2k)!/(k!2k) different ways of grouping Z1, . . . , Z2k into k pairs.

Let ∆N = (∆i, j )1≤i, j≤N and ΞN = (Ξi, j )1≤i, j≤N be two N × N symmetric centered
Gaussian matrices satisfying the following properties:

E{∆i, j∆k,l} = E (i, j, k, l) − δi jδkl ,

E{Ξi, jΞk,l} = F (i, j, k, l),
(3.1)

where E and F are both symmetric functions of i , j , k, l, and δi j is the Kronecker delta function.
The following result is an extension of Lemma 11.6.2 in [2]. It will be used for computing the

expected Euler characteristic of stationary or isotropic Gaussian fields.

Lemma 3.2. Let BN = (Bi, j )1≤i, j≤N be an N × N real symmetric matrix. Then, under (3.1),

E{det(∆N + BN )} =

⌊N/2⌋
k=0

(−1)k(2k)!

k!2k SN−2k(BN ),

E{det(ΞN + BN )} = det(BN ),

(3.2)

where S j (Bl) denotes the sum of the
 l

j


principle minors of order j in Bl , and S0(Bl) = 1 by

convention.

Proof. We first consider the case when N is even, say N = 2l. Then

E{det(∆2l + B2l)} =


P

η(p)E{(∆1,i1 + B1,i1) · · · (∆2l,i2l + B2l,i2l )},

where p = (i1, i2 · · · , i2l) is a permutation of (1, 2, . . . , 2l), P is the set of the (2l)! such
permutations, and η(p) equals +1 or −1 depending on the order of the permutation p. It follows
from Lemma 3.1 that for k ≤ l, E{∆1,i1 · · ·∆2k−1,i2k−1} = 0 and

E{∆1,i1 · · ·∆2k,i2k } =


Q2k

{E (1, i1, 2, i2) − δ1i1δ2i2} × · · ·

× {E (2k − 1, i2k−1, 2k, i2k) − δ2k−1,i2k−1δ2k,i2k },
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where Q2k is the set of the (2k)!/(k!2k) ways of grouping (i1, i2, . . . , i2k) into pairs without
regard to order, keeping them paired with the first index. Hence

P

η(p)E{∆1,i1 · · ·∆2k,i2k }B2k+1,i2k+1 · · · B2l,i2l

=


P

η(p)


Q2k

{E (1, i1, 2, i2) − δ1i1δ2i2} · · · {E (2k − 1, i2k−1, 2k, i2k)

− δ2k−1,i2k−1δ2k,i2k }


B2k+1,i2k+1 · · · B2l,i2l

=


P

η(p)


Q2k

(−1)k(δ1i1δ2i2) · · · (δ2k−1,i2k−1δ2k,i2k )


B2k+1,i2k+1 · · · B2l,i2l

=
(−1)k(2k)!

k!2k det((Bi, j )2k+1≤i, j≤2l),

where the second equality is due to the fact that all products involving at least one E term
will cancel out because of their symmetry property, and the last equality comes from changing
the order of summation and then noting that the delta functions are nonzero only in those
permutations in P with (i1, i2, . . . , i2k−1, i2k) = (1, 2, . . . , 2k − 1, 2k). Thus

E{det(∆2l + B2l)} =

l
k=0

(−1)k(2k)!

k!2k S2l−2k(B2l).

Similarly, we obtain that when N = 2l + 1,

E{det(∆2l+1 + B2l+1)} =

l
k=0

(−1)k(2k)!

k!2k S2l+1−2k(B2l+1).

The proof for the first line in (3.2) is completed. The second line in (3.2) follows similarly. �

Let BN (i1, . . . , in; i1, . . . , in) = (Bi j ,ik )1≤ j,k≤n be the n × n principle submatrix of BN
extracted from the i1, . . . , in rows and i1, . . . , in columns in BN , where 1 ≤ i1 < · · · < in ≤ N .

Proposition 3.3. Let ∆N and ΞN be two N × N symmetric centered Gaussian matrices
satisfying (3.1), and let BN be an N × N real symmetric matrix. Then for x ∈ R,

E{det(∆N + BN − x IN )} =

N
n=0

(−1)N−n

(N − n)!

×


⌊n/2⌋
k=0

(−1)k(N − n + 2k)!

k!2k Sn−2k(BN )


x N−n,

E{det(ΞN + BN − x IN )} =

N
n=0

(−1)N−n Sn(BN )x N−n,

(3.3)

where S j (·) is defined in Lemma 3.2.

