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Abstract

For a given Lévy process X = (X t )t∈R+
and for fixed s ∈ R+ ∪ {∞} and t ∈ R+ we analyse the future

drawdown extremes that are defined as follows:

D
∗

t,s = sup
0≤u≤t

inf
u≤w<t+s

(Xw − Xu), D∗
t,s = inf

0≤u≤t
inf

u≤w<t+s
(Xw − Xu).

The path-functionals D
∗

t,s and D∗
t,s are of interest in various areas of application, including financial math-

ematics and queueing theory. In the case that X has a strictly positive mean, we find the exact asymptotic
decay as x → ∞ of the tail probabilities P(D∗

t < x) and P(D∗
t < x) of D

∗

t = lims→∞ D
∗

t,s and
D∗

t = lims→∞ D∗
t,s both when the jumps satisfy the Cramér assumption and in a heavy-tailed case. Fur-

thermore, in the case that the jumps of the Lévy process X are of single sign and X is not subordinator,
we identify the one-dimensional distributions in terms of the scale function of X . By way of example, we
derive explicit results for the Black–Scholes–Samuelson model.
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1. Introduction

In recent times various pricing models with jumps have been put forward to address the
shortcomings of diffusion models in representing the risk related to large market movements
(see e.g. [7]). Such models allow for a more realistic representation of price dynamics and a
greater flexibility in modelling and calibration of the model to market prices and in reproducing
a wide variety of implied volatility skews and smiles. An important indicator for the riskiness
and effectiveness of an investment strategy is the drawdown, which is the distance of the current
value away from the maximum value it has attained to date. Various commonly used trading
rules are based on the drawdown (see e.g. [23]), while drawdowns have also been deployed as
risk-measure (see [5,29]) and in the context of portfolio optimisation (see [6,11]). Drawdown
processes (also called reflected processes) are also encountered in various other areas, such as
applied probability, mathematical genetics and queueing theory (see [8,9]). See [17,18,28] and
references therein for further applications and results concerning drawdown processes.

In this paper we analyse a number of path-functionals of the increments of a given general
Lévy process X = (X t )t∈R+

that are closely related to the drawdowns and drawups. In particular,
we consider the future drawdown and future drawup extremes that are defined by for given
s, t ∈ R+ by

D
∗

t,s = sup
0≤u≤t

inf
u≤w<t+s

(Xw − Xu), D∗
t,s = inf

0≤u≤t
inf

u≤w<t+s
(Xw − Xu), (1.1)

U
∗

t,s = sup
0≤u≤t

sup
u≤w<t+s

(Xw − Xu), U∗

t,s = inf
0≤u≤t

sup
u≤w<t+s

(Xw − Xu), (1.2)

and we denote the infinite-horizon versions by

D
∗

t = lim
s→∞

D
∗

t,s, D∗
t = lim

s→∞
D∗

t,s, U
∗

t = lim
s→∞

U
∗

t,s, U∗

t = lim
s→∞

U∗

t,s .

The functionals D
∗

t,s , D∗
t,s , U

∗

t,s and U∗
t,s are concerned with the variation in u ∈ [0, t] of the

smallest and largest of the increments {Xw − Xu, w ∈ [u, t + s]}. These functionals may be
explicitly represented in terms of the (maximal) drawdown and drawup (see Proposition 2.1).

Since, as is straightforward to check, we have D∗
t,s = −U∗

t,s and D
∗

t,s = −U∗

t,s , where· denotes the quantity calculated for the dual process X = −X , we may (and often do) restrict
ourselves in subsequent analysis to future drawdown extremes, without loss of generality.

The future drawdown and drawup processes arise in various applications, including financial
risk analysis and queueing models. We note that, under an exponential Lévy model Pt =

P0 exp(X t ) for the stock price, the random variables D
∗

t,s and D∗
t,s are path-dependent risk

indicators: D
∗

t,s and D∗
t,s are the maximal and minimal values of the lowest future log-return

log(Pw/Pu) achieved forw in the time-window [u, t +s], where u is ranging over [0, t]. Another
application comes from telecommunications and queueing models, where U

∗

t = lims→∞ U
∗

t,s
and U∗

t = lims→∞ U∗
t,s describe the supremum and the infimum of the workload process over

a finite time horizon t in a fluid model with netput X , respectively (see [9] for a survey about
Lévy-driven queues).

In the mentioned applications it is of interest to obtain the laws of the random variables
D

∗

t,s , D∗
t,s , U

∗

t,s and U∗
t,s for finite and infinite horizons s, and in particular the tail-probabilities

and their asymptotic behaviour. Restricting ourselves to the case s = ∞ we identify the exact
asymptotic decay as x → ∞ of the tail probabilities P(D∗

t,s < −x) and P(D∗
t,s < −x) of

D
∗

t,s and D∗
t,s . We do so in the distinct cases of a light-tailed and a heavy-tailed Lévy measure.
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In the former setting we also consider the asymptotics when x and s tend to infinity in a fixed
proportion. Furthermore, when the jumps of X are of single sign only and X is not subordinator,
we explicitly identify the Laplace transform in time of the one-dimensional distributions in terms
of the scale function. As example, we analyse in detail (future) drawdowns and drawups under
the Black–Scholes model, identifying in particular the mean of the value Pt = P0 exp(X t ) under
the measure P(γ ) defined in (3.21) (for γ given in Assumption 1) and the laws of D

∗

t and D∗
t .

Contents. The remainder of the paper is organised as follows. In Section 2 we present the
main representation in terms of drawup and drawdown processes. In Section 3 we identify the
Cramér asymptotics and describe the associated drawup and drawdown measures in Section 3.1.
We analyse the heavy-tailed case in 4. Finally, in Section 5 we derive exact distributions of future
drawup and drawdowns in case X has jumps of single sign and we present an application to the
Black–Scholes model in Section 5.1.

2. Main representation

Let (X t )t∈R+
be a general Lévy process (i.e., a process with stationary and independent

increments with cádlág paths such that X0 = 0) defined on some filtered probability space
(Ω ,F , {Ft }t∈R,P) with Ft = σ({Xs, s ≤ t}) denoting the completed filtration generated by X .
The law of X is determined by its characteristic exponent Ψ which is the map Ψ : R → C that
satisfies E[eiθX1 ] = exp(Ψ(θ)).

