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Abstract

This work is devoted to switching diffusions that have two components (a continuous component and a
discrete component). Different from the so-called Markovian switching diffusions, in the setup, the discrete
component (the switching) depends on the continuous component (the diffusion process). The objective of
this paper is to provide a number of properties related to the well posedness. First, the differentiability with
respect to initial data of the continuous component is established. Then, further properties including uniform
continuity with respect to initial data, and smoothness of certain functionals are obtained. Moreover, Feller
property is obtained under only local Lipschitz continuity. Finally, an example of Lotka–Volterra model
under regime switching is provided as an illustration.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction 1

In the past two decades, a considerable research effort has been devoted to the study of 2

switching diffusion processes that are also called hybrid switching diffusions. Much of the 3

interest stems from pressing need of treating complex systems involving both continuous 4

dynamics representable by using solutions of stochastic differential equations, and discrete 5
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events that cannot be written as solutions of the usual differential equations. Such hybrid systems1

are prevalent in a wide range of applications including ecological and biological modeling [21],2

control systems and filtering [19], economics and finance [9,20], networked systems [8], among3

others. These switching diffusions can be represented by a two-component process (X (t), α(t)),4

where X (t) is a continuous component (also called “continuous state”) taking values in Rr
5

and α(t) is a discrete component (also called “discrete state”) taking values in a finite set6

M = {1, . . . ,m0}. The interactions of the continuous and discrete components make the models7

more versatile and suitable for a wide range of applications. On the other hand, these interactions8

make the analysis of such processes much more difficult. It is interesting to note that such9

processes are similar to the usual diffusions, but they could behave much differently from the10

usual diffusion processes qualitatively. For example, suppose that we have two linear diffusions11

together with a continuous-time Markov chain. The Markov chain serves as a modulating force12

making the process switch back and forth between these two diffusions. Depending on the13

switching frequency, even if each of the diffusion is stable, the switched system can be unstable14

or vice versa; see for example, [15, pp. 229–233]. Likewise, we may have both of the individual15

diffusions being recurrent, but the switching diffusion is not. In a way, the switching diffusion16

processes display many peculiar properties.17

Because of their importance, hybrid systems in general and switching diffusions in par-18

ticular have drawn resurgent attentions. For some of the recent progress, we mention the19

work [2,7,11,13,14,18,22] and references therein. Systematic treatments and comprehensive20

study of these stochastic processes can be found in [10] and [16]. Both of these references21

consider systems that have pure jump random switching in addition to the noise processes driven22

by Brownian motions; the first reference mentioned above concentrates on switching diffusions23

in which the switching mechanism is given by a continuous-time Markov chain independent24

of the Brownian motion, whereas the second reference focuses on the switching processes25

depending on the current state of the diffusions. In what follows, to distinguish these two types26

of switching diffusions, the first type process is referred to as Markovian switching diffusions (or27

Markov chain modulated switching diffusions), and the second type process is called continuous-28

state-dependent switching diffusions.29

This paper aims to study continuous and smooth dependence on the initial data of solutions30

to stochastic differential equations corresponding to continuous-state-dependent switching dif-31

fusions. These properties are all related to the well-posedness in certain sense. In the book of32

Applebaum [1], similar properties for stochastic differential equations, are also referred to as33

flow properties. These properties vividly highlight the distinctions between Markovian switching34

diffusions and continuous-state-dependent switching diffusions. For example, it is well-known35

that a diffusion process is smooth in the L2 sense with respect to its initial data under suitable36

conditions; see [6, VII, Section 4]. Such a smoothness property readily carries over to the case37

of Markovian switching diffusions because the Markov chain is independent of the Brownian38

motion and the initial state of the continuous component does not influence the dynamics of39

the Markov chain. In this paper, we show that this phenomenon becomes markedly different in40

the case of continuous-state-dependent switching diffusions, which is in sharp contrast with that41

of Markovian switching diffusions and diffusions. In lieu of L2 convergence, we demonstrate42

that the smoothness with respect to initial data is in the sense of L p for any 0 < p strictly less43

than λ, with λ ≤ 1 being the Hölder exponent of the generator for the switching process; see44

Theorem 3.1 for the precise statement. Moreover, we provide a counterexample to demonstrate45

that the estimates above is in fact sharp; we cannot expect L1 convergence, neither can we46

get L2 convergence in the current case. Next, we examine uniform estimates of two solutions47
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if their initial data are close. Furthermore, we establish smoothness of certain functional of 1

switching diffusions. As an application of the uniform estimates, we revisit the issue of Feller 2

property. Although Feller properties for continuous-state-dependent switching diffusions have 3

been established in the literature, see, for example, [13,14] as well as Chapter 2 in [16], this 4

work aims to relax the commonly used global Lipschitz condition and to provide a simple proof. 5

The rest of the paper is arranged as follows. Section 2 presents the switching diffusion setup. 6

Section 3 focuses on the differentiability of the switching diffusions with respect to the initial data 7

of the continuous state; also presented in this section is a counter-example of the differentiability 8

under L1 convergence. Section 4 studies further properties, in which Section 4.1 furthers our 9

investigation on uniform estimates on a finite time interval of solutions with different initial 10

data and Section 4.2 investigates smoothness of a functional of the switching diffusions. Using 11

results obtained in Section 3, in Section 5, we first provide an alternative proof of the Feller 12

property under global Lipschitz condition. Then we obtain the Feller property by using only 13

local Lipschitz continuity. Finally, we close the paper with an example in Section 6, a competitive 14

regime-switching Lotka–Volterra model, which illustrates our results. 15

2. Switching diffusions 16

Let (Ω ,F,Ft ,P) be a filtered probability space, where Ω is the sample space, F is the 17

σ -algebra of subsets, {Ft } is a filtration (that is, {Ft } is a family of σ -algebras satisfying Fs ⊂ Ft 18

for s ≤ t), and P is a probability measure. We assume that Ft is complete in that it contains 19

all null sets, and that Ft satisfies the usual condition in that F0 is complete and {Ft } is right 20

continuous. Let M = {1, . . . ,m0} be a finite set, and suppose that b(·, ·) : Rr
× M → Rr

21

and σ (·, ·) : Rr
× M → Rr×d . In this paper, we consider a switching diffusion process, a 22

two-component Markov process (X (t), α(t)) whose generator is given by 23

L f (x, i) = ∇ f ′(x, i)b(x, i) + tr(∇2 f (x, i)A(x, i)) + Q(x) f (x, ·)(i) 24

=

r∑
k=1

bk(x, i)
∂ f (x, i)
∂xk

+
1
2

r∑
k,l=1

akl(x, i)
∂2 f (x, i)
∂xk∂xl

25

+ Q(x) f (x, ·)(i), for any (x, i) ∈ Rr
× M, (2.1) 26

for a C2-function f (·, i) (whose derivatives with respect to x up to the second order are 27

continuous) for each i ∈ M, where ∇ f (x, i) and ∇
2 f (x, i) denote the gradient and Hessian 28

of f (x, i) with respect to x , respectively, and 29

Q(x) f (x, ·)(i) =

m0∑
j=1

qi j (x) f (x, j), and

A(x, i) = (akl(x, i)) = σ (x, i)σ ′(x, i) ∈ Rr×r .

30

The dynamics and transition rules of (X, α) may also be presented as follows. Suppose that w(t) 31

is an Rd -valued Brownian motion, α(t) is a pure jump process taking value in M, and X (t) 32

satisfies 33

d X (t) = b(X (t), α(t))dt + σ (X (t), α(t))dw(t), (2.2) 34

such that the jump intensity of α(t) depends on the current state of X (t) in that the generator of 35

α(t) is given by Q(x) = (qi j (x)) with qi j (·) : Rr
→ R for i, j ∈ M, qi j (x) ≥ 0 for i ̸= j , and 36∑

j qi j (x) = 0 for each i ∈ M, satisfying 37

P{α(t + ∆) = j |α(t) = i, X (s), α(s), s ≤ t} = qi j (X (t))∆ + o(∆) if i ̸= j. (2.3) 38
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Alternatively, the evolution of the discrete component α(·) can be represented by a stochastic1

integral with respect to a Poisson random measure (see, e.g., [12]). For x ∈ Rr and i ∈ M, let2

∆i j (x), j ∈ M \ {i} be disjoint intervals of the real line, each having length qi j (x). Define a3

function h : Rr
× M × R ↦→ R by4

h(x, i, z) =

m0∑
j=1

( j − i)I{z∈∆i j (x)}. (2.4)5

That is, with the partition {∆i j (x) : i, j ∈ M} used and for each i ∈ M, if z ∈ ∆i j (x), then6

h(x, i, z) = j − i ; otherwise h(x, i, z) = 0. Then the dynamics of the discrete component α(·)7

can be represented by8

dα(t) =

∫
R

h(X (t), α(t−), z)p(dt, dz), (2.5)9

where p(dt, dz) is a Poisson random measure with intensity dt × m(dz), and m is the Lebesgue10

measure on R. The Poisson random measure p(·, ·) is independent of the Brownian motion w(·).11

Thus, the switching process (X, α) can be presented by the system of stochastic differential12

equations given by (2.2) and (2.5). Let the initial condition of the switching diffusion be13

(X (0), α(0)) = (x, α) ∈ Rr
× M. To ensure the existence and uniqueness of solutions to (2.2)14

and (2.3), we have the following theorem, which is proved in [16, Theorem 2.7].15

Theorem 2.1. Assume that b(x, i) and σ (x, i) are locally Lipschitz in x for each i ∈ M, and16

that Q(x) = (qi j (x)) is bounded and continuous. Assume further that there exists a function17

V (·, ·) : Rr
×M ↦→ R+ that is twice continuously differentiable with respect to x ∈ Rr for each18

i ∈ M and a constant K > 0 such that19 {
LV (x, i) ≤ K V (x, i) for all (x, i) ∈ Rr

× M
VR := inf{V (x, i) : |x | ≥ R, i ∈ M} → ∞ as R → ∞.