Proof. Applying the Laplace expansion of the determinant yields

E{det(∆N + BN − x IN )} =

N
n=0

(−1)N−nE{Sn(∆N + BN )}x N−n . (3.4)
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By Lemma 3.2,

E{Sn(∆N + BN )} =


1≤i1<···<in≤N

⌊n/2⌋
k=0

(−1)k(2k)!

k!2k Sn−2k(BN (i1, . . . , in; i1, . . . , in))

=

⌊n/2⌋
k=0

(−1)k(2k)!

k!2k

N
n

 n
n−2k

 N
n−2k

 Sn−2k(BN )

=
1

(N − n)!

⌊n/2⌋
k=0

(−1)k(N − n + 2k)!

k!2k Sn−2k(BN ),

where the second equality is due to the observation that the sum on all principle submatrices of
order n in the first line makes every principal minor of order n − 2k appear

N
n

 n
n−2k

 N
n−2k


many times. Plugging this into (3.4) yields the first line in (3.3).

By Lemma 3.2 again,

E{Sn(ΞN + BN )} =


1≤i1<···<in≤N

det(BN (i1, . . . , in; i1, . . . , in)) = Sn(BN ).

Plugging this into (3.4), with ∆N being replaced by ΞN , yields the second line in (3.3). �

Remark 3.4. Let BN ≡ 0. Then it can be derived from Proposition 3.3 that

E{det(∆N + BN − x IN )} = (−1)N HN (x),

coinciding with the result in Corollary 11.6.3 in [2], where HN (x) is the Hermite polynomial of
order N . Meanwhile,

E{det(ΞN + BN − x IN )} = (−1)N x N . �

3.2. Non-centered stationary Gaussian fields on rectangles

Let X = {X (t), t ∈ T } be a Gaussian random field such X (t) = Z(t) + m(t), where Z is
a centered unit-variance stationary Gaussian random field, m(·) is the mean function of X , and
as usual, T is a compact rectangle. By classical spectral representation for stationary Gaussian
fields (cf. Chapter 5 in [2]), the field Z has representation

Z(t) =


RN

ei⟨t,λ⟩W (dλ)

and covariance

C(t) =


RN

ei⟨t,λ⟩ν(dλ),

where W is a complex-valued Gaussian random measure and ν is the spectral measure satisfying
ν(RN ) = C(0) = σ 2. We introduce the second-order spectral moments

λi j =


RN

λiλ jν(dλ),

and for any face J ∈ ∂k T with k ≥ 1, denote ΛJ = (λi j )i, j∈σ(J ). Notice that λi j and ΛJ do not
depend on t , and they are respectively the same as λi j (t) and ΛJ (t) defined in (2.3). In particular,
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we have

Cov(∇Z|J (t), ∇Z|J (t)) = −Cov(Z(t), ∇2 Z|J (t)) = ΛJ

and that

E0(i, j, k, l) := E{Zi j (t)Zkl(t)} =


RN

λiλ jλkλlν(dλ)

is a symmetric function of i , j , k, l.
Recall that for a k × k positive definite matrix B, the principal square root of B−1,

which is usually denoted by B−1/2, is the unique k × k positive definite matrix Q such that
Q B Q = Ik . Denote by Ψ(x) the tail probability of a standard Gaussian distribution, that is
Ψ(x) = (2π)−1/2


∞

x e−y2/2dy. Notice that in (3.5), for every {t} ∈ ∂0T , ∇ X (t) ∈ E({t})
specifies the signs of the partial derivatives X j (t) ( j = 1, . . . , N ) and, for J ∈ ∂k T with k ≥ 1,
the set {J1, . . . , JN−k} and E(J ) are defined in (2.3).

Theorem 3.5. Let X = {X (t), t ∈ T } be a Gaussian random field such that X (t) = Z(t)+m(t),
where Z is a centered unit-variance stationary Gaussian random field and m(·) is the mean
function of X. If X satisfies conditions (H1) and (H2′), then

E{χ(Au(X, T ))}

=


{t}∈∂0T

P{∇ X (t) ∈ E({t})}Ψ(u − m(t)) +

N
k=1


J∈∂k T

(det(ΛJ ))1/2

(2π)(k+1)/2

×


J

dt


∞

u
dx exp


−

1
2


(x − m(t))2

+ (∇m|J (t))T Λ−1
J ∇m|J (t)


× P{(X J1(t), . . . , X JN−k (t)) ∈ E(J )|∇ X |J (t) = 0}

×


k

j=0

(−1) j

(k − j)!