The drawdown and drawup processes of X , (Dt )t∈R+
and (Ut )t∈R+

, are path-functionals of
the increments of X given by

Dt = X t − X t , Ut = X t − X t ,

with X t = sup0≤s≤t Xs and X t = inf0≤s≤t Xs . We note that the drawdown Dt and drawup Ut
at time t are equal to the largest of all increments Xu − X t , u ∈ [0, t], and the negative of the
smallest increment of such increments.

Before turning to the analysis of the future drawdown and drawup extremes, we recall a
number of facts concerning drawup and drawdown processes which follow from the fluctuation
theory of Lévy processes. First of all, we note that the marginal distributions of the drawup Ut
and drawdown Dt , t ∈ R+, can be expressed in terms of the marginal distributions of X by
deploying the Wiener–Hopf factorisation of X , according to which the characteristic exponent
Ψ is related to the marginal distributions of the running supremum and running infimum of X at
an exponential random time eq of parameter q that is independent of F∞ as follows:

q

q − Ψ(θ)
= E[eiθXeq ]E[eiθXeq ], θ ∈ R, q ∈ R+ \ {0}.

Using the duality lemma (see e.g. [2, Proposition VI.3]) that Ut has the same law X t . Thus the
Wiener–Hopf factorisation may be phrased as follows in terms of the drawdown and drawup
processes:

q

q − Ψ(θ)
= E[eiθUeq ]E[e−iθDeq ], θ ∈ R, q ∈ R+ \ {0}. (2.1)

Moreover, since Ut has the same law X t , it follows that, if E[X1] is strictly negative, Ut converges
in distribution as t → ∞ to a proper random variable U∞ with the law of all-time supremum
X∞. Similarly, if E[X1] is strictly positive, Dt having the same law as X t converges to a random
variable D∞ as t → ∞. The Laplace transforms of U∞ and D∞ are given explicitly in terms
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of the Laplace exponents κ and κ of the ascending and descending ladder-height processes
(L−1, H) and (L−1, H). The ladder time process L−1

= {L−1
t }t∈R+

is equal to the right-
continuous inverse of a local time L of (Dt )t∈R+

at zero. The corresponding ladder-height
process H = (Ht )t≥0 is given by Ht = X (L−1

t ) for all t ≥ 0 for which L−1
t is finite, and defined

to be Ht = +∞ otherwise. We denote κ(β, θ) = − log E[exp{−βL−1
1 −θH1}1{H(1)<∞}], where,

for any set A ∈ F , 1A denotes the indicator of the set A. Similarly, the Laplace exponent of the
downward ladder-height process (L−1, H) corresponding to the dual process X of X , X = −X ,
we denote byκ(β, θ) = − log E[exp{−βL−1

1 −θ H1}1{ H(1)<∞}
]. Specifically, if E[X1] is strictly

positive, the Laplace transform of D∞ is given as follows:

E[e−θD∞ ] =
κ(0, 0)κ(0, θ) ; (2.2)

see [15] for details.
A first step in the study of the random variables D

∗

t,s , D∗
t,s , U

∗

t,s and U∗
t,s are the following

distributional identities.

Proposition 2.1. Let t, s ∈ R+ and let Us
(d)
= Us and Ds

(d)
= Ds be random variables

independent of Ft , where
(d)
= denotes equality in distribution. Denoting U t = sup0≤u≤t Uu , Dt =

sup0≤u≤t Du , we have the following representations:

D∗
t,s

(d)
= − max

Ds + Dt , Dt

, D

∗

t,s
(d)
= min


Ut − Ds, 0


(2.3)

and

U
∗

t,s
(d)
= max

Us + Ut ,U t

, U∗

t,s
(d)
= max{Us − Dt , 0}. (2.4)

In particular, when E[X1] ∈ R+ \ {0} (E[X1] ∈ R \ R+), then D
∗

t and D∗
t (U

∗

t and U∗
t ) are

finite P-a.s.

Remark 2.2. (i) Extending X from R+ to a two-sided version on R and using a time-reversal
argument we find that

U
∗

t
(d)
= sup

0≤u≤t
sup

−∞<w≤u
(Xu − Xw), U∗

t
(d)
= inf

0≤u≤t
sup

−∞<w≤u
(Xu − Xw). (2.5)

Indeed, using the change of variables u′
= t − u and w′

= t − w we see that

sup
0≤u≤t

sup
−∞<w≤u

(Xu − Xw) = sup
0≤u′≤t

sup
w′≥u′

(X t−u′ − X t−w′)

(d)
= sup

0≤u′≤t
sup
w′≥u′

(Xw′ − Xu′).

The result for U∗
t follows similarly.

The random variables U
∗

t and U∗
t arise in a queueing application. Indeed, the workload

process Qu of a queue with net input process X (i.e., input less output) evolves according
to the process X reflected at its infimum, i.e., Qu = Xu − infs≤u Xs . If we assume that the
workload process is stationary (i.e., Q0 follows the stationary distribution, which is equal to
the distribution of − inf−∞<s≤0 Xs ; see [24]), then the workload Qu is given by:

Qu = sup
−∞<w≤u

(Xu − Xw)
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Fig. 1. Two schematic pictures of a part of the path of X in the cases that (i) the smallest value of X up to time t + s
has already been attained before time t so that the path-functional D∗

t,s is zero (left-hand picture) or (ii) X attains a new
minimum between t and t + s and the path-functional D∗

t,s is strictly negative (right-hand picture).

and U
∗

t and U∗
t describe the supremum and infimum of the workload process Q over a finite

time horizon t , respectively. For details on queues driven by a Lévy process we refer to the
survey book [9].

(ii) We note P(U∗
t = 0) = P(


∞

0 1(Xs≥0)ds < t) (see for example [2, Lemma 15, p. 170] and
[2, Theorem 13, p. 169]).

Proof of Proposition 2.1. As noted in the Introduction, it suffices to establish the statements
concerning D

∗
and D∗. Writing [u, t + s] = [u, t] ∪ [t, t + s] for given u, t, s ∈ R+ we have

D∗
t,s = inf

0≤u≤t
min


inf

w∈[t,t+s]
(Xw − X t )+ X t − Xu, inf

u≤w≤t
(Xw − Xu)


.