20

Then the system given by (2.2) and (2.3) has a unique strong solution for each initial condition.21

Note that for Markovian switching diffusions, the switching process is a homogeneous22

continuous-time Markov chain with a constant matrix as its generator, and the Markov chain and23

the Brownian motion are independent. In lieu of such a structure, we are dealing with a much24

more complex system. Starting from the next section, we focus on deriving certain smoothness25

and continuity properties of the underlying processes.26

3. Differentiability with respect to initial data27

This section is devoted to differentiability with respect to initial data of the switching28

processes, or equivalently, the smoothness of the solutions of the switched stochastic differential29

equations with respect to the initial data of the continuous component. This section is divided30

into two parts. The first part derives the main result. The second part presents a counter example31

indicating our result is sharp.32

3.1. Differentiability33

In [17, Theorem 4.2], we stated that X (t) is twice continuously differentiable in mean square34

under certain conditions. There is an error in the proof of [17, Lemma 4.3]. In particular, in the35

last line of equation (4.13) on page 2421 of the aforementioned paper, a diagonal entry term of36
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the form q̃( j,l)( j,l)(x, x̃) in the generator of the coupling was inadvertently left out in our proof, 1

resulting an error in the proof of the said theorem. We correct this error here and demonstrate 2

that the switching diffusions do possess the smoothness properties. However the results about the 3

differentiability in mean square is in general not achievable if the generator Q(x) = (qi j (x)) of 4

α(t) depends on the current state of X (t); see the simple yet illuminating example in Section 3.2. 5

The differentiability in mean square needs to be replaced by differentiability in pth moment 6

for an appropriate p. It turns out that the proof is interesting in its own right. In a way, it 7

really displays certain aspects of the salient features of the continuous state-dependent switching 8

processes. 9

If we consider a Markovian switching diffusion process, the switching times and hence the 10

switching process can be generated beforehand because α(t) is independent of the Brownian 11

motion. As can be seen in the proof of this section, the main difficulty we face is that the 12

switching times depend on the continuous component X (t). To illustrate, consider a one- 13

dimensional X (t) as an example. Denote the solution of (2.2) with two different initial data for the 14

continuous component (X (0), α(0)) = (x, α) and (X (0), α(0)) = (̃x, α) = (x +∆, α) by X x,α(t) 15

and X x̃,α(t), respectively. The differentiability is concerned with the limit of the difference 16

quotient X x̃,α (t)−X x,α (t)
x̃−x . In the Markovian switching diffusions, the difference X x̃,α(t) − X x,α(t) 17

can be calculated much the same way as in the diffusion case in [6, VIII, Section 4, pp. 403–412]. 18

That is, we can simply subtract one from the other. The α(t) does not really come into the picture 19

because even x ̸= x̃ , the sample paths of α(t) are the same. For our continuous-state dependent 20

switching, care must be taken. The analysis is more delicate in places because αx,α(t) and α x̃,α(t) 21

can take different values infinitely often. In the analysis to follow, one of the main insights is the 22

use of the first time when the switching processes αx,α(t) and α x̃,α(t) are different. 23

To proceed, we first setup the notation. For a multi-index or a vector β = (β1, . . . , βr ) with 24

nonnegative integer entries, put |β| =
∑r

i=1βi and define 25

Dβ
x =

∂ |β|

∂xβ1
1 . . . ∂xβr

r
. 26

Next we define the L p differentiability of a smooth random function Φ(x1, . . . , xr , t). Its partial 27

derivative in probability with respect to xi is defined as a random variable Ψ (x1, . . . , xr , t) such 28

that 29

1
h

(
Φ(x1, . . . , xi + h, . . . , xr , t) − Φ(x1, . . . , xi , . . . , xr , t)

)
30

→ Ψ (x1, . . . , xr , t) in probability 31

as h → 0. If for some p > 0, 32

E
⏐⏐⏐⏐1h (Φ(x1, . . . , xi + h, . . . , xr , t) − Φ(x1, . . . , xi , . . . , xr , t)

)
− Ψ (x1, . . . , xr , t)

⏐⏐⏐⏐p

33

→ 0 as h → 0 34

we say that Φ(x1, . . . , xr , t) has partial derivative with respect to xi in L p. We proceed to obtain 35

the smoothness of the switching diffusion with respect to the initial data in the L p sense. 36

Theorem 3.1. Assume that b(x, i) and σ (x, i) are Lipschitz in x for each i ∈ M. Let 37

(X x,α(t), αx,α(t)) be the solution to the system given by (2.2) and (2.3) with initial data 38

(X (0), α(0)) = (x, α). Assume that for each i ∈ M, b(·, i) and σ (·, i) have continuous partial
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derivatives with respect to the variable x up to the second order and that1

|Dβ
x b(x, i)| + |Dβ

x σ (x, i)| ≤ K0(1 + |x |
γ0 ), (3.1)2

where K0 and γ0 are positive constants and β is a multi-index with |β| ≤ 2.3

(a) Suppose that Q(x) = (qi j (x)) is bounded and continuous. Then X x,α(t) is twice4

continuously differentiable with respect to x in probability.5

(b) Replace the conditions for Q(x) in the assumptions of part (a) by Q(x) is bounded and6

qk j (x) is locally Hölder continuous with Hölder exponent λ for some λ ∈ (0, 1] in that7

there are K1 > 0 and γ1 > 0 such that8 ∑
k, j∈M

|qk j (x) − qk j (y)| ≤ K1(1 + |x |
γ1 + |y|

γ1 )|x − y|
λ, ∀x, y ∈ Rr . (3.2)9

Then X x,α(t) is twice continuously differentiable in L p with respect to x for any 0 < p < λ.10

Proof. For ease of presentation and without loss of generality, we prove the result when X (t)11

is one dimensional. Fix (x, α) ∈ R × M and T > 0. Let (X (t), α(t)) be the switching-12

diffusion process satisfying (2.2) and (2.3) with initial condition (x, α) respectively. Likewise,13

let (X̃ (t), α̃(t)) be the solution process with initial condition (̃x, α), where x̃ = x + ∆ for14

0 < |∆| ≪ 1. Consider the joint process (X (t), X̃ (t), α(t), α̃(t)). By the basic coupling method15

(see e.g., [3, p. 11]), we can consider them as the solutions to16 {
d X (t) = b(X (t), α(t))dt + σ (X (t), α(t))dw(t)
d X̃ (t) = b(X̃ (t), α̃(t))dt + σ (X̃ (t), α̃(t))dw(t)

(3.3)17

with initial condition (x, x +∆, α, α), where (α(t), α̃(t)) has the generator Q̃(X (t), X̃ (t)) which18

is defined by19

Q̃(x, x̃) f̃ (k, l) =

∑
( j,i∈M×M)

q̃(k,l)( j,i)(x, x̃)
(

f̃ ( j, i) − f̃ (k, l)
)

20

=

∑
j∈M

[qk j (x) − ql j (̃x)]+( f̃ ( j, l) − f̃ (k, l))21

+

∑
j∈M

[ql j (̃x) − qk j (x)]+( f̃ (k, j) − f̃ (k, l))22

+

∑
j∈M

[qk j (x) ∧ ql j (̃x)]( f̃ ( j, j) − f̃ (k, l)). (3.4)23

Define24

τ∆ = inf{t ≥ 0 : α(t) ̸= α̃(t)}. (3.5)25

Since α(t) and α̃(t) are the same up to τ∆, and b(·, i) and σ (·, i) are Lipschitz continuous for26

each i ∈ M, by standard arguments (see e.g. [10, Lemma 3.3]), we obtain that27

E sup
0≤t≤T ∧τ∆

{|X (t) − X̃ (t)|2} ≤ K |x − x̃ |
2. (3.6)28

Recall from [17, Lemma 3.2] that for any m > 0 and 0 < R < ∞, there is a Cm(R, T ) > 0 such29

that for any pair (x0, α0) with |x0| ≤ R and α0 ∈ M,30

E sup
t∈[0,T ]

{|X x0,α0 (t)|m} ≤ Cm(R, T ). (3.7)31
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First, we show that 1

P{τ∆ ≤ T } → 0 as ∆ → 0. 2

Let f̃ (k, l) = 1{k ̸=l}, where 1A is the indicator of the set A. By the definition of the function f̃ , 3

we have 4

Q̃(x, x̃) f̃ (k, k) =

∑
j∈M, j ̸=k

[qk j (x) − qk j (̃x)]+ +

∑
j∈M, j ̸=k

[qk j (̃x) − qk j (x)]+ 5

=

∑
j∈M, j ̸=k

|qk j (x) − qk j (̃x)| =: ρ(x, x̃, k). (3.8) 6

Applying the generalized Itô formula to (3.3) and noting that α(t) = α̃(t), t < τ∆, we obtain 7

that 8

P{τ∆ ≤ T } = E f̃
(
α(T ∧ τ∆), α̃(T ∧ τ∆)