⌊ j/2⌋
i=0

(−1)i (k − j + 2i)!

i !2i S j−2i


Λ−1/2

J ∇
2m J (t)Λ−1/2

J


xk− j


,

(3.5)

where S j−2i (·) is defined in Lemma 3.2 and Λ−1/2
J is principal square root of Λ−1

J .

Proof. If J = {t} ∈ ∂0T , then

E{µ0(J )} = P{X (t) ≥ u, ε∗

j X j (t) ≥ 0 for all 1 ≤ j ≤ N }

= P{∇ X (t) ∈ E({t})}Ψ(u − m(t)), (3.6)

where the last equality is due to the independence of X (t) and ∇ X (t) for each fixed t .
Let J ∈ ∂k T with k ≥ 1 and let Di be the collection of all k × k matrices with index i .

Applying the Kac–Rice metatheorem, similarly to the proof of Lemma 2.1, we obtain

E
 k

i=0

(−1)iµi (J )



=


J

p∇ X |J (t)(0)dt
k

i=0

(−1)i E{| det ∇2 X |J (t)|1{∇2 X |J (t)∈Di }

×1{X (t)≥u}1{(X J1 (t),...,X JN−k (t))∈E(J )}|∇ X |J (t) = 0}
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=


J

p∇ X |J (t)(0)dt E{det ∇2 X |J (t)1{X (t)≥u}1{(X J1 (t),...,X JN−k (t))∈E(J )}|∇ X |J (t) = 0}

=
1

(2π)(k+1)/2(det(ΛJ ))1/2


J

dt

×


∞

u
dx exp


−

1
2


(x − m(t))2

+ (∇m|J (t))T Λ−1
J ∇m|J (t)


× P{(X J1(t), . . . , X JN−k (t)) ∈ E(J )|∇ X |J (t) = 0}E{det ∇2 X |J (t)|X (t) = x}, (3.7)

where the last equality is due to the fact that ∇ X (t) is independent of both X (t) and ∇
2 X (t) for

each fixed t .
Now we turn to computing E{det ∇2 X |J (t)|X (t) = x}. To simplify the notation, let Q =

Λ−1/2
J . Then

E{Z(t)(Q∇
2 Z|J (t)Q)i j } = −(QΛJ Q)i j = −δi j (3.8)

and we can write

E{det(Q∇
2 X |J (t)Q)|X (t) = x} = E{det(Q∇

2 Z|J (t)Q + Q∇
2m J (t)Q)|X (t) = x}

= E{det(∆(x) + Q∇
2m J (t)Q)},

where ∆(x) = (∆i j (x))i, j∈σ(J ) is a Gaussian matrix. Applying Lemma A.2 and (3.8), we obtain

E{∆i j (x)} = E{(Q∇
2 Z|J (t)Q)i j |X (t) = x} = −xδi j

and

E{[∆i j (x) − E{∆i j (x)}][∆kl(x) − E{∆kl(x)}]}

= E{(Q∇
2 Z|J (t)Q)i j (Q∇

2 Z|J (t)Q)kl} − δi jδkl = E (i, j, k, l) − δi jδkl ,

where E is a symmetric function of i, j, k, l. Therefore,

E{det(Q∇
2 X |J (t)Q)|X (t) = x} = E{det(∆ + Q∇

2m J (t)Q − x Ik)},

where ∆ = (∆i j )i, j∈σ(J ) and ∆i j are Gaussian variables satisfying

E{∆i j } = 0, E{∆i j∆kl} = E (i, j, k, l) − δi jδkl .

It follows from Proposition 3.3 that

E{det(Q∇
2 X |J (t)Q)|X (t) = x}

=

k
j=0

(−1)k− j

(k − j)!


⌊ j/2⌋
i=0

(−1)i (k − j + 2i)!

i !2i S j−2i (Q∇
2m J (t)Q)


xk− j .

Therefore,

E{det ∇2 X |J (t)|X (t) = x} = det(ΛJ )E{det(Q∇
2 X |J (t)Q)|X (t) = x}

= det(ΛJ )

k
j=0

(−1)k− j

(k − j)!


