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Abstract

In this work we prove the existence and uniqueness of the optimal transport map for L p-Wasserstein
distance with p > 1, and particularly present an explicit expression of the optimal transport map for the case
p = 2. As an application, we show the existence of geodesics connecting probability measures satisfying
suitable condition on path groups and loop groups.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In the seminal works of K.T. Sturm [27] and Lott–Villani [20], a new concept of curvature-
dimension condition has been developed on the abstract metric space to replace the lower bound
of Ricci curvature of Riemannian manifold via the convexity of the relative entropy on the
Wasserstein space. This convexity is measured by the behavior of the relative entropy along
geodesics connecting two probability measures in the Wasserstein space over this metric space.
This concept is equivalent to the Ricci curvature lower bound for Riemannian manifold as
shown in [29] and possesses the advantage of stability under Gromov–Hausdorff convergence.
There are many extensions of this concept in various setting, for example, Finsler space [23],
Alexandrov spaces [24,31], infinitesimally Hilbertian metric measure spaces [12]. The starting
point of this concept is that the studied Wasserstein space is a geodesic space, that is, for any
two probability measures ν0 and ν1 satisfying some additional condition, there exists a geodesic
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under the L2-Wasserstein metric. The validation of this basic property usually depends on the
study of the Monge–Kantorovich problem in respective space. In this work, we shall study the
optimal transport on path groups and loop groups and apply the obtained optimal transport maps
to show the existence of geodesics in the Wasserstein spaces over path groups and loop groups.

The Monge–Kantorovich problem is to consider how to move the mass from one distribution
to another as efficiently as possible. Here the efficiency is measured against a positive cost
function c(x, y). Precisely, given two probability measures µ and ν on a measurable space X ,
define its Wasserstein distance by

Wc(µ, ν) = inf
{∫

X×X
c(x, y)π (dx, dy); π ∈ C (µ, ν)

}
, (1.1)

where c : X × X → [0,+∞] is called the cost function and C (µ, ν) is the set of all probability
measures on X × X with marginals µ and ν respectively. Then the Monge–Kantorovich problem
is to find a measurable map T satisfying ν = (T )∗µ such that the probability measure
π = (id × T )∗µ attains the infimum in (1.1). Here the notion (T )∗µ denote the push forward
of measure µ by a measurable map T , i.e. (T )∗µ = µ ◦ T −1; id denotes the identity map. It
is well known that the solving of this problem is very crucially dependent on the cost function.
On Euclidean space Rd and Riemannian manifold, there are many works to solve this problem
with respect to different cost functions such as [6,22,17,19]. Refer to [3] for general survey on
this respect and to [28] for detailed discussions.

When the dimension of the space goes to infinity, Feyel and Üstünel in [16] proved the
existence and uniqueness of the optimal transport map on the abstract Wiener space. In [15],
together with Fang, we solved the Monge–Kantorovich problem on loop groups. There we
use the “Riemannian distance”, a kind of Cameron–Martin distance in some sense, to define
the L2-Wasserstein distance. The advantage of this distance is that there exists a sequence
of suitable finite dimensional approximations, which makes it possible to use the results in
finite dimensional Lie groups. However, the “Riemannian distance” is too large. It behaves
like the Cameron–Martin distance in Wiener space in some sense, which equals to infinite
almost everywhere with respect to the Wiener measure. This causes great difficulty in ensuring
the finiteness of the Wasserstein distance between two probability measures on loop groups.
Furthermore, there is no explicit expression of the optimal transport in this case.

In this work, we shall use another important distance, L2-distance, to define the Wasserstein
distance on path or loop groups. Since the L2-distance is always bounded when the Lie group
is compact, the induced Wasserstein distance between any two probability measures is finite.
Therefore, the finiteness of Wasserstein distance is no longer a constraint of the existence of
optimal transport map in this situation. As an application, there exists an invertible optimal
transport map pushing the heat kernel measure forward to the pinned Wiener measure on loop
group. These two probability measures play important role in the stochastic analysis of loop
groups. Another advantage of using L2-distance is that an explicit form of optimal transport
map can be given, which helps us to show the existence of geodesic connecting two probability
measures on path groups or loop groups.