Since Ds := − inft≤w≤t+s(Xw − X t ) is independent of Ft and is equal in distribution to Ds , we
find that D∗

t,s is equal in distribution to

inf
0≤u≤t

min


X t − Xu − Ds, inf
u≤w≤t

(Xw − Xu)


= min


−Dt − Ds, inf

0≤u≤t
inf

u≤w≤t
(Xw − Xu)


= − max


Dt + Ds, sup

0≤w≤t
sup

0≤u≤w

(Xu − Xw)


,

which yields the first identity in (2.3).
For the second identity in (2.3) we note that the function u → infu≤w≤t+s(Xw−Xu) attains its

supremum over [0, t] at G t− or G t where G t = sup{u ≤ t : Xu = X t }. In the case that G t+s ≤ t
(i.e., when X t+s = X t ) we have G t = G t+s (see Fig. 1, left-hand picture) and D

∗

t,s = 0, while
in the case that G t+s > t (see Fig. 1, right-hand picture) we find

D
∗

t,s = X t+s − X t < 0.

Hence, writing X t+s = min{inft≤u≤t+s(Xu − X t )+ X t , X t } we deduce that

D
∗

t,s
(d)
= min


X t − X t + inf

0≤w≤s
Xw, 0


,

where X denotes an independent copy of X , from which the expression for D
∗

t,s follows.
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Taking s → ∞ in (2.3) and noting that − infs≥0 Xs is finite P-a.s. if E[X1] ∈ R+ \ {0} we
conclude that also D

∗

t and D∗
t are P-a.s. finite. �

3. Asymptotic future drawdown—the light-tailed case

In this section we study the asymptotics of the tail probabilities P(−D
∗

t > x) and P(−D∗
t >

x) in the case that the Lévy measure is light-tailed. More specifically, in this section we will
make the following assumptions.

Assumption 1. The Cramér condition holds, i.e.,

there exists a γ ∈ R+ \ {0} satisfying E[e−γ X1 ] = 1. (3.1)

The mean of X1 is positive and finite, E[X1] ∈ R+ \ {0}, and E[e−γ X1 |X1|] ∈ R+ \ {0}.

Assumption 2. X has non-monotone paths and either 0 is regular for R+ \ {0} or the Lévy
measure of X is non-lattice.

Under condition (3.1) the characteristic exponent Ψ can be extended to the strip Sγ =

{θ ∈ C : ℑ(θ) ∈ [0, γ ]} of the complex plane, by analytical continuation and continuous
extension. The Laplace exponent ψ(θ) = log E[eθX1 ] of X is finite on the maximal domain
Θ = {θ ∈ R : ψ(θ) < ∞}, which contains the interval [−γ, 0]. Restricted to the interior Θo,
the map θ → ψ(θ) is convex and differentiable, with derivative ψ ′(θ).1

Under (3.1) the Wiener–Hopf factorisation (2.1) remains valid for θ in the strip Sγ .

Lemma 3.1. If Assumption 1 is satisfied, we have

E[eγ Deq ] < ∞. (3.2)

Proof. It follows from the Wiener–Hopf factorisation (2.1) that

E[e−iθDeq ] = q(q − Ψ(θ))−1E[eiθUeq ]
−1 (3.3)

for all θ in the interior of the strip Sγ . We note that E[eiθUeq ] is continuous and strictly positive
on the set A = {θ : −iθ ∈ [0, γ ]}. Moreover, Ψ(θ) can be analytically extended to A. Indeed,
note that Ψ(θ) = Ψ1(θ) + Ψ2(θ) where Ψ1(θ) is entire function by [25, Lem. 25.6, p. 160]
and Ψ2(θ) =


|x |>1 e−γ x V(dx) is finite by Assumption 1 and [15, Thm. 3.6, p. 76] for a Lévy

measure V of X . This, combined with the fact Ψ(iγ ) = 0, yields (3.2). �

In [3] it was shown that under Assumptions 1 and 2, Cramér’s estimate holds for the Lévy
process X , i.e.,

P(D∞ > y) ≃ Cγ e−γ y, Cγ =
κ(0, 0)

γ

∂
∂θ

κ(0,−θ)
|θ=γ

> 0, as y → ∞, (3.4)

where we write f (x) ≃ g(x) as x → ∞ if limx→∞ f (x)/g(x) = 1. Cramér’s estimate can be
extended to the decay of the finite time probability P(Ds > x) when x, s jointly tend to infinity
in some fixed proportion, that is when we have x = vs + o(s1/2). The proportions v are to be
positive and lie in the range of ψ ′. This leads to the following definition.

1 For θ ∈ Θ \ Θo, ψ ′(θ) is understood to be limη→θ,η∈Θo ψ ′(η).
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Definition 3.2. A proportion v ∈ R+ \ {0} is feasible if there exists a ξv ∈ Θo such that
ψ ′(ξv) = −v.

More specifically, it was shown in [20] that if the proportion v is feasible and satisfies
0 < v < −ψ ′(−γ ) the Höglund’s estimates hold for X , i.e., if Assumptions 1 and 2 are satisfied,
then for x and s tending to infinity such that x = vs + o(s1/2) we have

P(Ds > x) ∼ Cγ e−γ x , (3.5)

where we write f ∼ g if limx,s→∞,x=vs+o(s1/2) f (x, s)/g(x, s) = 1.
Using the representations in Proposition 2.1 we identify the exact asymptotic decay of the tail

probabilities of D∗
t,s and D

∗

t,s as follows:

Theorem 3.3. Suppose that Assumptions 1 and 2 hold, and let t ∈ R+ \ {0}.

(i) Then the following limits hold true:

P(−D∗
t > x) ≃ CγE[eγ Dt ] e−γ x , x → ∞ (3.6)

and

P(−D
∗

t > x) ≃ CγE[e−γUt ] e−γ x x → ∞. (3.7)

(ii) Let 0 < v < −ψ ′(−γ ). If x and s tend to infinity such that x = vs + o(s1/2) for some
feasible proportion v then we have the following limits:

P(−D
∗

t,s > x) ∼ CγE[e−γUt ] e−γ x , (3.8)

P(−D∗
t,s > x) ∼ CγE[eγ Dt ] e−γ x . (3.9)

Remark 3.4. In specific cases the Wiener–Hopf factors are known in explicit analytical form, so
that the constants in (3.6) can be identified.