⌊ j/2⌋
i=0

(−1)i (k − j + 2i)!

i !2i S j−2i (Q∇
2m J (t)Q)


xk− j .

Plugging this into (3.7), together with (3.6) and (2.2), yields the desired result. �
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Corollary 3.6. Let the conditions in Theorem 3.5 hold. Assume additionally that t0, an interior
point in T , is the unique maximum point of m(t) and that ∇

2m(t0) is nondegenerate. Then as
u → ∞,

E{χ(Au(X, T ))} =

√
det(ΛJ )uN/2

det(−∇2m(t0))
Ψ(u − m(t0))(1 + o(1)). (3.9)

Proof. By Theorem 3.5,

E{χ(Au(X, T ))} =

√
det(ΛJ )

(2π)(N+1)/2


∞

u
x N dx

×


J

exp

−

1
2


(x − m(t))2

+ (∇m(t))T Λ−1
∇m(t)


dt (1 + o(1)).

Applying the Laplace method (see, e.g., [18]), we obtain that as x → ∞,
J

exp

−

1
2


(x − m(t))2

+ (∇m(t))T Λ−1
∇m(t)


dt

=
(2π)N/2

x N/2


det(−∇2m(t0))
exp


−

1
2
(x − m(t0))

2


(1 + o(1)).

Thus as u → ∞,

E{χ(Au(X, T ))} =

√
det(ΛJ )

√
2π


det(−∇2m(t0))


∞

u
x N/2

× exp

−

1
2
(x − m(t0))

2


dx(1 + o(1))

=

√
det(ΛJ )uN/2

det(−∇2m(t0))
Ψ(u − m(t0))(1 + o(1)). �

Remark 3.7. The asymptotic approximation in (3.9) is a special case of Theorem 5 in [13] when
the index α therein equals 2, which implies the Gaussian field is smooth. However, in our result,
a higher-order approximation, such as letting the error term in (3.9) be o(u−1) instead of o(1),
is also available by applying a higher-order Laplace approximation to E{χ(Au(X, T ))} (see,
e.g., [18]). Since the calculation is tedious, it is omitted here.

By Theorem 2.5, the expected Euler characteristic (3.5) approximates the excursion
probability with a super-exponentially small error. Comparing with the o(1) error, we see that
the expected Euler characteristic is much more accurate than the asymptotic approximation in
(3.9). This accuracy will be very useful in statistical applications, such as detecting significant
regions by computing p-values via excursion probability, especially when the threshold u is not
very high.

Meanwhile, the mean function in Theorem 3.5 can be very general. In contrast, Corollary 3.6
only deals with a special case when the maximum of the mean function is achieved at a unique
point. In fact, the classical double sum method used in [13] usually requires the mean function to
be nice enough, and to the best of our knowledge, it cannot completely solve the case when the
maximum of the mean function is achieved on a general subset of T so far. Since (3.5) provides
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a general (although complicated) formula for the expected Euler characteristic, one can always
approximate the integral therein to find suitable asymptotics for the excursion probability.

Besides the super-exponentially small error and the generality of the mean function, the
expected Euler characteristic approximation has another important advantage on the geometric
interpretation. Especially in real applications, such as image analysis, instead of using the
complicated formula in (3.5), one may try to simulate the mean value of observed Euler
characteristic of the excursion sets to estimate the excursion probability. �

Corollary 3.8. Let the conditions in Theorem 3.5 hold. If Z is an isotropic Gaussian random
field with Var(Z1(t)) = γ 2, then

E{χ(Au(X, T ))} =


{t}∈∂0T

P{∇ X (t) ∈ E({t})}Ψ(u − m(t)) +

N
k=1


J∈∂k T

γ k

(2π)(k+1)/2

×


J

dt


∞

u
dx exp


−

1
2


(x − m(t))2

+ γ −2
∥∇m|J (t)∥2


× P{(X J1(t), . . . , X JN−k (t)) ∈ E(J )}

×


k

j=0

(−1) j

(k − j)!


⌊ j/2⌋
i=0

(−1)i (k − j + 2i)!

i !2i γ −2( j−2i)S j−2i


∇

2m J (t)


xk− j


.