The existence of optimal transport map has a lot of applications. For example, it is applied
to construct the solution of Monge–Ampère equation (cf. for instance, [13]), and to establish
Prékopa–Leindler inequalities in [8]. In [18], it helps to construct the gradient flow of relative
entropy in the space of probability measures, which provides a new method to construct the
solution of Fokker–Planck equations. This method has been systemically studied and was
developed to deal with more general differential equations in [4].
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When studying the Monge–Kantorovich problem on path and loop groups using the
L2-distance, we need to consider the derivative of Riemannian distance on Lie group, which
adds some condition on Lie group about the cut locus of its identity element.

Let G be a connected compact Lie group with Lie algebra G which is endowed with an
inner product ⟨ , ⟩G , and the associated Riemannian distance is denoted by ρ(·, ·). Given a point
x ∈ G, point y ∈ G is called a cut point of x if there exists a geodesic γ : [0,∞) → G
parameterized by arc length with γ (0) = x such that γ (t0) = y for some t0 > 0 and for any
t ≤ t0, ρ(γ (0), γ (t)) = t and for any t > t0, ρ(γ (0), γ (t)) < t . The union of all cut points of x
is called the cut locus of x and denoted by Cut(x). A map V : [a, b] → G is called a piecewise
continuous curve if there exists a finite subdivision a = a0 < a1 < · · · < ak = b such that
V

⏐⏐
[ai−1,ai ] is continuous for i = 1, . . . , k.
The condition on the cut locus used in this work is:
(H) If the cut locus Cut(e) of the identity element e of G is not empty, then for any continuous

curve {xt }t∈[a,b] ⊂ Cut(e), there exists a piecewise continuous curve {X t }t∈[a,b] in G such that
expe X t = xt , ∀ t ∈ [a, b], where expe denotes the exponential map determined by the geodesic
equations in the setting of Riemannian manifold.

Examples:

• the n-dimensional torus Tn = S1
×· · ·× S1 is a connected compact Lie group and satisfies

the hypothesis (H).
• The Heisenberg group Hn endowed with Carnot–Carathéodory distance satisfies the as-

sumption (H) by [5, Theorem 3.4]. Indeed, the Heisenberg group Hn is a noncommutative
stratified nilpotent Lie group. As a set it can be identified with its Lie algebra R2n+1

≃

Cn
× R via exponential coordinates. Denote a point in Hn by x = (ξ, η, t) = [ζ, t]

where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ Rn , t ∈ R and ζ = (ζ1, . . . , ζn) ∈ Cn with
ζ j = ξ j + iη j . The group law is given by [ζ, t] · [ζ ′, t ′] := [ζ + ζ ′, t + t ′

+2
∑n

j=1Imζ j ζ̄
′

j ].
The set L∗

:= {[0, s] ∈ Hn
; s ∈ R \ {0}} is the cut locus of identity element [0, 0] ∈ Hn .

Set S = {a + ib ∈ Cn
; |a + ib| = 1}. For any a + ib ∈ S, v ∈ R and r > 0, we say that a

curve γ : [0, r ] → Hn is a curve with parameter (a + ib, v, r ) if γ (s) = (ξ (s), η(s), t(s))
where

ξ j (s) =
r
v

(
b j

(
1 − cos

vs
r

)
+ a j sin

vs
r

)
,

η j (s) =
r
v

(
−a j

(
1 − cos

vs
r

)
+ b j sin

vs
r

)
,

t(s) =
2r2

v2

(vs
r

− sin
vs
r

)
, j = 1, . . ., n,

when v ̸= 0 and

γ (s) = (a1s, . . . , ans, b1s, . . . , bns, 0)

when v = 0. Each curve with parameter (a + ib, 2π,
√
π |t |) for some a + ib ∈ S is

a sub-unit minimal geodesic from [0, 0] to x = [0, t] ∈ L∗, from which one can easily
verify Hn satisfies the assumption (H).