(i) If X is spectrally positive, then Cγ = 1 and

E[eγ Deq ] =

Φ(q)Φ(q)− γ
, q > 0, (3.10)

where γ = Φ(0), with Φ(q), q ≥ 0, the largest root of the equation ψ(θ) = q
where ψ(θ) = log E[e−θX1 ] is the Laplace exponent of the dual process X = −X .

These expressions hold since Deq has the same law X eq and hence follows an exponential
distribution with parameter Φ(q). By inverting the Laplace transforms in q we find the
following explicit expression in terms of the one-dimensional distributions of X :

E[eγ Dt ] = 1 + γ

 t

0
E[e−γ Xz X−

z ]z−1dz, (3.11)

where X−
t = min{X t , 0}. Indeed, note that E[eγ Dt ] = E[eγ Ut ]. Moreover, on account of

Kendall’s identity P(τ+
x ∈ dt) =

x
t P(X t ∈ dx) for x, t ∈ R+ \ {0} and the first passage time

τ+
x = inf{t ≥ 0 : X t > x}), it follows that

∞

0
e−qtE[e−γ X t X+

t ]t−1dt =
1Φ(q)+ γ

, (3.12)
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where X+
t = max{X+

t , 0}. Further, from [15, Eq. (8.2)] and fact that ψ(γ ) = ψ(−γ ) = 0,

E[e−γUeq ] = E[eγ
Xeq ] =

q

q − ψ(γ )


1 −
γΦ(q)


= 1 −

γΦ(q) . (3.13)

Hence, we have

E[e−γUt ] = 1 − γ

 t

0
E[X−

z ]z−1 dz.

(ii) If X is spectrally negative, then we have Cγ =
ψ ′(0)

|ψ ′(−γ )|
and

E[e−γUeq ]
−1

= E[eγ Deq ] =
Φ(q)+ γ

Φ(q)
, (3.14)

where γ and Φ(q), q ≥ 0, are the largest roots of ψ(−θ) = 0 and ψ(θ) = q for the Laplace
exponent ψ(θ) = log E[eθX1 ]. Hence

E[eγ Dt ] = 1 + γ

 t

0
E[X+

z ]z−1dz, E[e−γUt ] = 1 − γ

 t

0
E[e−γ Xz X+

z ]z−1 dz.

(3.15)

(iii) The Wiener–Hopf factors may also be identified for the meromorphic Lévy processes
[13, Def. 1]:

E[eγUeq ] =


n≥1

1 −
γ
ρn

1 −
γ

ζn(q)

, E[eγ Deq ] =


n≥1

1 −
γ

ρ̂n

1 −
γ

ζ̂n(q)

,

where {−iρn, iρ̂n}n≥1 are the poles of Ψ (which is meromorphic) and {−iζn(q), iζ̂n(q)}n≥1
are the roots of q + Ψ(θ) = 0. The above Laplace transforms in q can be numerically
inverted giving E[eγUt ] and E[eγ Dt ] (see for details [13, Sec. 8]).

Proof of Theorem 3.3. (i) From Proposition 2.1 it follows that for s, t ∈ R+,

P(−D∗
t,s ≤ x) =


[0,x]

P(Ds ≤ x − z)P(Dt ∈ dz, Dt ≤ x) ⇔ (3.16)

P(−D∗
t,s > x) = P(Dt > x)+


[0,x]

P(Ds > x − z)P(Dt ∈ dz, Dt ≤ x).

By letting s → ∞ in (3.16) we arrive at the identity

P(−D∗
t > x) = P(Dt > x)+


[0,x]

P(D∞ > x − z)P(Dt ∈ dz, Dt ≤ x). (3.17)

Denote by P(γ ) the Cramér measure which is defined on (Ω ,Ft ) by P(γ )(A) = E[e−γ X t 1A],
A ∈ Ft . The Cramér asymptotic decay (3.4) implies that

eγ xP(D∞ > x) = E(γ )[e−γ (X
τ
+
x

−x)
] ≃ Cγ , as x → ∞. (3.18)



E.J. Baurdoux et al. / Stochastic Processes and their Applications ( ) – 9

In view of the facts that t → X t is non-decreasing and DT D
x

− x ≥ 0 for T D
x = inf{t ≥ 0 : Dt >

x} and any x ∈ R+ \ {0}, we find2

P(Dt > x) = P(T D
x < t) = e−γ xE(γ )[eγ (XT D

x
+x)

1{T D
x <t}]

= e−γ xE(γ )[e−γ (D
T D

x
−x−X

T D
x
)
1{T D

x <t}]

≤ e−γ xE(γ )[eγ X t 1{T D
x <t}] = o(e−γ x ), as x → ∞, (3.19)

where the expectation in (3.19) converges to zero by virtue of the dominated convergence
theorem and the facts that E(γ )[eγ X t ] < ∞ (by Lemma 3.1) and T D

x → ∞ P(γ )-a.s. as x → ∞

(as X t → −∞ as t → ∞, P(γ )-a.s.). Combining (3.17) with (3.19), the Cramér asymptotics
(3.18) and the dominated convergence theorem yield

lim
x→∞

eγ xP(−D∗
t > x) = Cγ


R+

eγ zP(Dt ∈ dz) = CγE[eγ Dt ], t ∈ R+.

As far as D
∗

t is concerned, we deduce from Proposition 2.1, the Cramér asymptotics (3.4),
Lemma 3.1 and the dominated convergence theorem that

P(D∗

t > x) =


R+

P(D∞ > x + z)P(Ut ∈ dz)

≃ Cγ e−γ x


R+

e−γ zP(Ut ∈ dz) = Cγ e−γ xE[e−γUt ]. (3.20)

(ii) Let v be a feasible proportion. The proof follows by a line of reasoning that is analogous
to the one given in part (i), deploying Höglund’s estimate (3.5) instead of Cramér’s estimate. In
particular, combining (3.5), (3.16), (3.19) and the dominated convergence theorem shows that
when 0 < v < −ψ ′(−γ )

eγ xP(−D∗
t,s > x) ∼ Cγ


[0,∞)

eγ zP(Dt ∈ dz) = CγE[eγ Dt ]. �

3.1. Asymptotic drawdown and drawup measures

Conditional on −D
∗

t,s being large, for fixed s, t ∈ R+, or on −D∗
t,s being large, X t admits

a limit in distribution, as we show next. These limits are given by the “drawup-measures” P(s)

and the “drawdown measures” P(s), s ∈ Θ , that are defined as follows on the measurable space
(Ω ,Ft ):

P(s)(A) = E


e−sUt

E[e−sUt ]
1A


, P(s)(A) = E


es Dt

E[es Dt ]
1A


, A ∈ Ft . (3.21)

Corollary 3.5. Suppose Assumptions 1 and 2 hold, and let t ∈ R+ \ {0}.