Proof. The result follows immediately from Theorem 3.5, the independence of X i (t) and X j (t)

when i ≠ j and that, for J ∈ ∂k T with k ≥ 1, ΛJ = γ 2 Ik , which implies Λ−1/2
J = γ −1 Ik . �

3.3. Non-centered isotropic Gaussian fields on spheres

Let SN denote the N -dimensional unit sphere and let X = {X (t), t ∈ SN
} be a Gaussian

random field such X (t) = Z(t) + m(t), where Z is a centered unit-variance isotropic Gaussian
random field on SN and m(·) is the mean function of X .

The following theorem by Schoenberg [14] characterizes the covariances of isotropic
Gaussian fields on SN (see also [9]).

Theorem 3.9. A continuous function C(·, ·) : SN
× SN

→ R is the covariance of an isotropic
Gaussian field on SN if and only if it has the form

C(t, s) =

∞
n=0

an Pλ
n (⟨t, s⟩), t, s ∈ SN , (3.10)

where λ = (N − 1)/2, an ≥ 0,


∞

n=0 an Pλ
n (1) < ∞, and Pλ

n is the ultraspherical polynomials
defined by the expansion

(1 − 2r x + r2)−λ
=

∞
n=0

rn Pλ
n (x), x ∈ [−1, 1].

If X is centered, then the Gaussian field only depends on the covariance function which
behaves isotropically over SN . Therefore, as discussed in [7,6], we do not need to introduce
special coordinate system on the sphere. However, if X is non-centered, due to arbitrary behaviors
of the mean function, it is much more convenient to adopt the usual spherical coordinates,
especially for obtaining exact asymptotics. To achieve this, for t = (t1, . . . , tN+1) ∈ SN , we
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define the corresponding spherical coordinate θ = (θ1, . . . , θN ) as follows.

t1 = cos θ1,

t2 = sin θ1 cos θ2,

t3 = sin θ1 sin θ2 cos θ3,
...

tN = sin θ1 sin θ2 · · · sin θN−1 cos θN ,

tN+1 = sin θ1 sin θ2 · · · sin θN−1 sin θN ,

where θ ∈ Θ := [0, π]
N−1

×[0, 2π). We also define the Gaussian random field X = {X(θ), θ ∈

Θ} by X(θ) = X (t) and denote by C the covariance function of X accordingly. Similarly, letZ(θ) = Z(t) and m(θ) = m(t). We introduce the following orthonormal basis on the sphere,

∂

∂θ̃1
=

∂

∂θ1
,

∂

∂θ̃2
=

1
sin θ1

∂

∂θ2
, . . . ,

∂

∂θ̃N
=

1
N−1
i=1

sin θi

∂

∂θN
.

For a real-valued function on the sphere, say f (t) (t ∈ SN ), define respectively the gradient and
Hessian of the function under the spherical coordinate, f̃ (θ) (θ ∈ Θ), as

∇ f̃ (θ) =


f̃i (θ), . . . , f̃N (θ)

T
:=


∂

∂θ̃1
f̃ (θ), . . . ,

∂

∂θ̃N
f̃ (θ)

T

,

∇
2 f̃ (θ) =


f̃i j (θ)


1≤i, j≤N

:=


∂2

∂θ̃i∂θ̃ j
f̃ (θ)


1≤i, j≤N

.

Lemma 3.10, characterizing the covariance of (X(θ), ∇X(θ), ∇2X(θ)), can be obtained
easily by elementary calculations. The proof is omitted here.

Lemma 3.10. Let X = {X (t), t ∈ SN
} be a non-centered isotropic Gaussian random field with

covariance (3.10) and satisfying (H1) and (H2′). Then

∂C(θ, ϕ)

∂θ̃i


θ=ϕ

=
∂3C(θ, ϕ)

∂θ̃i∂ϕ̃ j∂ϕ̃k


θ=ϕ

= 0,

∂2C(θ, ϕ)

∂θ̃i∂ϕ̃ j


θ=ϕ

= −
∂2C(θ, ϕ)

∂θ̃i∂θ̃ j


θ=ϕ

= C ′δi j ,

∂4C(θ, ϕ)

∂θ̃i∂θ̃ j∂ϕ̃k∂ϕ̃l


θ=ϕ

= C ′′(δi jδkl + δikδ jl + δilδ jk) + C ′δi jδkl ,

where

C ′
=

∞
n=1

an


d

dx
Pλ

n (x)|x=1


and C ′′

=

∞
n=2

an


d2

dx2 Pλ
n (x)|x=1


. (3.11)

Now we can formulate the expected Euler characteristic of non-centered Gaussian fields on
the sphere as follows.