In the following, after introducing some necessary notations on path and loop groups, we
present our main results of this paper.

Denote P(G) the path group, that is,

P(G) =
{
ℓ : [0, 1] → G continuous; ℓ(0) = e

}
,
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where e denotes the unit element of Lie group G. Let ρ(·, ·) be the Riemannian metric on G, that
is,

ρ(x, y) = inf
{

L(γ ) :=

(∫ 1

0

⏐⏐γ (t)−1 d
dt
γ (t)

⏐⏐2
G

dt
)1/2}

,

where the infimum is taken over all absolutely continuous curves connecting x and y. It is easy to
see ρ(x, y) = ρ(e, x−1 y) by the definition. The topology of P(G) is determined by the uniform
distance d∞(γ1, γ2) for γ1, γ2 ∈ P(G), i.e.

d∞(γ1, γ2) := max
t∈[0,1]

ρ(γ1(t), γ2(t)). (1.2)

Under this topology, P(G) becomes a complete separable space. We now introduce another
distance on P(G), the L2-distance:

dL2 (γ1, γ2) =

(∫ 1

0
ρ(γ1(t), γ2(t))2 dt

)1/2
. (1.3)

It is obvious that dL2 (γ1, γ2) ≤ d∞(γ1, γ2) for any γ1, γ2 ∈ P(G). In this paper, we consider
the Wasserstein distance induced by the L2-distance on P(G). Given two probability measures ν
and σ over P(G), the L p-Wasserstein distance between them is defined by:

Wp(ν, σ ) = inf
{∫

P(G)×P(G)
dL2 (γ1, γ2)p π (dγ1, dγ2); π ∈ C (ν, σ )

}1/p
, p > 1, (1.4)

where C (ν, σ ) stands for the set of all probability measures on the product space P(G) × P(G)
with marginals ν and σ respectively.

Let µ be the Wiener measure on P(G), which is the diffusion measure corresponding to the
left invariant Laplace operator 1

2

∑d
i=1ξ̃

2
i on G, where {ξ1, . . . , ξd} denotes an orthonormal basis

of G and ξ̃ denotes the associated left invariant vector field on G.
Our first main results are the following two theorems on the existence and uniqueness of

optimal transport maps on path groups and loop groups.

Theorem 1.1. Let G be a connected compact Lie group and satisfy assumption (H). Let ν and
σ be two probability measures on P(G), and assume ν is absolutely continuous with respect to
the Wiener measure µ on P(G). Then for each p > 1, there exists a unique measurable map
Tp : P(G) → P(G) such that it pushes ν forward to σ and

Wp(ν, σ )p
=

∫
P(G)

dL2 (γ,Tp(γ ))p dν(γ ).

Furthermore, there exists some function φ in the Sobolev space D2
1(µ) such that the map T2 can

be expressed as

T2(γ )(t) = expγ (t)

(1
2
ℓγ (t)

d2

dt2

(
∇φ(γ )

)
(t)

)
, a.e. t ∈ [0, 1], (1.5)

for almost every γ ∈ P(G). Here expγ denotes the geodesic exponential map on Lie group.

Theorem 1.2. Let G be a connected compact Lie group and satisfy assumption (H). Let
LeG = {ℓ : [0, 1] → G continuous; ℓ(0) = ℓ(1) = e}. Let σ1 and σ2 be two probability
measures on LeG. Assume σ1 is absolutely continuous with respect to the heat kernel measure
ν on LeG. Then for each p > 1 there exists a unique measurable map Tp : LeG → LeG such
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that (Tp)∗σ1 = σ2 and

Wp(σ1, σ2)p
=

∫
LeG

dL2 (ℓ,Tp(ℓ))p dσ1(ℓ),

where

Wp(σ1, σ2)p
:= inf

{∫
LeG×LeG

dL2 (ℓ1, ℓ2)p π (dℓ1, dℓ2); π ∈ C (σ1, σ2)
}
.