2 f (x) = o(g(x)) for x → ∞ if | f (x)/g(x)| → 0 as x → ∞.
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(i) Then, conditional on {D
∗

t < −x} and on {D∗
t < −x}, X t converges in distribution as

x → ∞:

P[X t ≤ x | − D∗
t > x] ≃ P(γ )[X t ≤ x], (3.22)

P[X t ≤ x | − D
∗

t > x] ≃ P(γ )[X t ≤ x]. (3.23)

(ii) Let 0 < v < −ψ ′(−γ ). If x and s tend to infinity such that x = vs + o(s1/2) where v is
feasible then the following limits hold true:

P[X t ≤ x | − D∗
t,s > x] ∼ P(γ )[X t ≤ x], (3.24)

P[X t ≤ x | − D
∗

t,s > x] ∼ P(γ )[X t ≤ x]. (3.25)

Proof of Corollary 3.5. (i) By following a similar line of reasoning as the proof of Theorem 3.3
it is straightforward to show that for θ ∈ [0, γ ], as x → ∞,

E[eθX t 1{−D∗
t >x}] ≃ Cγ e−γ xE[eθX t +γ Dt ],

E[eθX t 1
{−D

∗

t >x}
] ≃ Cγ e−γ xE[eθX t −γUt ].

Bayes’ lemma then yields the stated identities. The proof of (ii) is similar and is omitted. �

4. Asymptotic future drawdown—the heavy-tailed case

We continue the study of the asymptotic behaviour of the tail probabilities of D
∗

t and D∗
t in

the case that the Lévy measure V of X = −X belongs to the class S(α) of convolution-equivalent
measures which, we recall, is a subset of the class L(α) defined as follows.

Definition 4.1 (Class L(α)). For a parameter α ∈ R+ we say that measure G with tail G(u) :=

G((u,∞)) belongs to class L(α) if

(i) G(u) > 0 for each u ∈ R+,

(ii) limu→∞
G(u−y)

G(u)
= eαy for each y ∈ R, and G is nonlattice,

(iii) limn→∞
G(n−1)

G(n)
= eα if G is lattice (then assumed of span 1).

Definition 4.2 (Class S(α)). We say that G belongs to class S(α) if

(i) G ∈ L(α);
(ii) for some M0 ∈ R+, we have

lim
u→∞

G∗2(u)

G(u)
= 2M0, (4.1)

where G∗2(u) = G∗2(u,∞) and ∗ denotes convolution.

The asymptotics are derived under conditions on the Lévy measure Π of the downward ladder
height process H , which according to the Vigon [27] identity is related to the Lévy measures V
of X by

Π (z) = Π ((z,∞)) = −


R\R+

V(u − y)V (dy), z ∈ R+,
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for the renewal measure V (dy) =


∞

0 P(Ht ∈ dy)dt and V(y) = V(y,∞). Throughout this
section we assume that for some fixed α ∈ R+ \ {0} the following three conditions hold true:

Π ∈ S(α)
; (4.2)ψ(α) = ψ(−α) ∈ R \ R+; (4.3)κ(0, 0)+κ(0,−α) ∈ R+ \ {0}. (4.4)

Theorem 4.3. Assume that E[X1] ∈ R+ \ {0} and let t ∈ R+ \ {0}. Under conditions
(4.2)–(4.4) we have:

P(−D∗
t > x) ≃ const+t Π (x), P(−D

∗

t > x) ≃ const−t Π (x),

where functions const+t and const−t ∈ R+ are given by

const+t = E[eα
X t ] +


[0,t]

E

eα

X t−z

−1
µ(dz) = E[e−αX t ] +


[0,t]

E

e−αX t−z

−1
µ(dz),

(4.5)

and

const−t = E[e−αX t ] = E[eαX t ],

with the Borel measure µ on (R+,B(R+)) given by

µ(dz) =


∞

0
P(L−1

m ∈ dz)e−κ(0,−α)m [1 − mκ(0,−α)] dm. (4.6)

Remark 4.4. (i) By straightforward calculations it can be verified that

(Lµ)(q) =
1
q

·
κ(q, 0)

(κ(q, 0)+κ(0,−α))2 , (4.7)

where Lµ denotes the Laplace–Stieltjes transform of the measure µ.
(ii) If V ∈ S(α) for α > 0 then (4.2) holds and

Π (x) ≃
1

κ(0,−α)
V(x);

see [12, Proposition 5.3].
(iii) If X is spectrally positive, then from (3.11) and (3.13):

E[e−αX t ] = 1 + α

 t

0
E[e−αXz X−

z ]z−1dz,

E[e±αX t ] = etψ(∓α)
± α

 t

0
e(t−z)ψ(∓α)EX−

z z−1 dz.

(4.8)

Moreover, since κ(q, 0) = q/Φ(q) and κ(0,−α) = −ψ(α)/(Φ(0)+ α), we have

q (Lµ)(q) =
κ(q, 0)

(κ(q, 0)+κ(0,−α))2 =
qΦ(q)

q − Φ(q)2 ψ(α)Φ(0)+α
2 .
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Proof of Theorem 4.3. We first prove the statement concerning D∗
t . The starting point of the

proof is to take the identity noted earlier in (3.17) and replace the fixed time t by an independent
exponential random variable eq with parameter q , which yields

P(−D∗
eq
> x) = P(Deq > x)+


[0,x]

P(D∞ > x − z)P(Deq ∈ dz, Deq ≤ x). (4.9)

We show that both terms on the right-hand side of (4.9) are asymptotically equivalent to
the tail-measure Π (x) of the ladder process H as x → ∞ and identify the constant. As
before we denote the first upward and downward passage times of X across the level x by
τ+

x = inf{t ≥ 0 : X t > x} and τ−
x = inf{t ≥ 0 : X t < x}.