)
9

= E
∫ T ∧τ∆

0
Q̃(X (t), X̃ (t)) f̃ (α(t), α̃(t))dt 10

= E
∫ T ∧τ∆

0
ρ(X (t), X̃ (t), α(t))dt. (3.9) 11

In view of (3.6), 12

sup
t∈[0,T ∧τ∆]

|X (t) − X̃ (t)| → 0 in probability as ∆ → 0. (3.10) 13

By the dominated convergence theorem, it follows from (3.10) and boundedness of ρ(·, ·, ·) that 14

lim
∆→0

P{τ∆ ≤ T } = lim
∆→0

E
∫ T ∧τ∆

0
ρ(X (t), X̃ (t), α(t))dt = 0. (3.11) 15

Moreover, if (3.2) is satisfied, then by Hölder’s inequality, estimates (3.2), and (3.7), we have 16

P{τ∆ ≤ T } = E
∫ T ∧τ∆

0
ρ(X (t), X̃ (t), α(t))dt 17

≤ E
∫ T ∧τ∆

0
K1(1 + |X (t)|γ1 + |X̃ (t)|γ1 )|X (t) − X̃ (t)|λdt 18

≤ K2TE sup
t≤T ∧τ∆

(1 + |X (t)|γ1 + |X̃ (t)|γ1 )|X (t) − X̃ (t)|λ (for some K2 > 0) 19

≤ K2T
(
E sup

t≤T ∧τ∆

(1 + |X (t)|γ1 + |X̃ (t)|γ1 )
2

2−λ

) 2−λ
2
(
E sup

t≤T ∧τ∆

|X (t) − X̃ (t)|2
) λ

2
20

≤ K̃λ|∆|
λ (for some K̃λ > 0). (3.12) 21

As in [17], put Z∆(t) :=
X̃ (t)−X (t)

∆
for t ≥ 0. Then we have

Z∆(t ∧ τ∆) = 1 +
1
∆

∫ t∧τ∆

0

[
b(X̃ (s), α(s)) − b(X (s), α(s))

]
ds

+
1
∆

∫ t∧τ∆

0

[
σ (X̃ (s), α(s)) − σ (X (s), α(s))

]
dw(s).
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Now, we evaluate the drift:1

1
∆

∫ t∧τ∆

0

[
b(X̃ (s), α(s)) − b(X (s), α(s))

]
ds2

=
1
∆

∫ t

0
1{s≤τ∆}

[
b(X̃ (s), α(s)) − b(X (s), α(s))

]
ds3

=
1
∆

∫ t

0
1{s≤τ∆}

(∫ 1

0

d
dv

b(X (s) + v(X̃ (s) − X (s)), α(s))dv
)

ds4

=

∫ t

0
Z∆(s)1{s≤τ∆}

∫ 1

0
bx (X (s) + v(X̃ (s) − X (s)), α(s))dvds.5

=

∫ t

0
Z∆(s ∧ τ∆)1{s≤τ∆}

∫ 1

0
bx (X (s) + v(X̃ (s) − X (s)), α(s))dvds. (3.13)6

In view of (3.13) and a similar evaluation for the diffusion part, we have that U∆(t) = Z (t ∧ τ∆)7

satisfies the equation8

U∆(t) = 1 +

∫ t

0
A∆(s)U∆(s)ds +

∫ t

0
B∆(s)U∆(s)dw(s)9

where10

A∆(s) := 1{s≤τ∆}

∫ 1

0
bx (X (s) + v(X̃ (s) − X (s)), α(s))dv,11

B∆(s) := 1{s≤τ∆}

∫ 1

0
σx (X (s) + v(X̃ (s) − X (s)), α(s))dv.12

By (3.10) and (3.11), as ∆ → 0,13

A∆(s) → bx (X (s), α(s)) and B∆(s) → σx (X (s), α(s)) in probability.14

In view of [5, Theorem 5.2.2],15

E
⏐⏐⏐⏐ X̃ (T ∧ τ∆) − X (T ∧ τ∆)

∆
− ξ (T )

⏐⏐⏐⏐2 = E
⏐⏐U∆(t) − ξ (T )

⏐⏐2 → 0 as ∆ → 0 (3.14)16

where ξ (t) is the solution to17

ξ (t) = 1 +

∫ t

0
bx (X (s), α(s))ξ (s)ds +

∫ t

0
σx (X (s), α(s))ξ (s)dw(s). (3.15)18

Note that19

X̃ (T ) − X (T )
∆

=
X̃ (T ∧ τ∆) − X (T ∧ τ∆)

∆
20

+ 1{τ∆≤T }

X̃ (T ) − X̃ (T ∧ τ∆) − X (T ) + X (T ∧ τ∆)
∆

. (3.16)21

In light of (3.11),22

1{τ∆≤T }

X̃ (T ) − X̃ (T ∧ τ∆) − X (T ) + X (T ∧ τ∆)
∆

→ 0 in probability as ∆ → 0. (3.17)23

It follows from (3.14), (3.16), and (3.17) that24

X̃ (T ) − X (T )
∆

→ ξ (T ) in probability as ∆ → 0. (3.18)25

This proves part (a) of the theorem.26
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Next we prove part (b) of the theorem. For p < λ, letting θ =
λ−p

2 , we have 1

E1{τ∆≤T }

⏐⏐X̃ (T ) − X̃ (T ∧ τ∆) − X (T ) + X (T ∧ τ∆)
⏐⏐p

2

≤ 2pE1{τ∆≤T }

(
sup

t∈[0,T ]
{|X (t)| + |X̃ (t)|}

)p
3

≤ 2p(E1{τ∆≤T })
p+θ
λ

(
E
(

sup
t∈[0,T ]

{|X (t)| + |X̃ (t)|}
) pλ

θ

) θ
λ

4

≤ K̃2|∆|
p+θ (for some K̃2 using (3.7) and (3.12)), (3.19) 5

which implies that 6

E1{τ∆≤T }

⏐⏐⏐ X̃ (T ) − X̃ (T ∧ τ∆) − X (T ) + X (T ∧ τ∆)
∆

⏐⏐⏐p

→ 0 as ∆ → 0. (3.20) 7

As a result of (3.14), (3.16) and (3.20), we obtain that 8

E
⏐⏐⏐ X̃ (T ) − X (T )

∆
→ ξ (T )

⏐⏐⏐p
→ 0 as ∆ → 0. (3.21) 9

Thus, X (t) is differentiable in L p for p < λ if (3.2) is satisfied. Likewise, it can be shown that 10

X (t) is twice differentiable in probability and in L p for p < λ under the condition (3.2). □ 11

Remark 3.2. In the proof, we use the boundedness condition on Q(x) to derive (3.11) 12

from (3.10) using the dominated convergence theorem. If we assume the polynomial growth 13

|qi j (x)| ≤ K0(1 + |x |
γ0 ), we will have ρ(x, x̃, k) ≤ K̃0(1 + |x | + |x̃ |)γ0 for some K̃0 > 0. Thus, 14

we have 15

E

(∫ T ∧τ∆

0
ρ(X (t), X̃ (t), α(t))dt

)2

≤ T 2 K̃ 2
0E sup

t∈[0,T ]
(1 + |X (t)| + |X̃ (t)|)2γ0 , 16

which results in the uniform integrability of
{∫ T ∧τ∆

0 ρ(X (t), X̃ (t), α(t))dt : ∆ ∈ (0, 1]
}
. As a 17

result, we derive from (3.10) and the Vitali convergence theorem that (3.11) still holds if we 18

replace the boundedness of qi j (x) by the condition |qi j (x)| ≤ K0(1 + |x |
γ0 ). All the remaining 19

arguments in the proof of Theorem 3.1 still carry over. 20

3.2. A counterexample for smoothness under L1 convergence 21

The smoothness with respect to the initial data was obtained in the last section. The 22

convergence is in the sense of L p convergence. One immediate question is: Can we do better? Is 23

it possible to get, for example, L1 convergence? In general, this question has a negative answer. 24

The intuitive arguments are as follows. X (t) and X̃ (t) evolve similarly up to τ∆, the moment 25

α(t) and α̃(t) switch apart. Thus, if T ≤ τ∆, it is easy to estimate X (T )−X̃ (T )
∆

using the (local) 26

Lipschitz condition of the coefficients. However, if T > τ∆, we cannot expect that X (T )−X̃ (T )
∆

27

is bounded since X (t) and X̃ (t) follow different equations after τ∆. Using this observation, in 28

the proof of Theorem 3.1, we decompose X (T )−X̃ (T )
∆

into two parts in (3.16). The first term on 29

the right-hand side of (3.16) converges to ξ (T ) in L2 while the second term converges to 0 in 30

probability. Thus, if X (T )−X̃ (T )
∆

were to converge in L1 as ∆ → 0, we would expect that 31

1{τ∆≤T }

X̃ (T ) − X̃ (T ∧ τ∆) − X (T ) + X (T ∧ τ∆)
∆

→ 0 in L1. 32
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Since X (t) and X̃ (t) evolve completely differently after τ∆, we cannot expect that X (T ) −1