In particular, for each p > 1, there exists a unique measurable map Tp : LeG → LeG such that
Tp pushes heat kernel measure ν forward to pinned Wiener measure µ0 on LeG, and its inverse
T −1

p pushes µ0 forward to ν.
Moreover, for p = 2 there exists some φ in the Sobolev space D2

1(ν) such that the map T2 can
be expressed as

T2(γ )(θ ) = expγ (θ )

(1
2
ℓγ (θ )

d2

dθ2

(
∇φ(γ )

)
(θ )

)
, a.e. θ ∈ [0, 1], (1.6)

for almost every γ ∈ LeG. Here expγ denotes the geodesic exponential map on Lie group.

The basic idea to prove Theorems 1.1 and 1.2 is similar to that of [15,22] based on the
solution of dual Kantorovich problem. The solution of dual Kantorovich problem gives us a
pair of functions (φ, φc), where

φc(y) = inf
x∈X

{c(x, y) − φ(x)},

for some cost function c(·, ·) on some metric space X . Then the key point is to show that there is
a uniquely determined measurable map y = T (x) such that

φ(x) + φc(T (x)) = c(x,T (x))

holds for suitable choice of x . In the language of c-convexity (cf. [28, Chapter 5]), it is equivalent
to show that the subdifferential ∂cφ(x) contains only one element for suitable choice of x .

Due to the explicit expression of the optimal transport map for L2-Wasserstein distance, we
applied previous results to show the existence of geodesics in the Wasserstein spaces over path
groups and loop groups.

Theorem 1.3. Assume the conditions of Theorem 1.1 hold. Then for any two probability
measures ν0, ν1 on P(G) with ν0 being absolutely continuous w.r.t. Wiener measure µ, there
exists a curve of probability measures (νr )r∈[0,1] connecting ν0 and ν1 satisfying

W2(ν0, νr ) = r W2(ν0, ν1), r ∈ [0, 1].

Similarly, under the conditions of Theorem 1.2, for any two probability measures σ0, σ1

on LeG with σ0 absolutely continuous w.r.t. the heat kernel measure, there exists a geodesic
(σr )r∈[0,1] in (P(LeG),W2) connecting σ0 to σ1.

This paper is organized as follows: in the next section, we introduce some notations and basic
results on Lie group. In Section 3, we give the proofs of Theorem 1.1 in the case p = 2 and
Theorem 1.3 in order to explain the idea of the argument. For the general case p > 1, the proof
of Theorem 1.1 is stated in Section 4. In the last section, we investigate the Monge–Kantorovich
problem on loop groups. Some basic notations on loop group and the argument of Theorem 1.2
are stated there.
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2. Preliminaries

We first review some basic notions and results on the Lie group and its Lie algebra. The proofs
of these results will be omitted, and refer to Warner’s book [30] for details.

A Lie group G is a differentiable manifold which is also endowed with a group structure such
that the map G × G → G defined by (σ, τ ) ↦→ στ−1 is smooth. Let σ ∈ G, left translation by σ
and right translation by σ are respectively the diffeomorphisms ℓσ and rσ of G defined by

ℓσ (τ ) = στ, rσ (τ ) = τσ for all τ ∈ G.

A vector field X on G is called left invariant if for each σ ∈ G,

dℓσ ◦ X = X ◦ ℓσ .

A Lie algebra of the Lie group G is defined to be the Lie algebra G of left invariant vector
fields on G. The map α : G → TeG defined by α(X ) = X (e) is an isomorphism from the
Lie algebra G to the tangent space of G at the identity. α is injective and surjective. It will be
convenient at times to look on the Lie algebra as the tangent space of G at the identity. We
consider the left invariant vector fields on G, then the tangent space TgG at every point g ∈ G
can be viewed as gG , and the inner product ⟨ , ⟩G induces a inner product on TgG by

⟨dℓg ◦ X, dℓg ◦ Y ⟩ = ⟨X, Y ⟩G , X, Y ∈ G .