To establish this result it suffices to show asymptotic equivalence of the two terms on the
right-hand side of (4.9) to the probability P(τ+

x < eq), since it is known from [12, Theorem 4.1]
and [21, Lemma 5.4, Eq. (5.6)] that under the conditions stated in the theorem

P(τ+
x < eq) ≃

κ(q, 0)

(κ(q, 0)+κ(0,−α))2 · Π (x), q ≥ 0, (4.10)

with the interpretation P(τ+
x < ∞) = P(τ+

x < e0) for q = 0. Note that the constant in (4.10) is
strictly positive for all q ≥ 0 by the condition (4.4) and κ(0, 0) > 0 (as E[X1] is strictly negative
by the assumption that E[X1] > 0).

We treat both terms separately, starting with the first term. We first derive upper and lower
bounds for the ratio P(Deq > x)/P(τ+

x < eq). By an application of the strong Markov property
and the definition of U we have

P(Deq > x) ≥ P(τ+
x < τ−

−ϵ ∧ eq , Deq > x)+ P(τ−

−ϵ < τ+
x ∧ eq , Deq > x)

= P(τ+
x < τ−

−ϵ ∧ eq)+ P(τ−

−ϵ < τ+
x ∧ eq)P(Deq > x) and (4.11)

P(Deq > x) ≤ P(τ+
x < τ−

−ϵ ∧ eq)+ P(τ−

−ϵ < τ+
x ∧ eq)P(Deq > x)+ Aq with

Aq = P(X eq
> −ϵ, x + ϵ ≥ Xeq − X eq

≥ x)

= P(X eq
> −ϵ)P(x + ϵ ≥ X eq ≥ x), (4.12)

where in the last line we used that X eq
and Xeq − X eq

are independent (by the Wiener–Hopf

factorisation) and Xeq − X eq
and X eq have the same distribution. Hence we find from (4.11) and

(4.12) that

P(Deq > x)

P(τ+
x < eq)

≥
P(τ+

x < τ−

−ϵ ∧ eq)

P(τ−

−ϵ ≥ τ+
x ∧ eq)P(τ+

x < eq)
and (4.13)

P(Deq > x)

P(τ+
x < eq)

≤
P(τ+

x < τ−

−ϵ ∧ eq)

P(τ−

−ϵ ≥ τ+
x ∧ eq)P(τ+

x < eq)
+

P(τ+
x < eq)− P(τ+

x+ϵ < eq)

P(τ+
x < eq)

. (4.14)

The first terms on the right-hand sides of (4.13) and (4.14) may be simplified by using that, by
the Markov property, we have

P(τ+
x < τ−

−ϵ ∧ eq) = P(τ+
x < eq)− P(τ−

−ϵ < τ+
x < eq)

= P(τ+
x < eq)− E


1
{τ−

−ϵ<τ
+
x ∧eq }

PX
τ
−
−ϵ

(τ+
x < eq)


. (4.15)
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Furthermore, since Π ∈ S(α) we note that

lim
x→∞

P(τ+

x+ϵ < eq)

P(τ+
x < eq)

= e−αϵ, ϵ > 0. (4.16)

From the dominated convergence theorem and Definition 4.1(ii)–(iii) it then follows that

lim
x→∞

E


1
{τ−

−ϵ<τ
+
x ∧eq }

PX
τ
−
−ϵ

(τ+
x < eq)


P(τ+

x < eq)
= E


e
αX

τ
−
−ϵ 1

{τ−
−ϵ<eq }


, (4.17)

and an application of the Markov property yields

E


e
αX

τ
−
−ϵ 1

{τ−
−ϵ<eq }


=

E

eα

Xeq 1
{τ−

−ϵ<eq }


E


eα

Xeq

 . (4.18)

Taking first x → ∞ in (4.13) and (4.14) and using (4.15)–(4.18) and that P[τ−

−ϵ = eq ] = 0 we
find

E


eα
Xeq

 τ−

−ϵ > eq


E


eα

Xeq

 ≤ lim inf
x→∞

P(Deq > x)

P(τ+
x < eq)

≤ lim sup
x→∞

P(Deq > x)

P(τ+
x < eq)

≤

E


eα
Xeq

 τ−

−ϵ > eq


E


eα

Xeq

 + 1 − e−αϵ .

Letting subsequently ϵ ↓ 0 and using

lim
ϵ↓0

E


eα
Xeq

 τ−

−ϵ > eq


= 1,

which in turn holds as the conditional expectation is bounded above by 1 and bounded below by
e−αϵ , we get the following asymptotics:

P(Deq > x) ≃ BqΠ (x), with (4.19)

Bq =
κ(q, 0)

(κ(q, 0)+κ(0,−α))2 1

E

eα

Xeq

 .
Next, we turn to the proof of the asymptotic decay of the second term on the right-hand side of
(4.9). Note that it equals

[0,x]

P(X∞ > x − z)P(Deq ∈ dz, Deq ≤ x)

=


[0,y′]

+


(y′,x−y′]

+


(x−y′,x]


P(X∞ > x − z)P(Deq ∈ dz, Deq ≤ x). (4.20)

We next show that the second and third integrals of the right-hand side of (4.20) tend to zero as
we let first x and then y tend to infinity. Indeed, concerning the second integral we use (4.2),
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Definition 4.1(ii)–(iii) and (4.10) to show that

lim
x→∞


(y′,x−y′]

P(X∞ > x − z)P(Deq ∈ dz, Deq ≤ x)

P(τ+
x < ∞)

=


(y′,∞)

eαzP(X eq ∈ dz),

which tends to 0 as y′
→ ∞.

For the third integral, we obtain the bound
(x−y′,x]

P(X∞ > x − z)P(Deq ∈ dz, Deq ≤ x) ≤ P(X∞ > y′)P(X eq > x − y′)

≤ P(τ+

y′ < ∞)P(τ+

x−y′ < ∞).

After dividing the integral in the display by P(τ+
x < ∞) and letting first x → ∞ and then

y′
→ ∞, it tends to zero.
Finally, the first integral on the right-hand side of (4.20) is asymptotically of the same order

as the left-hand side. Indeed, using (4.2) and Definition 4.1(ii)–(iii), (4.10) and the dominated
convergence theorem we find

lim
x→∞


[0,y′]

P(X∞ > x − z)P(Deq ∈ dz, Deq ≤ x)

P(τ+
x < ∞)

=


[0,y′]

eαzP(Deq ∈ dz), (4.21)

which converges to


∞

0 eαzP(Deq ∈ dz) = E[eαXeq ] := Bq as y′
→ ∞.