X̃ (T ) → 0 as ∆ → 0 in the event {T > τ∆}. Thus,2

X̃ (T ) − X̃ (T ∧ τ∆) − X (T ) + X (T ∧ τ∆)
∆

= O(∆−1) as ∆ → 0 if T > τ∆. (3.22)3

On the other hand, it follows from (3.8), (3.9), and the Hölder continuity (3.2) that4

P{T ≥ τ∆} = O(∆λ) as ∆ → 0. (3.23)5

As a result of (3.22) and (3.23), we can see that 1{τ∆≤T }

X̃ (T )−X̃ (T ∧τ∆)−X (T )+X (T ∧τ∆)
∆

does not in6

general converge to 0 in L p for p ≥ λ. Because the Hölder exponent λ cannot exceed 1 except7

for the case when the Q-matrix is constant, we cannot, in general, obtain the L1 convergence.8

In this section, we provide an example showing that the process X x,α(t) is not differentiable in9

L2 or in L1 although the coefficients b(·, ·), σ (·, ·) and Q(x) are smooth and bounded. In order to10

simplify the calculations, we consider an example in which the Q-matrix is reducible and there11

is no diffusion part. It is possible to construct a counter-example with irreducible Q-matrix and12

nondegenerate diffusion. However, it will involve more cumbersome and tedious calculations.13

It appears to be more instructive to construct an example with structure as simple as possible14

to highlight the distinctions of x-dependent switching and Markovian switching. Thus, we omit15

such an example here.16

Let M = {1, 2} and consider the equation17

d X (t) = b(α(t))dt (3.24)18

where b(1) = 0 and b(2) = 1. Suppose that the switching process α(t) has generator Q =19 (
− f (x) f (x)

0 0

)
, where f (x) is a smooth positive function with compact support and f (x) = x for20

x ∈ [1, 2]. Let ∆12(x) = [0, f (x)), ∆21(x) = ∅. The process α(t) can be defined as the solution21

to22

dα(t) =

∫
R

h(X (t), α(t−), z)p(dt, dz)23

where h(x, 1, z) = 1{z∈∆12(x)} and h(x, 2, z) = 0, p(dt, dz) is a Poisson random measure with24

intensity dt × m(dz) and m is the Lebesgue measure on R.25

Let y > 0 and (X y,1(t), αy,1(t)) be the solution with initial data (y, 1). Let τ y
= inf{t ≥ 0 :26

αy,1(t) = 2}. For x ∈ [0, 1] we have X1+x,1(t) = 1 + x, ∀ t ∈ [0, τ 1+x ], and α1+x (t) stays in27

state 2 once it jumps into 2 since the jump intensity q21(x) = 0 for any x ∈ R. Thus,28

X1+x,1(T ) = 1 + x + T − T ∧ τ x+1 and
X1,1(T ) = 1 + T − T ∧ τ 1.

29

As a result,30

Z1+x
:=

X1+x,1(T ) − X1,1(T )
x

= 1 +
[T ∧ τ 1

− T ∧ τ x+1]
x

. (3.25)31

If Z1+x converges in L1 to a variable Z0, then the sequence Z1+
1
n must be a Cauchy sequence32

in L1. Then it follows that,33

E
⏐⏐Z1+

2
n − Z1+

1
n
⏐⏐ → 0 as n → ∞. (3.26)34
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Now, we show that (3.26) cannot be satisfied. Let 1

Y0 = inf
{

t ≥ 0 :

∫ t

0

∫
R

1{z∈[0,1)}p(ds, dz) ̸= 0
}
,

Y1 = inf
{

t ≥ 0 :

∫ t

0

∫
R

1
{z∈[1,1+

1
n )}p(ds, dz) ̸= 0

}
,

Y2 = inf
{

t ≥ 0 :

∫ t

0

∫
R

1
{z∈[1+

1
n ,1+

2
n )}p(ds, dz) ̸= 0

}
.

2

Since [0, 1), [1, 1 +
1
n ), [1 +

1
n , 1 +

2
n ) are disjoint sets, we have that Y0, Y1, Y2 are three 3

independent exponential random variables with parameter 1, 1
n ,

1
n , respectively. Note that 4

τ 1+x
= inf

{
t ≥ 0 :

∫ t

0

∫
R

1{z∈[0,1+x)}p(ds, dz) ̸= 0
}
. (3.27) 5

Thus, τ 1
= Y0, τ 1+

1
n = Y0 ∧ Y1, and τ 1+

2
n = Y0 ∧ Y1 ∧ Y2. From (3.25), we have 6⏐⏐⏐Z1+

2
n − Z1+

1
n

⏐⏐⏐ =

⏐⏐⏐n[T ∧ τ 1
− T ∧ τ 1+

1
n ] −

n
2

[T ∧ τ 1
− T ∧ τ 1+

2
n ]
⏐⏐⏐. (3.28) 7

Let A =

{
Y1 ≤ Y2, Y1 < T

3 , Y0 ∈ [ 2T
3 , T ]

}
. When ω ∈ A, T ∧ τ 1

= τ 1
= Y0, 8

T ∧ τ 1+
1
n = T ∧ τ 1+

2
n = Y1. As a result, when ω ∈ A, 9

|Z1+
2
n − Z1+

1
n | =

⏐⏐⏐n(Y0 − Y1) −
n
2

(Y0 − Y1)
⏐⏐⏐ =

n
2

(Y0 − Y1) ≥
T n
6
. (3.29) 10

By direct calculation, 11

P(A) = P
{

Y1 ≤ Y2, Y1 <
T
3

}
× P

{
Y0 ∈

[2T
3
, T
]}

12

=
1
n

(
1 − exp

(
−

(
1 +

2
n

)T
3

))
×

(
exp

(
−

2T
3

)
− exp(−T )

)
. (3.30) 13

In view of (3.29) and (3.30), 14

E|Z1+
2
n − Z1+

1
n | ≥ E1A|Z1+

2
n − Z1+

1
n | ≥

T n
6

P(A)

=
T
6

(
1 − exp

(
−

(
1 +

2
n

)T
3

))
×

(
exp

(
−

2T
3

)
− exp(−T )

)
→

T
6

(
1 − exp

(
−

T
3

))
×

(
exp

(
−

2T
3

)
− exp(−T )

)
̸= 0 as n → ∞.

15

As a result, {Z1+
1
n : n ∈ Z+} is not a Cauchy sequence in L1. Thus neither is it Cauchy in 16

L p, p > 1. In the example, the continuous-state dependence makes the switching diffusions 17

markedly different from that of the Markov modulated switching diffusions. 18

4. Further properties 19

Continuing on our investigation, we derive further properties in this section. It is arranged in 20

two subsections. 21
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4.1. Uniform continuity with respect to initial data1

This section aims to obtain uniform estimates on a finite interval for the difference of two2

solutions X x̃,α(t) − X x,α(t) with distinct initial data on the continuous component. Again, such3

a property is distinctly different from that of the Markov modulated switching diffusions; see4

Remark 4.2 for details.5

Theorem 4.1. Assume that b(x, i) and σ (x, i) are globally Lipschitz in x (with Lipschitz constant6

κ) for each i ∈ M, and that Q(x) = (qi j (x)) is bounded and for some γ1 > 0 we have7 ∑
k, j∈M

|qk j (x) − qk j (y)| ≤ K1(1 + |x |
γ1 + |y|

γ1 )|x − y|, ∀x, y ∈ Rr . (4.1)8

Then, there exists a constant CT depending only on T , K1, and κ such that for any x, x̃ ∈ Rr ,9

and α ∈ M, we have10

E sup
t∈[0,T ]

|X x̃,α(t) − X x,α(t)| ≤ CT (1 + |x |
γ1+2

+ |̃x |
γ1+2)|̃x − x |. (4.2)11

Proof. By [22, Proposition 3.5], for any m ∈ Z+, there is a constant Cm depending only on the12

Lipschitz constant κ such that13

E

(
sup

t∈[0,T ]
|X x0,α0 (t)|m

)
≤ Cm(1 + |x0|

m) exp(Cm T ) ∀ (x0, α0) ∈ Rr
× M, T > 0. (4.3)14

Let (X (t), X̃ (t), α(t), α̃(t)) be as in the proof of Theorem 3.1. Again, denote ∆ = x̃ − x and15

recall the definition of τ∆ in (3.5). Then16

sup
t∈[0,T ]

|X (t) − X̃ (t)| ≤ sup
t∈[0,T ∧τ∆]

|X (t) − X̃ (t)| + sup
t∈(T ∧τ∆,T ]

|X (t) − X̃ (t)|.17

Hence18

E

(
sup

t∈[0,T ]
|X (t) − X̃ (t)|

)
19

≤ E

(
sup

t∈[0,T ∧τ∆]
|X (t) − X̃ (t)|

)
+ E

(
1{τ∆≤T } sup

t∈(T ∧τ∆,T ]
|X (t) − X̃ (t)|

)
. (4.4)20

Let FT ∧τ∆ be the σ -algebra generated by the processes (X (t), X̃ (t), α(t), α̃(t)) up to the time21