Examples of Lie group and its Lie algebra:

(a) The set gl(n,R) of all n × n real matrices is a real vector space. Matrices are added
and multiplied by scalars componentwise. gl(n,R) becomes a Lie algebra if we set
[A, B] = AB − B A.
The general linear group Gl(n,R) is the set of all n × n non-singular real matrices. Then
Gl(n,R) becomes a Lie group under matrix multiplication, and gl(n,R) can be considered
as the Lie algebra of Gl(n,R).

(b) Special linear group Sl(n,R) = {A ∈ Gl(n,R) : det A = 1} is a Lie group. Its Lie algebra
will be matrices of trace 0, sl(n,R) = {A ∈ gl(n,R) : trace A = 0}.

Definition 2.1. Let G and H be Lie groups. A map φ : G → H is a (Lie group) homomorphism
if φ is both C∞ and a group homomorphism of the abstract groups.

Let G and H be Lie algebra, a map ψ : G → H is a (Lie algebra) homomorphism if it is
linear and preserves Lie brackets, i.e. ψ([X, Y ]) = [ψ(X ), ψ(Y )] for all X, Y ∈ G .

A homomorphism φ : R → G is called a 1-parameter subgroup of G. For each X ∈ G ,
there exists a unique 1-parameter subgroup t ↦→ σX (t) such that its tangent vector at 0 is X (e).
This induces a definition of exponential map on Lie group by exp X = σX (1). This definition of
exponential map does not depend on the metric on G . In matrix Lie groups, the exponential map
exp A coincides with the usual exponential of matrices

exp A =

∞∑
k=0

Ak

k!
.

Definition 2.2. Let σ ∈ G. We define the action Adσ on G by

Adσ X =

{ d
dt
σ exp(t X )σ−1

}
t=0

for each X in G . (2.1)
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Ad : G → Aut(G ) is called the adjoint representation of Lie group G, where Aut(G ) denotes the
set of automorphisms on G .

By the definition, it is easy to obtain that for all σ, τ ∈ G Adσ X = dℓσdrσ−1 X . Let
X, Y ∈ G , define

adX Y =

{ d
dt

Adexp t X Y
}

t=0
. (2.2)

Then adX Y = [X, Y ].
For each A ∈ G , let Ã denote the unique left invariant vector field on G determined by A.

Given a metric ⟨ , ⟩ on Lie algebra G . It can induce a left invariant Riemannian metric on G. The
Levi-Civita connection on G induced by this metric is given by

⟨∇ Ã B̃, C̃⟩ =
1
2

{
⟨[A, B],C⟩ − ⟨[A,C], B⟩ − ⟨[B,C], A⟩

}
, for A, B, C ∈ G . (2.3)

Let ad∗

A be the adjoint operator of adA w.r.t ⟨ , ⟩. Then

∇ Ã B̃ = ∇̃A B, ∇A B =
1
2

(
adA B − ad∗

A B − ad∗

B A
)
. (2.4)

Given an orthonormal basis {ei }
d
i=1 of G , since ⟨ẽi , ẽ j ⟩σ = ⟨ei , e j ⟩, {ẽi }

d
i=1 is a family of

orthonormal vector fields on G. Let

Γ k
i j = ⟨∇ei e j , ek⟩ = ⟨∇ẽi ẽ j , ẽk⟩. (2.5)

Then with respect to the Levi-Civita connection a C1 curve (γt , a < t < b) on G is called a
geodesic if γ̇ (t) := dγ (t)/dt is parallel along γ , i.e.

∇γ̇ (t)γ̇ (t) = 0. (2.6)

Setting γ̇k(t) = ⟨γ̇ (t), ẽk⟩, then Eq. (2.6) turns into

dγ̇k(t)
dt

+

d∑
i, j=1

Γ k
i j γ̇i (t)γ̇ j (t) = 0, for k = 1, . . . , d. (2.7)