By combining the previous estimates we have the following asymptotics of the tail probability
P(−D∗

eq
> x):

lim
x→∞

P(−D∗
eq
> x)

qΠ (x)
= q−1(Bq + Bq). (4.22)

Noting that the right-hand side of (4.22) is a pointwise limit of Laplace transforms of measures
and is itself such a Laplace transform, it follows from (an extension of) the continuity theorem
(see [10, Theorem 15.5.2]) that the corresponding measures also converge to the limiting measure
with Laplace transform given by q−1(Bq + Bq). Hence the first assertion of the theorem follows
by inverting the Laplace transform q−1(Bq + Bq) (see Remark 4.4).

Concerning D
∗

t , note that by (3.20) we have

P(−D
∗

t > x) =


(−∞,0]

P(τ+

x+z < ∞)P(X t ∈ dz).

Asymptotics (4.10), the dominated convergence theorem and part (ii) and (iii) of Definition 4.1
establish that the asymptotic decay of P(−D

∗

t > x) is as stated. �

5. Exact distributions

From Proposition 2.1 it follows that the distributions of D
∗

t,s , D∗
t,s , U

∗

t,s and U∗
t,s can be

identified if one is able to identify the law of the finite time supremum and the resolvent of the
Lévy process reflected at its infimum. In the case of a spectrally one-sided Lévy process X such
explicit expressions are provided by existing fluctuation theory.

In this section we suppose that X is spectrally negative (as noted in the Introduction, the case
of spectrally positive Lévy process follows from by considering the dual of X ). Many fluctuation
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results for X can be conveniently formulated in terms of its scale function W (q) that is defined
as the unique continuous increasing function on R+ with Laplace transform

∞

0
e−λx W (q)(x) dx =

1
ψ(λ)− q

for any λ > Φ(q).

Note that by convexity of the Laplace exponent ψ its right inverse Φ(q) is well-defined for all
q ≥ 0. Moreover, let Z (q) denote the function on R+ given by

Z (q)(x) = 1 + q
 x

0
W (q)(y)dy, x ∈ R+,

let eβ be an exponentially distributed random variable with parameter β > 0 (independent of eq
and X ).

Proposition 5.1. Let x ∈ R+. (i) If E[X1] ∈ R ∪ {−∞} \ R+ then

P(U∗

eq ,eβ > x) =
1

Z (q)(x)


1 + q

 x

0
e−Φ(β)z W (β)(z)dz


and

P(U∗

eq ,eβ > x) =
q

q − β
e−Φ(β)x Φ(β)− Φ(q)

Φ(q)
.

(ii) If E[X1] ∈ R+ \ {0} then

P(−D
∗

eq ,eβ > x) = Φ(q)


∞

0
e−Φ(q)z Z (β)(x + z)dz

−
β

Φ(β)
Φ(q)


∞

0
e−Φ(q)z W (β)(x + z)dz and

P(−D∗
eq ,eβ > x) = q

β

Φ(β)


[0,x]

(W (β)(x − z)− βZ (β)(x − z))W (q)(z)dz

−
β

Φ(β)
W (q)(x)

W (q)′
+ (x)


[0,x]

(W (β)(x − z)− βZ (β)(x − z))W (q)(dz)

+ Z (q)(x)− q
W (q)(x)2

W (q)′
+ (x)

,

where W (q)′
+ (x) denotes the right-derivative of W (q) at x.

The proof of Proposition 5.1 is based on the representations derived in Proposition 2.1 and the
form of the q-resolvent measures RU

x and RD
x of U and D killed upon crossing the level x > 0,

which are defined by

RU
x (dy) =


∞

0
e−qtP(Ut ∈ dy, T U

x > t)dt and

RD
x (dy) =


∞

0
e−qtP(Dt ∈ dy, T D

x > t)dt,

where T U
x and T D

x are the first-passage times of U and D over x , T U
x = inf{t ≥ 0 : Ut >

x}, T D
x = inf{t ≥ 0 : Dt > x}. In [22, Theorem 1] it was shown that these resolvent measures
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have a density a version of which is given by

RU
x (dy) =

W (q)(x − y)

Z (q)(x)
dy, y ∈ [0, x], (5.1)

RD
x (dy) = W (q)(x)

W (q)(dy)

W (q)′
+ (x)

− W (q)(y)dy, y ∈ [0, x]. (5.2)

Proof. Recall that by Proposition 2.1 we have

P(U∗

eq ,eβ > x) = E

e−qT U

x


+ q


[0,x]

P(X eβ > x − z)RU
x (dz),

where by [22, Proposition 2],

E

e−qT U

x


=

1

Z (q)(x)

and

P(Ueβ > x − z) = P(X eβ > x − z) = e−Φ(β)(x−z).

Similarly,

P(U∗

eq ,eβ > x) =


∞

0
P(Ueβ > x + z)P(Deq ∈ dz),

where by [16]:

P(Deq ∈ dz) = P(−X eq
∈ dz) =

q

Φ(q)
W (q)(dz)− qW (q)(z) dz, z ∈ R+.

Straightforward calculations complete the proof of (i).
The proof of (ii) follows by a similar reasoning using the identity

E

e−qT D

x


= Z (q)(x)− q

W (q)(x)2

W (q)′
+ (x)

;

see [22, Proposition 2]. �

Corollary 5.2. Let x ∈ R+. (i) If E[X1] ∈ R ∪ {−∞} \ R+

P(U∗

eq
> x) =

1

Z (q)(x)


1 + q

 x

0
e−Φ(0)z W (q)(z)dz


and

P(U∗

eq
> x) = e−Φ(0)x Φ(q)− Φ(0)

Φ(q)
.