T ∧ τ∆. We have that22

E

[
1{τ∆≤T } sup

t∈(T ∧τ∆,T ]
|X (t) − X̃ (t)|

]
23

= E

[
E
(

1{τ∆≤T } sup
t∈(T ∧τ∆,T ]

|X (t) − X̃ (t)|
⏐⏐⏐FT ∧τ∆

)]
24

= E

[
1{τ∆≤T }E

(
sup

t∈(T ∧τ∆,T ]
|X (t) − X̃ (t)|

⏐⏐⏐FT ∧τ∆

)]
25

≤ E

[
1{τ∆≤T }E

(
sup

t∈(T ∧τ∆,T ]
{|X (t)| + |X̃ (t)|}

⏐⏐⏐FT ∧τ∆

)]
26
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≤ E

[
1{τ∆≤T }E

(
sup

t∈(T ∧τ∆,T ∧τ∆+T ]
{|X (t)| + X̃ (t)|}

⏐⏐⏐FT ∧τ∆

)]
1

≤ 2C1eC1TE
[
1{τ∆≤T }

(
1 + |X (T ∧ τ∆)| + |X̃ (T ∧ τ∆)|

)]
, (4.5) 2

where the last inequality follows from the strong Markov property of (X (t), X̃ (t), α(t), α̃(t)) and 3

(4.3). Note that the coupled process (X (t), X̃ (t), α(t), α̃(t)) is the solution to (3.3). For k, l ∈ M, 4

let Ãkl be the generator of the diffusion 5{
dY (t) = b(Y (t), k)dt + σ (Y (t), k)dw(t)
dỸ (t) = b(Ỹ (t), l)dt + σ (Ỹ (t), l)dw(t).

(4.6) 6

Then the generator L̃ of (X (t), X̃ (t), α(t), α̃(t)) is given by 7

L̃ f (x, x̃, k, l) = Ãkl f (x, x̃, k, l) + Q̃(x, x̃) f (x, x̃, k, l). (4.7) 8

Define U (x, x̃, k, l) = V (k, l)(1 + |x |
2
+ |̃x |

2) = 1{k ̸=l}(1 + |x |
2
+ |̃x |

2). Clearly, when k = l, 9

U (x, x̃, k, k) = 0, for all x and x̃ . Thus, ÃkkU (x, x̃, k, k) = 0, which combined with (3.8) 10

implies that 11

L̃U (x, x̃, k, k) = Q̃(x, x̃)U (x, x̃, k, k) 12

= (1 + |x |
2
+ |̃x |

2)Q̃(x, x̃)V (k, k) = (1 + |x |
2
+ |̃x |

2)ρ(x, x̃, k), (4.8) 13

where ρ(x, x̃, k) is defined in (3.8). Since all moments of X (t) and X̃ (t) are bounded, applying 14

Dynkin’s formula, we have 15

EU
(
X (T ∧ τ∆), X̃ (T ∧ τ∆), α(T ∧ τ∆), α̃(T ∧ τ∆)

)
16

= U (x, x̃, α, α) + E
∫ T ∧τ∆

0
L̃U (X (s), X̃ (s), α(s), α̃(s))ds 17

= E
∫ T ∧τ∆

0
(1 + |X (s)|2 + |X̃ (s)|2)ρ(X (s), X̃ (s), α(s))ds, (4.9) 18

where the last equality above follows from (4.8) and the fact α(t) = α̃(t) if t < τ∆. Then by 19

Hölder’s inequality, estimates (4.1), and (4.3), we have 20

E
∫ T ∧τ∆

0
(1 + |X (t)|2 + |X̃ (t)|2)ρ(X (t), X̃ (t), α(t))dt 21

≤ E
∫ T ∧τ∆

0
K̃ (1 + |X (t)|γ1+2

+ |X̃ (t)|γ1+2)|X (t) − X̃ (t)|dt (for some K̃ > 0) 22

≤ K̃ TE sup
t≤T ∧τ∆

{
(1 + |X (t)|γ1+2

+ |X̃ (t)|γ1+2)|X (t) − X̃ (t)|
}

23

≤ K̃ T
(
E sup

t≤T ∧τ∆

{
(1 + |X (t)|γ1+2

+ |X̃ (t)|γ1+2)2}) 1
2
(
E sup

t≤T ∧τ∆

{
(|X (t) − X̃ (t)|)2}) 1

2
24

≤ K̃1,T (1 + |x |
γ1+2

+ |̃x |
γ1+2)|∆| (for some K̃1,T > 0), (4.10) 25

where the last inequality follows from (3.6) and (4.3). 26
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In view of (4.5), (4.9), and (4.10),1

E

(
1{τ∆≤T } sup

t∈[T ∧τ∆,T ]
|X (t) − X̃ (t)|

)
2

≤ 2C1eC1TE
(
1{τ∆≤T }

(
1 + |X (T ∧ τ∆)| + |X̃ (T ∧ τ∆)|

))
3

≤ 6C1eC1TE
(
1{τ∆≤T }

(
1 + |X (T ∧ τ∆)|2 + |X̃ (T ∧ τ∆)|2

))
4

≤ 6C1eC1TEU
(
X (T ∧ τ∆), X̃ (T ∧ τ∆), α(T ∧ τ∆), α̃(T ∧ τ∆)

)
5

≤ 6C1eC1T K̃1,T (1 + |x |
γ1+2

+ |̃x |
γ1+2)|∆|. (4.11)6

The proof is complete by applying (4.11) and (3.6) to (4.3). □7

Remark 4.2. In contrast to switching diffusions with Markovian switching, in which the8

switching is independent of the Brownian motion, in our case, we have to estimate X (t) − X̃ (t)9

after τ∆ if τ∆ ≤ T . Note that the difference |X (t) − X̃ (t)| after τ∆ cannot be estimated by10

something related to |x − x̃ | since after τ∆, the evolutions of X (t) and X̃ (t) are quite different.11

We can only estimate |X (t) − X̃ (t)| by |X (t)| + |X̃ (t)| for t > τ∆. For this reason, in general,12

it does not seem that CT (1 + |x |
γ1+2

+ |̃x |
γ1+2) in (4.2) can be replaced with a constant K13

independent of x and x̃ , even under the condition that Q(x) is globally Lipschitz. However, if we14

assume b and σ are bounded, CT (1 + |x |
γ1+2

+ |̃x |
γ1+2) in (4.2) can be replaced by a constant15

K . Finally, we remark that if the condition for Q(x) is reduced to16 ∑
k, j∈M

|qk j (x) − qk j (y)| ≤ K1(1 + |x |
γ1 + |y|

γ1 )|x − y|
λ,17

for all x, y ∈ Rr and some 0 < λ ≤ 118

then we can obtain19

E sup
t∈[0,T ]

|X x̃,α(t) − X x,α(t)| ≤ CT (1 + |x |
γ1+2

+ |̃x |
γ1+2)|̃x − x |

λ.20

4.2. Smoothness of a functional of the switching diffusion21

Continuing on our investigations, this section obtains smoothness of nonlinear functional of22

the switching diffusions. Once again, the continuous-state dependent switching presents much23

difficulty. Our task is to untangle the process αx,α(t) and α x̃,α(t) as in the previous sections.24

As alluded to in Remark 4.2, the difficulty due to the continuous state dependent switching is25

particularly pronounced.26

Theorem 4.3. For each i ∈ M, assume that b(x, i) and σ (x, i) are globally Lipschitz in x (with27

Lipschitz constant κ), that b(·, i), σ (·, i), qi j (·) ∈ C2, that there is a φ(·, i) ∈ C2, and that28

|Dβ
x b(x, i)| + |Dβ

x σ (x, i)| + |Dβ
x φ(x, i)| ≤ K (1 + |x |

γ ), i ∈ M, |β| ≤ 2. (4.12)29

for some positive constant γ . Assume further that |Dβqi j (·)| are Lipschitz and bounded uniformly30

by some constant M for |β| ≤ 2. Then, u(t, x, i) = E[φ(X x,i (t), αx,i (t))] is twice continuously31

differentiable with respect to the variable x.32

Proof. Again, for simplicity, we work out the details for the one-dimensional case. Denote by33

(∂/∂x)φ(·, i) for each i ∈ M, and (d/dx)qi j (·) the derivatives of φ(·, i) and qi j (·) with respect34
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to x , respectively. Let χ (t) be the Markov chain in M with generators q̂i j = 1 if i ̸= j , 1

q̂i i = −m0 + 1. Let θ i0
n be the nth jump time of χ (t) given that χ (0) = i0. Let Z x0,i0 (t) be 2

the solution with initial value Z x0,i0 (0) = x0 to 3

d Z (t) = b(Z (t), χ(t))dt + σ (Z (t), χ(t))dw(t). (4.13) 4

Let τ x0,i0
n be the nth jump time of αx0,i0 (t). By a change of measure (see [4]), we have 5

E
[
φ(X x0,i0 (T ), αx0,i0 (T ))1

{τ
x0,i0
n ≤T<τ

x0,i0
n+1 }

n∏
k=1

1
{αx0,i0 (τ

x0,i0
k )=ik }

]
6

= exp((m0 − 1)T )E
[
φ(Z x0,i0 (T ), in)1

{θ
i0
n ≤T<θ

i0
n+1}

( n∏
k=1

1
{χ (θ

i0
k )=ik }

)
7

× exp
{
−

∫ T

0
qχ (s)(Z x0,i0 (s))ds

} n−1∏
k=0

(
qik ik+1 (Z x0,i0 (θ i0

k+1))
)]
, (4.14) 8

where qi (x) =
∑

j ̸=i qi j (x). Now, fix x and α = i0 and let (X (t), α(t)), (X̃ (t), α̃(t)) be the 9

switching-diffusion processes satisfying (2.2) and (2.3) with initial conditions (x, α) and (̃x, α), 10

respectively, where x̃ = x + ∆, α = i0. Likewise, let Z (t), Z̃ (t) be the solutions to (4.13) 11

with initial conditions x, x̃ respectively. By standard arguments (e.g. [10, Lemma 3.3] and 12

[17, Lemma 3.2]), we have 13⎧⎪⎨⎪⎩
E sup

t∈[0,T ]
|Z̃ (t) − Z (t)|4 ≤ K∆4 for some K > 0,

E sup
t∈[0,T ]

|Z (t)|m ≤ Km(1 + |x |
m) for any m > 0.