Note that in this equation, the Christoffel coefficients Γ k
i j are independent of the curve γ (t), which

is different to general geodesic equations on manifolds. This geodesic equation induces another
definition of exponential map on Lie group when being viewed as a Riemannian manifold, and
this exponential map depends on the inner product defined on Lie algebra G . But when G is
endowed with an Ad-invariant metric ⟨ , ⟩, namely, ⟨Adg X,AdgY ⟩ = ⟨X, Y ⟩, for all g ∈ G
and X, Y ∈ G = TeG, then 1-parameter subgroups are geodesics (see [7, Corollary 3.19]) and
every geodesic is coincident with a translation of a segment of 1-parameter subgroup (see J. F.
Price [25, Theorem 4.3.3]). This enable us to know that for compact connected Lie groups the
exponential maps induced by 1-parameter subgroup are surjective. It is known (cf. [7, proposition
5.4]) that the cut locus of each point g on G is closed, and contains two kinds of points, i.e. if
g′ is in the cut locus of g, then g′ is either the first conjugate point of g along some geodesic
connecting g with g′, or there exists at least two minimizing geodesics joining g to g′. When G
is a simply connected Lie group with Ad-invariant metric, then all geodesics minimize up to the
first conjugate point (cf. [7, Corollary 5.12]).

There are lots of work about infinite dimensional stochastic analysis on path groups and loop
groups. We refer to [9,10] and the book [14] for some basic facts and results.
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3. Proof of Theorem 1.1: the case p = 2

Let us recall a well known result on the solving of Kantorovich dual problem. Refer to
[28, Theorem 5.10] for the argument.

Theorem 3.1. Let X and Y be two Polish spaces and µ, ν be two probability measures on X
and Y respectively. Let c : X × Y → R be a lower semicontinuous cost function such that

∀ (x, y) ∈ X × Y, c(x, y) ≥ a(x) + b(y)

for some real-valued upper semicontinuous functions a ∈ L1(µ) and b ∈ L1(ν). Then if

C(µ, ν) := inf
π∈C (µ,ν)

∫
c dπ

is finite, and one has the pointwise upper bound

c(x, y) ≤ cX (x) + cY (y), (cX , cY ) ∈ L1(µ) × L1(ν), (3.1)

then both the primal and dual Kantorovich problems have solutions, so

min
π∈C (µ,ν)

∫
X×Y

c(x, y) dπ (x, y)

= max
(φ,ψ)∈L1(µ)×L1(ν):φ+ψ≤c

(∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y)

)
= max

φ∈L1(µ)

(∫
X
φ(x) dµ(x) +

∫
Y
φc(y) dν(y)

)
,

(3.2)

where

φc(y) := inf
x∈X

{
c(x, y) − φ(x)

}
. (3.3)

In our situation, the diameter D of Lie group G is finite as G is assumed to be compact. Then
dL2 (x, y) ≤ D < +∞, and hence the condition (3.1) is satisfied for any probability measures ν
and σ on P(G). dL2 (x, y) is also continuous on P(G). According to Theorem 3.1, it holds that
for any two probability measures ν and σ on P(G),

W2(ν, σ )2
= sup

{∫
P(G)

φ(x) ν(dx) +

∫
P(G)

ψ(y) σ (dy)
}
,

where the supremum runs among all pairs of measurable functions (φ,ψ) such that φ(x) +

ψ(y) ≤ dL2 (x, y)2. Moreover, there exists a pair of functions (ψc, ψ) such that

W2(ν, σ )2
=

∫
P(G)

ψc(x) ν(dx) +

∫
P(G)

ψ(y) σ (dy), (3.4)

where ψc(x) = infx∈P(G)
{
dL2 (x, y)2

−ψ(y)
}
. In the rest of this section, we will fix such pair of

functions (ψc, ψ) and denote by φ(x) = ψc(x). Then φ is Lipschitz continuous with respect to
the distance dL2 (x, y). In fact, for any fixed x, z ∈ P(G), for any ε > 0, there exists yε ∈ P(G)
such that ψc(z) ≥ dL2 (z, yε)2

− ψ(yε) − ε. Then

φ(x) − φ(z) = ψc(x) − ψc(z)

≤ dL2 (x, yε)2
− ψ(yε) − dL2 (z, yε)2

+ ψ(yε) + ε

≤
(
dL2 (x, yε) + dL2 (z, yε)

)(
dL2 (x, yε) − dL2 (z, yε)

)
+ ε

≤ 2DdL2 (x, z) + ε.
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Letting ε → 0+, we get φ(x) − φ(z) ≤ 2DdL2 (x, z). Changing the place of x and z, we get φ is
Lipschitz continuous.