(ii) If E[X1] ∈ R+ \ {0} then

P(−D
∗

eq
> x) = 1 − ψ ′(0)Φ(q)


∞

0
e−Φ(q)z W (x + z)dz and

P(−D∗
eq
> x) = 1 + qψ ′(0)


[0,x]

W (x − z)W (q)(z)dz

−ψ ′(0)
W (q)(x)

W (q)′
+ (x)


[0,x]

W (x − z)W (q)(dz).
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Proof. Note that by negative drift condition E[X1] ∈ R ∪ {−∞} \ R+ we have that ψ ′(0) =

E[X1] < 0 and by convexity of ψ we can conclude that Φ(0) > 0. Moreover, since U∞ has the
same law as X∞, which follows an exponential distribution with parameter Φ(0), we have for
any x ∈ R+

P(U∗

eq
≤ x) =


[0,x]

 y

0
Φ(0)e−Φ(0)zdzP(z + Ueq ∈ dy, eq < T U

x )

=
qΦ(0)
Z (q)(x)

 x

0

 y

0
e−Φ(0)z W (q)(x − y + z)dz dy

=
1

Z (q)(x)


q

 x

0
(1 − e−Φ(0)y)W (q)(y) dy


.

Furthermore, from (3.10),

P(U∗

eq
≤ x) = P(U∗

0 − Deq ≤ x)

= Φ(0)


R+

 x

−y
e−Φ(0)(z+y)dzP(Deq ∈ dy) = 1 − e−Φ(0)x Φ(q)− Φ(0)

Φ(q)
.

The proof of (ii) follows by a similar reasoning, using the form of the resolvent and the fact that
D∞ has the same law as −X∞, which is given by P[−X∞ < x] = ψ ′(0)−1W (x) for x ∈ R+

(see e.g. [16]), where we use fact that ψ ′(0) = E[X1] > 0. �

Remark 5.3. (i) By inverting the Laplace transform we find that

P(U∗

t > x) = e−Φ(0)x (1 − Φ(0)E[Ut ]) .

(ii) Straightforward calculations show that the double Laplace transforms LU (r, s) and L D(r, s)
of P(U∗

T ≤ u) and P(−D∗

T ≤ u) in T and u are given by:

LU (r, s) =
Φ(0)(Φ(s)+ r)

(Φ(0)+ r)sΦ(s)
, L D(r, s) = rψ ′(0)Φ(s)

ψ(r)− s

s2ψ(r)(r − Φ(s))
.

This agrees with the forms of L D(r, s) and LU (r, s) obtained in [8].
(iii) In the literature numerical methods have been developed for the evaluation of scale func-

tions, based on Markov chain approximation (see [19]) or Laplace inversion (see [14,26]),
which may be used for numerical evaluation of the expressions given in Proposition 5.1.

(iv) From the proofs of the propositions above it is clear that we can identify the bivariate
Laplace transform of U

∗

t,s , U∗
t,s , D

∗

t,s and D∗
t,s with respect to t and s as long as the laws

of X eq , X eq
and resolvents of reflected process RU

a , RD
a are known. This could be done not

only for spectrally one-sided Lévy processes. For example, one can consider the Kou model,
where the log-price X = (X t )t∈R+

is modelled by a jump–diffusion with constant drift µ
and volatility σ > 0, with the upward and downward jumps arriving at rates λ+ and λ− with
sizes following exponential distributions with means 1/α+ and 1/α−,

X t = µt + σWt +

N+
t

j=1

U+

j −

N−
t

j=1

U−

j ,

where N± are independent standard Poisson processes with rates λ±, independent of a
Brownian motion W , and U±

i ∼ Exp(α±) are independent. Then the important ingredi-
ents are identified in [1, Lemma 1 and Proposition 3] (also applied for the dual process).
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5.1. (Future) drawdowns and drawups under Black–Scholes model

Consider a risky asset whose price process P = (Pt )t∈R+
is given as follows:

Pt = P0 exp(X t ), t ∈ R+, (5.3)

where X = (X t )t∈R+
is a Lévy process. In the case of the Black–Scholes model, P is a geometric

Brownian motion, with rate of appreciation µ ∈ R and the volatility σ , and X = (X t )t∈R+
is

given by the linear Brownian motion

X t =


µ−

σ 2

2


t + σWt .

Let µ > σ 2/2. This model is widely used in practice as a benchmark for other models.

For this model we have ψ(θ) = σ 2θ2/2 + (µ− σ 2/2)θ , Φ(q) = −ω + δ(q) with

δ(q) = σ−2

(µ− σ 2/2)2 + 2σ 2q

and ω =
µ

σ 2 −
1
2 and

W (q)(x) =
1

δ(q)σ 2


e(−ω+δ(q))x

− e−(ω+δ(q))x

,

Z (q)(x) =
q

δ(q)σ 2


1

−ω + δ(q)
e(−ω+δ(q))x

+
1

ω + δ(q)
e−(ω+δ(q))x


.

Hence from Corollary 5.2 we have

P(−D∗
eq
> x) = 1 +

1

σ 4δ(q)ω
(µ− σ 2/2)(Z (q)(x)− 1)

+
q

σ 4δ(q)ω
(µ− σ 2/2)


1

δ(q)− ω
e−(δ(q)+ω)x

−
1

δ(q)+ ω
e(δ(q)−ω)x

−
2ω

δ2(q)− ω2 e−2ωx


+ (µ− σ 2)
W (q)(x)

W (q)′(x)


δ(q)+ ω

δ(q)− ω
e−(δ(q)+ω)x

+
δ(q)− ω

δ(q)+ ω
e(δ(q)−ω)x

−
2δ(q)

δ2(q)− ω2 e−2ωx


and

P(−D
∗

eq
> x) =

−ω + δ(q)

ω + δ(q)
e−2ωx , q > 0.

Hence we find for t ∈ R+

P(−D
∗

t > x) = E[e−2ωUt ]e−2ωx .
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Moreover,

E(γ )[Pt ] = P0
E


e−γUt +X t


E


e−γUt

 = P0eψ(1)t
E(1)[e−γUt ]

E

e−γUt

 ,
E(γ )[Pt ] = P0eψ(1)t

E(1)[eγ Dt ]

E

eγ Dt

 ,
where E(γ ) and E(γ ) are the expectations with respect to measures P(γ ) and P(γ ) given in (3.21)
(for γ given in Assumption 1), respectively, and the measure P(1) is defined via P(1)(A) =

E[eX t −ψ(1)t 1A] for A ∈ Ft and γ = 2ω. Under P(1) we have

X t =


µ−

3
2
σ 2


+ σWt .

We note that E[e−2ωUt ] = E[e−γUt ] and E(1)[e−γUt ] may be identified using [4, (1.1.3),
p. 250] and E[eγ Dt ] and E(1)[eγ Dt ] using [4, (1.1.3), (1.2.3) pp. 250–251].
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