(4.15) 14

Adapting the proofs of [5, Theorems 5.5.2, 5.5.3] with a slight modification in replacing fixed 15

times by stopping times, we can show that 16

µ∆ := sup
{ϑ∈T }

E|Z̃ (ϑ) − Z (ϑ) − η(ϑ)∆|
2

∆2 → 0 as ∆ → 0, (4.16) 17

where η(t) is the derivative of Z (t) with respect to the initial condition x which exists in L2-sense 18

and T is the set of all stopping times that are bounded above by T almost surely. Note that η(t) 19

satisfies 20

η(t) = 1 +

∫ t

0
η(s)bx (Z (s), χ(s))ds +

∫ t

0
η(s)σx (Z (s), χ(s))dw(s). 21

Using the above equation, (4.15), the Burkholder–Davis–Gundy inequality, Gronwall’s inequal- 22

ity and standard arguments in [17, Lemma 3.2] or [5, Theorem 5.2.2], we can show that 23

E sup
t∈[0,T ]

|η(t)|2 ≤ C(T, x), (4.17) 24

where C(T, x) is a constant depending on T and x . By Taylor’s expansion, it can be easily shown 25

that 26⏐⏐⏐⏐exp
{
−

∫ T

0
qχ (s)(Z̃s)ds

}
− exp

{
−

∫ T

0
qχ (s)(Zs)ds

}
27

+

(∫ T

0
(Z̃ (s) − Z (s))

d
dz

qχ (s)(Z (s))ds
)

exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}⏐⏐⏐⏐ 28
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≤ M
∫ T

0
|Z̃ (s) − Z (s)|2ds. (4.18)1

In view of (4.18)2 ⏐⏐⏐⏐ 1
∆

(
exp

{
−

∫ T

0
qχ (s)(Z̃s)ds

}
− exp

{
−

∫ T

0
qχ (s)(Zs)ds

})
3

+

(∫ T

0
η(s)

d
dz

qχ (s)(Z (s))ds
)

exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}⏐⏐⏐⏐4

≤
1
∆

⏐⏐⏐⏐ exp
{
−

∫ T

0
qχ (s)(Z̃s)ds

}
− exp

{
−

∫ T

0
qχ (s)(Zs)ds

}
5

+

(∫ T

0
(Z̃ (s) − Z (s))

d
dz

qχ (s)(Z (s))ds
)

exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}⏐⏐⏐⏐6

+

⏐⏐⏐⏐ (∫ T

0

[
η(s) −

Z̃ (s) − Z (s)
∆

] d
dz

qχ (s)(Z (s))ds
)

exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}⏐⏐⏐⏐7

≤
M
∆

∫ T

0

(
|Z̃ (s) − Z (s)|2 + |Z̃ (s) − Z (s) − ∆η(s)|

)
ds. (4.19)8

We have from Taylor’s expansion9 ⏐⏐⏐⏐qik ik+1 (Z̃ (θk+1)) − qik ik+1 (Z (θk+1))
∆

− η(θk+1)
d
dz

qik ik+1 (Z (θk+1))
⏐⏐⏐⏐10

≤
1
∆

⏐⏐⏐⏐qik ik+1 (Z̃ (θk+1)) − qik ik+1 (Z (θk+1)) −

(
Z̃ (θk+1) − Z (θk+1)

) d
dz

qik ik+1 (Z (θk+1))
⏐⏐⏐⏐11

+
1
∆

⏐⏐Z̃ (θk+1) − Z (θk+1) − ∆η(θk+1)
⏐⏐ ⏐⏐⏐⏐ d

dz
qik ik+1 (Z (θk+1))

⏐⏐⏐⏐12

≤
M
∆

(
|Z̃ (θk+1) − Z (θk+1)|2 + |Z̃ (θk+1) − Z (θk+1) − ∆η(θk+1)|

)
. (4.20)13

Similar to [5, (5.22) on p. 123], we have14

ψ∆ :=

⏐⏐⏐⏐φ(Z̃ (T ), χ(T )) − φ(Z (T ), χ(T ))
∆

− η(T )
∂

∂z
φ(Z (T ), χ(T ))

⏐⏐⏐⏐15

→ 0 in L2(Ω ) as ∆ → 0. (4.21)16

To simplify notation, we drop the superscript of θ i0
n and for each n ∈ Z+, let17

An := {(i1, . . . , in+1) : ik ∈ M, ik ̸= ik−1, k = 1, . . . , n + 1}.18

For each I = (i1, . . . , in+1) ∈ An , let19

fI := 1{θn≤T<θn+1}

( n∏
k=1

1{χ (θk )=ik }

)
.20

We compute21 ⏐⏐⏐⏐ 1
∆

[
φ(Z̃ (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z̃ (s))ds

} n−1∏
k=0

qik ik+1 (Z̃ (θk+1))22

−φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1))
]

23
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− η(T )
∂

∂z
φ(Z (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1)) 1

−

n−1∑
j=0

φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}
η(θ j+1)

d
dz

qi j i j+1 (Z (θ j+1)) 2

×

n−1∏
k=0,k ̸= j

qik ik+1 (Z (θk+1)) 3

+φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}(∫ T

0
η(s)

d
dz

qχ (s)(Z (s))ds
)

4

×

n−1∏
k=0

qik ik+1 (Z (θk+1))
⏐⏐⏐⏐ 5

≤ C fI Mn
[
ψ∆ + (1 + |Z̃ (T )|γ + |Z (T )|γ ) 6

×

∫ T

0

|Z̃ (s) − Z (s)|2 + |Z̃ (s) − Z (s) − ∆η(s)|
∆

ds 7

+ (1 + |Z̃ (T )|γ + |Z (T )|γ ) 8

×

n∑
j=0

|Z̃ (θ j+1) − Z (θ j+1)|2 + |Z̃ (θ j+1) − Z (θ j+1) − ∆η(θ j+1)|
∆

]
. (4.22) 9

Let ζ̂n(T ) be defined by 10

ζ̂n(T ) =

∑
I∈An

[
η(T )

∂

∂z
φ(Z (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1)) 11

+

n−1∑
j=0

φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}
η(θ j+1)

d
dz

qi j i j+1 (Z (θ j+1)) 12

×

n−1∏
k=0,k ̸= j

qik ik+1 (Z (θk+1)) 13

−φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

}(∫ T

0
η(s)

d
dz

qχ (s)(Z (s))ds
)

14

×

n−1∏
k=0

qik ik+1 (Z (θk+1))
]
. 15

Note that
∑

I∈An
fI = 1. It then follows from (4.22) that for each n ∈ Z+, ζ̂n(t) such that 16

E
∑
I∈An

⏐⏐⏐⏐ 1
∆

[
φ(Z̃ (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z̃ (s))ds

} n−1∏
k=0

qik ik+1 (Z̃ (θk+1)) 17

−φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1))
]

− ζ̂n(T )
⏐⏐⏐⏐ 18

≤ MnE1{θn≤T<θn+1}ψ∆ 19
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+
C
∆

MnE1{θn≤T<θn+1}(1 + |Z̃ (T )|γ + |Z (T )|γ )1

×

∫ T

0

(
|Z̃ (s) − Z (s)|2 + |Z̃ (s) − Z (s) − ∆η(s)|

)
ds2

+
C
∆

MnE1{θn≤T<θn+1}(1 + |Z̃ (T )|γ + |Z (T )|γ )3

×

n∑
j=0

(
|Z̃ (θ j+1) − Z (θ j+1)|2 + |Z̃ (θ j+1) − Z (θ j+1) − ∆η(θ j+1)|

)
. (4.23)4

By Hölder’s inequality and the fact that5

P{θn ≤ T < θn+1} =
exp(−m0T )(m0T )n

n!
, (4.24)6

we can obtain the following estimate:7

E1{θn≤T<θn+1}ψ∆ ≤

(
P{θn ≤ T < θn+1}Eψ2

∆

) 1
2

8

≤

(
exp(−m0T )(m0T )n

n!