Next, we shall use the Rademacher’s theorem on path group P(G) to show that φ is in the
Sobolev space. Before this, we introduce some basic notions. Let

H (G ) =

{
h : [0, 1] → G ; h(0) = 0, |h|

2
H =

∫ 1

0

⏐⏐ḣ(t)
⏐⏐2
G

dt < +∞

}
, (3.5)

where dot · stands for the derivative with respect to t . Let F : P(G) → R be a measurable
function. We set

Dh F(γ ) =
d
dε

⏐⏐⏐
ε=0

F(γ eεh), h ∈ H (G ), γ ∈ P(G).

A function F ∈ L2(µ) is said to be in the Sobolev space D2
1(µ) if there exists ∇F ∈ L2(µ; H (G ))

such that for each h ∈ H (G ), it holds Dh F = ⟨∇F, h⟩H in L2−(µ), where L2−(µ) =⋂
p<2L p(µ) and

⟨h1, h2⟩H =

∫ 1

0
⟨ḣ1(t), ḣ2(t)⟩G dt, h1, h2 ∈ H (G ).

A function F : P(G) → R is said to be cylindrical if

F(γ ) = f (γ (t1), . . . , γ (tn)), f ∈ C∞(Gn), 0 < t1 < · · · < tn ≤ 1, n ∈ N.

Let Cyln(P(G)) denote the space of all cylindrical functions. Due to [1], the space Cyln(P(G))
is dense in D2

1(µ). Now we introduce the third distance, Cameron–Martin distance dP , on P(G),
that is, for γ1, γ2 ∈ P(G),

dP (γ1, γ2) =

(∫ 1

0

⏐⏐v(t)−1v̇(t)
⏐⏐2
G

dt
)1/2

, if v = γ−1
1 γ2 absolutely continuous; (3.6)

otherwise, set dP (γ1, γ2) = +∞. It is easy to check that d∞(γ1, γ2) ≤ dP (γ1, γ2) for all
γ1, γ2 ∈ P(G). According to the Rademacher’s theorem [26, Theorem 1.5] and discussions
in Section 2.1 therein, we obtain that

Lemma 3.2. Any bounded dP -Lipschitz continuous function F on P(G) belongs to D2
1(µ).

Here and in the sequel, a function F on a metric space (X, d) is said to be d-Lipschitz
continuous, where d is a metric on X , if there exists some constant C > 0 such that

|F(x) − F(y)| ≤ Cd(x, y), ∀ x, y ∈ X.

Due to the fact

dL2 (γ1, γ2) ≤ d∞(γ1, γ2) ≤ dP (γ1, γ2),

it is clear that a dL2 -Lipschitz continuous function F is also d∞-Lipschitz and dP -Lipschitz
continuous. Combining dL2 -Lipschitz continuity of φ with Lemma 3.2, we get φ is in the Sobolev
space D2

1(µ).

Proposition 3.3 (Key Proposition). If there exist γ1 and γ2 such that

φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)2, (3.7)

and φ is differentiable at γ1, then γ2 is uniquely determined by γ1 and φ.
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Proof. For h ∈ H (G ) and ε > 0, by the fact φ = ψc, we get

φ(γ1eεh) + ψ(γ2) ≤ dL2 (γ1eεh, γ2)2.

Subtracting (3.7) from both sides of this inequality yields

φ(γ1eεh) − φ(γ1) ≤ dL2 (γ1eεh, γ2)2
− dL2 (γ1, γ2)2

=

∫ 1

0
ρ
(
γ1(t)eεh(t), γ2(t)

)2 dt −

∫ 1

0
ρ
(
γ1(t), γ2(t)

)2 dt.
(3.8)

For each fixed t ∈ [0, 1], there exists a constant speed geodesic vt : [0, 1] → G such that
vt (0) = γ2(t)−1γ1(t), vt (1) = e and

L(vt )2
=

∫ 1

0

⏐⏐v−1
t (s)

d
ds
vt (s)

⏐⏐2
G

ds = ρ(γ1(t), γ2(t))2.