Theorem 3.11. Let X = {X (t), t ∈ SN
} be a Gaussian random field such that X (t) =

Z(t) + m(t), where Z is a centered unit-variance isotropic Gaussian random field on SN with



902 D. Cheng / Stochastic Processes and their Applications 126 (2016) 883–905

covariance (3.10) and m is the mean function of X. If X satisfies conditions (H1) and (H2′),then

E{χ(Au(X, SN ))}

=
1

(2π)(N+1)/2


Θ

φ(θ)dθ


∞

u
dx exp


−

1
2


(x − m(θ))2

+ (C ′)−1
∥(∇m(θ))∥2


×

 N
j=0

(−1) j

(N − j)!

⌊ j/2⌋
i=0

(−1)i (N − j + 2i)!

i !2i (C ′)
N
2 − j+i

×(C ′
− 1)i S j−2i


∇

2m(θ)


x N− j

, (3.12)

where Θ = [0, π]
N−1

× [0, 2π), φ(θ) =
N−1

i=1 (sin θi )
N−i , and C ′ and S j−2i (·) are defined

respectively in (3.11) and Lemma 3.2.

Proof. Since SN is a smooth and compact manifold without boundary, it follows from (2.25),
Lemma 3.10 and the Kac–Rice metatheorem that

E{χ(Au(X, SN ))}

= (−1)N

Θ

φ(θ)dθ


∞

u
dxp

∇X(θ)(0)pX(θ)(x)E{det ∇2X(θ)|X(θ) = x}

=
(−1)N

(2π)(N+1)/2(C ′)N/2


Θ

φ(θ)dθ


∞

u
dx

× exp

−

1
2


(x − m(θ))2

+ C ′−1
∥(∇m(θ))∥2


× E{det ∇2X(θ)|X(θ) = x}. (3.13)

We only need to compute E{det ∇2X(θ)|X(θ) = x}.
Case 1: C ′ > 1. By Lemma 3.10, similarly to the proof of Theorem 3.5, we get

E{det ∇2X(θ)|X(θ) = x} = E{det[∇2Z(θ) + ∇
2m(θ)]|X(θ) = x}

= (C ′2
− C ′)N/2E{det[(C ′2

− C ′)−1/2
∇

2Z(θ) + (C ′2
− C ′)−1/2

∇
2m(θ)]|X(θ) = x}

= (C ′2
− C ′)N/2E{det[∆ + (C ′2

− C ′)−1/2
∇

2m(θ) − C ′(C ′2
− C ′)−1/2x IN ]},

where ∆ = (∆i j )1≤i, j≤N and ∆i j are centered Gaussian variables satisfying

E{∆i j∆kl} = (C ′2
− C ′)−1E{Zi j (θ)Zkl(θ)|X(θ) = x}

= (C ′2
− C ′)−1

[C ′′(δi jδkl + δikδ jl + δilδ jk) + C ′δi jδkl − C ′2δi jδkl ]

= E (i, j, k, l) − δi jδkl ,

and E is a symmetric function of i, j, k, l. It then follows from Proposition 3.3 that

E{det ∇2X(θ)|X(θ) = x}

= (C ′2
− C ′)N/2

N
j=0

(−1)N− j

(N − j)!


⌊ j/2⌋
i=0

(−1)i (N − j + 2i)!

i !2i S j−2i


∇

2m(θ)
√

C ′2 − C ′



×


C ′x

√
C ′2 − C ′

N− j

. (3.14)
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Case 2: C ′ < 1. It follows from similar discussions in the previous case and a slightly revised
version of Proposition 3.3 that

E{det ∇2X(θ)|X(θ) = x}

= (C ′
− C ′2)N/2

N
j=0

(−1)N− j

(N − j)!


⌊ j/2⌋
i=0

(N − j + 2i)!

i !2i S j−2i


∇

2m(θ)
√

C ′ − C ′2



×


C ′x

√
C ′ − C ′2

N− j

. (3.15)

Case 3: C ′
= 1. By Lemma 3.10 again,

E{det ∇2X(θ)|X(θ) = x} = E{det(∇2Z(θ) + ∇
2m(θ))|X(θ) = x}

= E{det(Ξ + ∇
2m(θ) − x IN )},

where Ξ = (Ξi j )1≤i, j≤N and Ξi j are centered Gaussian variables satisfying

E{Ξi jΞkl} = E{Zi j (θ)Zkl(θ)|X(θ) = x} = C ′′(δi jδkl + δikδ jl + δilδ jk) = F (i, j, k, l),

and F is a symmetric function of i, j, k, l. It then follows from Proposition 3.3 that