) 1
2
(Eψ2

∆)
1
2 . (4.25)9

Similarly, with the aid of Hölder’s and Minkowski’s inequalities, we have10

1
∆
E1{θn≤T<θn+1}(1 + |Z̃ (T )|γ + |Z (T )|γ )11

×

∫ T

0

(
|Z̃ (s) − Z (s)|2 + |Z̃ (s) − Z (s) − ∆η(s)|

)
ds12

≤

(
P{θn ≤ T < θn+1}

) 1
4
(

1 + (E|Z̃ (T )|4γ )
1
4 + (E|Z (T )|4γ )

1
4

)
13

×
1
∆

[∫ T

0

(
E|Z̃ (s) − Z (s)|4

) 1
2
ds +

∫ T

0

(
E|Z̃ (s) − Z (s) − ∆η(s)|2

) 1
2
ds
)

14

≤ K
(

exp(−m0T )(m0T )n

n!

) 1
4
(∆ + µ

1
2
∆) (by (4.15) and (4.16)) . (4.26)15

Likewise,16

1
∆
E
[

1{θn≤T<θn+1}(1 + |Z̃ (T )|γ + |Z (T )|γ )17

×

n∑
j=0

(
|Z̃ (θ j+1) − Z (θ j+1)|2 + |Z̃ (θ j+1) − Z (θ j+1) − ∆η(θ j+1)|

)]
18

≤ nK
(

exp(−m0T )(m0T )n

n!

) 1
4
(∆ + µ

1
2
∆). (4.27)19

Applying (4.25), (4.26) and (4.27) to (4.23) to obtain20

E
∑
I∈An

⏐⏐⏐⏐ 1
∆

[
φ(Z̃ (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z̃ (s))ds

} n−1∏
k=0

qik ik+1 (Z̃ (θk+1))21

−φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1))
]

− ζ̂n(T )
⏐⏐⏐⏐22
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≤ (n + 1)K̃ Mn
(

exp(−m0T )(m0T )n

n!

) 1
4
(µ

1
2
∆ + (Eψ2

∆)
1
2 + ∆) (4.28) 1

for some K̃ independent of n. It is not difficult to show that 2

∞∑
n=0

(n + 1)K̃ Mn
(

exp(−m0T )(m0T )n

n!

) 1
4
< ∞. (4.29) 3

Moreover, by virtue of (4.16) and (4.21), we have 4

lim
∆→0

(
µ

1
2
∆ + (Eψ2

∆)
1
2 + ∆

)
= 0. 5

Thus, 6

E
∞∑

n=0

⏐⏐⏐⏐∑
I∈An

1
∆

[
φ(Z̃ (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z̃ (s))ds

} n−1∏
k=0

qik ik+1 (Z̃ (θk+1)) 7

−φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1))
]

− ζ̂n(T )
⏐⏐⏐⏐ → 0 (4.30) 8

as ∆ → 0. 9

Similar to (4.28) and (4.29), by using Holder’s inequality, (4.17), and (4.24), we can obtain 10

that 11

E
⏐⏐⏐⏐ ∞∑

n=0

ζ̂n(T )
⏐⏐⏐⏐ ≤ Ĉ(T, x) < ∞. (4.31) 12

As a result of (4.30) and (4.31), we deduce 13

1
∆

[u(T, x + ∆, i) − u(T, x, i)] 14

=
1
∆
E
(
φ(X̃ (T ), α̃(T )) − φ(X (T ), α(T ))

)
15

=
1
∆
E

∞∑
n=0

∑
I∈An

[
φ(Z̃ (T ), in) fI exp

{
−

∫ T

0
qχ (s)(Z̃ (s))ds

} n−1∏
k=0

qik ik+1 (Z̃ (θk+1)) 16

−φ(Z (T ), in) fI exp
{
−

∫ T

0
qχ (s)(Z (s))ds

} n−1∏
k=0

qik ik+1 (Z (θk+1))
]

17

→ E
∞∑

n=0

ζ̂n(T ) as ∆ → 0. (4.32) 18

We have therefore proved that u(t, x, i) is differentiable with respect to x with 19

∂

∂x
u(t, x, i) = Ex,i

∞∑
n=0

ζ̂n(T ). 20

With Taylor’s expansion up to the second order and using the same method, we can show that 21

u(t, x, i) is twice differentiable with respect to x . □ 22
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Remark 4.4. If (4.12) holds for any β ≤ n, then we can use a change of measure argument,1

Taylor’s expansion, and arguments in the proof of Theorem 4.3 to obtain differentiability up to2

order n of u(t, x, i). However, the estimates would be more complicated.3

5. Feller property under non-global Lipschitz condition4

This section is devoted to obtaining Feller properties of switching diffusions under non-5

Lipschitz condition. There has been much work on Feller properties of switching diffusions6

in the literature. However, to the best of our knowledge, all of the work up to date has been7

concentrated on the case under a global Lipschitz condition; see for example, [13,14,16]. When8

the global Lipschitz condition is violated, will the processes still possess Feller property? We9

address this issue in what follows.10

Theorem 5.1. Assume that the hypothesis of Theorem 2.1 is satisfied. Then the solution process11

(X (t), α(t)) for the system given by (2.2) and (2.3) is a Markov–Feller process.12

Proof. The Markov property follows from standard arguments. In what follows, we focus on13

the proof of the Feller property. First, we suppose that b(x, i) and σ (x, i) are Lipschitz in x for14

each i ∈ M. In fact, the Feller property was obtained in [16, Section 2.5] under global Lipschitz15

condition. The proof was rather long. Here, using our results of the current paper, we provide16

an alternative proof. Let f (·, ·) : Rr
× M ↦→ R be a bounded and continuous function. Fix17

(x, α) ∈ Rr
× M and t > 0. Let {xn} be any sequence converging to x as n → ∞. By the18

definition of the limit superior of a sequence, since f (·, ·) is bounded, we can always extract a19

subsequence {E f (X xnk ,α(t), αxnk ,α(t))} from {E f (X xn ,α(t), αxn ,α(t))} such that20

lim
k→∞

E f (X xnk ,α(t), αxnk ,α(t)) = lim sup
n→∞

E f (X xn ,α(t), αxn ,α(t)). (5.1)21

In view of (3.10) and (3.11), (X xnk ,α(t), αxnk ,α(t)) converges to (X x,α(t), αx,α(t)) in probability as22

k → ∞. Then it has a subsequence converging almost surely to (X x,α(t), αx,α(t)). Without loss of23

generality, we may assume that (X xnk ,α(t), αxnk ,α(t)) converges almost surely to (X x,α(t), αx,α(t))24

as k → ∞. Then the dominated convergence theorem and (5.1) imply that25

lim sup
n→∞

E f (X xn ,α(t), αxn ,α(t)) = lim
k→∞

E f (X xnk ,α(t), αxnk ,α(t)) = E f (X x,α(t), αx,α(t)).26

Likewise,27

lim inf
n→∞

E f (X xn ,α(t), αxn ,α(t)) = E f (X x,α(t), αx,α(t)).28

Thus, we obtain the Feller property under the condition that b(x, i) and σ (x, i) are Lipschitz in29

x for each i ∈ M.30

Next we relax the condition and assume only the local Lipschitz continuity as in the statement31

of the theorem. It is proved in [16, Theorem 2.7] that for any R > 0, ε > 0, and t > 0, there is32

an HR > 0 such that33

P{|X x,α(s)| < HR for all s ∈ [0, t]} > 1 − ε if |x | ≤ R. (5.2)34

Now fix (x, α) ∈ Rr
×M and R > |x | + 1. Let f (·, ·) : Rr

×M ↦→ R be a continuous function35

satisfying | f (x, α)| ≤ 1 for all (x, α) ∈ Rr
× M. Let ψ(·) : Rr

↦→ [0, 1] be a smooth function36
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with compact support satisfying ψ(x) = 1 if |x | ≤ HR . By the first part of this proof, the process 1

(X̂ (t), α̂(t)) satisfying 2{
d X̂ (t) = ψ(X̂ (t))b(X̂ (t), α̂(t))dt + ψ(X̂ (t))σ (X̂ (t), α̂(t))dw(t),
P{α̂(t + ∆) = j |α̂(t) = i, X̂ (s), α̂(s), s ≤ t} = qi j (X̂ (t))∆ + o(∆) if i ̸= j

(5.3) 3

has the Feller property. Thus, there exists some δ ∈ (0, 1) such that 4⏐⏐⏐E f (X̂ x+h,α(t), α̂x+h,α(t)) − E f (X̂ x,α(t), α̂x,α(t))
⏐⏐⏐ < ε for any h ∈ Rr , |h| ≤ δ. (5.4) 5

where (X̂ x,α(t), α̂x,α(t)) denotes the solution of (5.3) with initial value (x, α). By the definition 6

of ψ(x) and (5.2), we have that 7

P{X x+h,α(t) = X̂ x+h,α(t), αx+h,α(t) = α̂x+h,α(t)} > 1 − ε if |h| ≤ 1. (5.5) 8

In view of (5.4) and (5.5) and the assumption that | f (x, α)| ≤ 1 for all (x, α) ∈ Rr
× M, we 9

obtain 10⏐⏐⏐E f (X x+h,α(t), αx+h,α(t)) − E f (X x,α(t), αx,α(t))
⏐⏐⏐ < 7ε for any h ∈ Rr , |h| ≤ δ. (5.6) 11

The Feller property is therefore proved. □ 12

6. An example 13

As an application of the well-posedness properties studied in the previous sections, this 14

section deals with a competitive Lotka–Volterra system with regime switching. Such a model 15

and many of its variants were extensively investigated in the literature; we refer the reader to [21] 16

and many references therein for the recent developments. 17

Example 6.1. Consider a stochastic competitive Lotka–Volterra model with regime switching 18

d X i (t) = X i (t)

⎡⎣bi (α(t)) −

r∑
j=1

ai j (α(t))X j (t)

⎤⎦ dt 19

+ X i (t)σi (α(t))dWi (t), i = 1, . . . , r, (6.1) 20

where bi (·), σi (·), i ∈ {1, . . . , r}, ai j (·), i, j ∈ {1, . . . , r} are functions from M to R and ai i (k) > 21

0, ai j (k) ≥ 0, i, j ∈ {1, . . . , r}, k ∈ M, Wi (t), i ∈ {1, . . . , r} are Brownian motions, α(t) is the 22

switching process taking value in M = {1, . . . ,m0} with generators Q(x) = (qi j (x))m0×m0 . 23

Assume that qi j (·), i, j ∈ M are bounded and continuous. (6.1) can be written in the matrix 24

form 25

d X (t) = diag(X (t)) [b(α(t)) − A(α(t))X (t)] dt + diag(X (t))diag(σ (α(t)))dW (t), (6.2) 26

where b(k) = (b1(k), . . . , br (k)), A(k) = (ai j (k))r×r , σ (k) = (σ1(k), . . . , σr (k)) and W (t) = 27

(W1(t), . . . ,Wr (t)). The model (6.1) with Markovian switching, that is, when Q(x) is a constant 28

matrix, was studied in [21]. Although we are considering a more complex model with state- 29

dependent switching, following the proofs of [21, Theorems 2.1, 3.1], we can still obtain that 30

• For any x ∈ Rr,◦
+ := {(x1, . . . , xr ) : xi > 0, i = 1, . . . , r}, there exists a unique global 31

solution (X x,α(t), αx,α(t)) with X x,α(t) = (X x,α
1 (t), . . . , X x,α

r (t)) to (6.1) with initial value 32

x . Moreover, 33

P{X x (t) ∈ Rr,◦
+ ∀ t ≥ 0} = 1. 34
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• For any m > 0, there exists a constant Km > 0 such that1

E|X x (t)|m ≤ Km(1 + |x |
m) for all x ∈ Rn,◦

+ , t ≥ 0, (6.3)2

where we use the norm |x | =
∑r

i=1|xi | for x = (x1, . . . , xr ) ∈ Rr .3

We aim to show that the model (6.1) satisfies the conclusions of the theorems in previous sections4

whose proofs rely on estimates (3.6) and (3.7). Since the coefficients of (6.1) is not Lipschitz, to5

obtain the desired results we need to use (6.3) and the following lemma.6

Lemma 6.2. Let R > 0. For any x, y ∈ Rr,◦
+ and |x | ∨ |y| ≤ R.7

E sup
t∈[0,T ]

{
|X x,α(t ∧ τ ) − X y,α(t ∧ τ )|2

}
≤ K R,T |x − y|

2. (6.4)8

where K R,T depends only on R and T and9

τ = inf{t ≥ 0 : αx,α(t) ̸= αy,α(t)}.10

Proof. Using the elementary estimate |diag(x)A(k)x − diag(y)A(k)(y)| ≤ CA(|x | + |y|)|x − y|11

for some CA > 0, we obtain12

|X x,α(t ∧ τ ) − X y,α(t ∧ τ )|13

≤ |x − y| +

r∑
i=1

∫ t∧τ

0
|bi (X x,α

i (s) − X y,α
i (s))|dt14

+ CA

∫ t∧τ

0

(
|(X x,α(s)| + |X y,α(s))|

)
|(X x,α

i (s) − X y,α
i (s))|ds15

+

r∑
i=1

⏐⏐⏐⏐∫ t∧τ

0
σi (α(s))(X x,α

i (s) − X y,α
i (s))dWi (s)

⏐⏐⏐⏐ .16

It follows from the Cauchy–Schwarz inequality that17

|X x,α(t ∧ τ ) − X y,α(t ∧ τ )|218

≤ C |x − y|
2
+ C

(∫ t∧τ

0

(
1 + |(X x,α(s)| + |X y,α(s))|

)
|(X x,α(s) − X y,α(s))|ds

)2

19

+ C
r∑

i=1

⏐⏐⏐⏐∫ t∧τ

0
σi (α(s))(X x,α

i (s) − X y,α
i (s))dWi (s)

⏐⏐⏐⏐2 (6.5)20

for some constant C > 0. By the Burkholder–Davis–Gundy Inequality,21

CE sup
t∈[0,T ]

{
r∑

i=1

⏐⏐⏐⏐∫ t∧τ

0
σi (α(s))(X x,α

i (s) − X y,α
i (s))dWi (s)

⏐⏐⏐⏐2
}

22

≤ C̃E
∫ T ∧τ

0
|X x,α(s) − X y,α(s)|2ds (6.6)23

for some constant C̃ . In view of Hölder’s inequality,24

E sup
t∈[0,T ]

{
C
(∫ t∧τ

0

(
1 + |(X x,α(s)| + |X y,α(s))|

)
|(X x,α(s) − X y,α(s))|ds

)2
}

25



SPA: 3080

Please cite this article in press as: D.H. Nguyen, et al., Certain properties related to well posedness of switching diffusions, Stochastic Processes and
their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.02.004.

23 D.H. Nguyen et al. / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

= CE
(∫ T ∧τ

0

(
1 + |(X x,α(s)| + |X y,α(s))|

)
|(X x,α(s) − X y,α(s))|ds

)2

1

≤ C
[
E
∫ T ∧τ

0

(
1 + |X x,α(t)| + |X y,α(t)|

)2dt
]
E
∫ T ∧τ

0
|X x,α(t) − X y,α(t)|2dt 2

≤ K (1 + T )(1 + |x |
2
+ |y|

2)E
∫ T ∧τ

0
|X x,α(t) − X y,α(t)|2dt (due to (6.3)) 3

≤ K (1 + T )(1 + |x |
2
+ |y|

2)E
∫ T

0
sup

s∈[0,t]

{
|X x,α(s ∧ τ ) − X y,α(s ∧ τ )|2

}
dt (6.7) 4

for some K > 0. Taking the supreme over [0, T ], followed by taking the expectation on both 5

sides of (6.5), and using (6.6) and (6.7), we have 6

E sup
t∈[0,T ]

{
|X x,α(t ∧ τ ) − X y,α(t ∧ τ )|2

}
7

≤ C |x − y|
2
+ K (1 + T )(1 + |x |

2
+ |y|

2)E 8

×

∫ T

0
sup

s∈[0,t]

{
|X x,α(s ∧ τ ) − X y,α(s ∧ τ )|2

}
dt (6.8) 9

for some constant K > 0. Then (6.4) follows from the Gronwall inequality. □ 10

Although the coefficients of (6.1) are not globally Lipschitz, the estimates (6.3) and (6.4) are 11

sufficient for us to derive the following results. 12

Theorem 6.3. Assume that qi j (·), i, j ∈ M are bounded and continuous. Let (X x,α(t), αx,α(t)) 13

be the solution to (6.1) and (2.3) with initial value (x, α) ∈ Rr,◦
+ × M. The following assertions 14

hold: 15

1. X x,α(t) is twice continuously differentiable with respect to x in probability. If in addition, 16

qk j (x) satisfies (3.2) then X x,α(t) is twice continuously differentiable in L p with respect to 17

x for any 0 < p < λ, where λ is the Hölder exponent in (3.2). 18

2. If qk j (x) satisfies (4.1) then for any R and T > 0, there is a CR,T > 0 such that for any 19

x, x̃ ∈ Rr,◦
+ , |x | ∨ |̃x | ≤ R, and α ∈ M, we have 20

E sup
t∈[0,T ]

|X x̃,α(t) − X x,α(t)| ≤ CR,T |̃x − x |. 21

3. Assume that for each i, j ∈ M, qi j (·) ∈ C2 and |Dβqi j (·)| are Lipschitz and bounded 22

uniformly by some constant M for |β| ≤ 2. Let φ(·, i) ∈ C2 satisfy 23

|Dβ
x φ(x, i)| ≤ K (1 + |x |

γ ), i ∈ M, |β| ≤ 2. 24

Then, u(t, x, i) = E[φ(X x,i (t), αx,i (t))] is twice continuously differentiable with respect to 25

the variable x ∈ Rr,◦
+ . 26

4. The solution process (X (t), α(t)) for the system given by (6.1) and (2.3) is a Markov–Feller 27

process. 28

Proof. In the proof of Theorem 3.1, we use the global Lipschitz to obtain (3.6). In this example, 29

the constant K , depending only on T , in (3.6) is replaced by K R,T , which depends on both R 30

and T (see (6.4)). Although (6.4) is slightly weaker than (3.6), it is still sufficient to follow the 31

proofs of Theorems 3.1 and 4.3 to obtain the first and third claims of Theorem 6.3, respectively. 32

The second claim is derived from Theorem 4.1 with the minor modification that the constant CT 33
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in (4.2) is replaced by CR,T because the constant K R,T in (6.4) depends on R. The fourth claim1

follows directly from Theorem 5.1. □2
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