E{det ∇2X(θ)|X(θ) = x} =

N
j=0

(−1)N− j S j


∇

2m(θ)


x N− j . (3.16)

Plugging respectively (3.14)–(3.16) into (3.13), we see that the expected Euler characteristic
for all three cases above can be formulated by the same expression (3.12). �

Remark 3.12. Let m(θ) ≡ 0. Let ω j =
2π ( j+1)/2

Γ (( j+1)/2)
be the spherical area of the j-dimensional

unit sphere. Notice that Hermite polynomials have the following properties:
∞

u
Hn(x)e−x2/2dx = Hn−1(u)e−u2/2,

xn
= n!

⌊n/2⌋
k=0

1
k!2k(n − 2k)!

Hn−2k(x),

where n ≥ 0 and H−1(x) =
√

2πΨ(x)ex2/2. Applying Theorem 3.11, together with the proper-
ties above and certain combinatorial tricks, we obtain

E{χ(Au(X, SN ))} =
ωN

(2π)(N+1)/2

⌊N/2⌋
n=0

(C ′)(N−2n)/2


N

2n


(2n − 1)!!HN−2n−1(u)e−u2/2

=

N
j=0

(C ′) j/2 L j (SN )ρ j (u),

where ρ0(u) = Ψ(u), ρ j (u) = (2π)−( j+1)/2 H j−1(u)e−u2/2 for j ≥ 1 and

L j (SN ) =

2


N

j


ωN

ωN− j
if N − j is even,

0 otherwise
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(for j = 0, 1, . . . , N ) are the Lipschitz–Killing curvatures of SN (cf. Eq. (6.3.8) in [2]). This
coincides with the formula of the expected Euler characteristic for centered isotropic Gaussian
fields on the sphere obtained in [7] via a geometric approach. However, the result in [7] is still
more general for studying centered isotropic Gaussian fields on the sphere since it is also appli-
cable when the parameter sets are subsets of SN .
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Appendix

This appendix contains some auxiliary results.

Lemma A.1. Let X = {X (t), t ∈ T } be a (non-centered) Gaussian random field satisfying (H1)

and (H2). Then for each u ∈ R,

N
k=0


J∈∂k T

E{M E
u (J )} ≥ P


sup
t∈T

X (t) ≥ u



≥

N
k=0


J∈∂k T


E{M E

u (J )} −
1
2

E{M E
u (J )(M E

u (J ) − 1)}


−


J ≠J ′

E{M E
u (J )M E

u (J ′)}, (A.1)

where M E
u (J ) is defined in (2.4) and the last sum is taken over all pairs of different faces of T .

Proof. The result follows immediately from the same arguments in Section 4.1 in [8] or Section 2
in [12]. �

The following lemma is well-known and is quoted here for reader’s convenience.

Lemma A.2. Let Y and Z be two Gaussian random vectors of dimensions p and q, respectively.
Then Y |Z = z is a p-dimensional Gaussian random vector having the following mean and
covariance:

E{Y |Z = z} = EY + E{(Y − EY )(Z − EZ)T
}[Cov(Z)]−1(z − EZ),

Cov(Y |Z = z) = Cov(Y ) − E{(Y − EY )(Z − EZ)T
}[Cov(Z)]−1E{(Z − EZ)(Y − EY )T

}.

In particular, if p = q = 1 and EY = EZ = 0, then

E{Y |Z = z} =
zE(Y Z)

Var(Z)
, Var(Y |Z = z) = Var(Y ) −

[E(Y Z)]2

Var(Z)
.

The following result is a direct consequence of Lemma 4 in [12].
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Lemma A.3. Let X = {X (t), t ∈ T } be a Gaussian random field satisfying (H1) and (H2).
Then for any ε > 0, there exists ε1 > 0 such that for any J ∈ ∂k T with k ≥ 1 and u large
enough,

E{M E
u (J )(M E

u (J ) − 1)} ≤ e−u2/(2β2
J +ε)

+ e−u2/(2−ε1),

where β2
J = supt∈J supe∈Sk−1 Var(X (t)|∇ X |J (t), ∇2 X |J (t)e) and Sk−1 is the unit sphere in Rk .
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