Set ṽt (s) = vt (s)e(1−s)εh(t), s ∈ [0, 1]. Then ṽt (0) = γ2(t)−1γ1(t)eεh(t) and ṽt (1) = e. Hence,

ρ
(
γ1(t)eεh(t), γ2(t)

)2
≤ L(ṽt )2. (3.9)

As

ds ṽt (s) =
(
v̇t (s)e(1−s)εh(t)

− εṽt (s)h(t)
)
ds,

where ds stands for the derivative with respect to s, we get

L(ṽt )2
=

∫ 1

0

⏐⏐ṽt (s)−1 ˙̃vt (s)
⏐⏐2
G

ds

=

∫ 1

0

⏐⏐Ade−(1−s)εh(t)vt (s)−1v̇t (s) − εh(t)
⏐⏐2
G

ds

=

∫ 1

0

⏐⏐vt (s)−1v̇t (s)
⏐⏐2
G

− 2ε⟨Ade−(1−s)εh(t)vt (s)−1v̇t (s), h(t)⟩G + ε2
|h(t)|2G ds

= ρ(γ1(t), γ2(t))2
− 2ε

∫ 1

0
⟨Ade−(1−s)εh(t)vt (s)−1v̇t (s), h(t)⟩G ds + ε2

|h(t)|2G .

Invoking (3.8) and (3.9), we obtain

φ(γ1eεh) − φ(γ1) ≤ −2ε
∫ 1

0

∫ 1

0
⟨Ade−(1−s)εh(t)vt (s)−1v̇t (s), h(t)⟩G dsdt + ε2

∫ 1

0
|h(t)|2G dt.

Dividing both sides by ε, letting ε → 0+ and ε → 0− respectively, it follows

⟨∇φ(γ1), h⟩H ≤ −2
∫ 1

0

⟨ ∫ 1

0
vt (s)−1v̇t (s) ds, h(t)

⟩
G

dt, (3.10)

⟨∇φ(γ1), h⟩H ≥ −2
∫ 1

0

⟨ ∫ 1

0
vt (s)−1v̇t (s) ds, h(t)

⟩
G

dt. (3.11)

Set

Vt (u) =

∫ u

0
vt (s)−1v̇t (s) ds, u ∈ [0, 1], (3.12)

then we have shown by (3.10) (3.11) that

⟨∇φ(γ1), h⟩H = −2
∫ 1

0
⟨Vt (1), h(t)⟩G dt, (3.13)
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which implies that if Vt (1) as a function of t is continuous at some t0 ∈ [0, 1] then Vt0 (1) is
uniquely determined. In fact, take a sequence of smooth functions hε such that 0 ≤ hε ≤ 1, and

hε(t) =

{
1 t ∈ [t0 − ε, t0 + ε] ∩ [0, 1],
0 t ̸∈ [t0 − 2ε, t0 + 2ε] ∩ [0, 1].

Let {e1, . . . , ed} be an orthonormal basis of G . We have

⟨Vt0 (1), ei ⟩G = lim
ε→0

∫ 1

0
⟨Vt (1), hε(t)ei ⟩G dt = lim

ε→0
−

1
2
⟨∇φ(γ1), hεei ⟩H . (3.14)

Moreover, as ⟨∇φ(γ1), hεei ⟩H is measurable from P(G) to R, the limitation ⟨Vt0 (1), ei ⟩G is also
measurable. Then Vt0 (1) =

∑
i ⟨Vt0 (1), ei ⟩G ei is measurable with respect to the variable γ1.

We shall show below the following assertion: according to our assumption (H), we can always
choose a family of minimizing geodesics (vt )t∈[0,1] such that vt (0) = γ−1

2 (t)γ1(t), vt (1) = e,
and there exists an at most countable subset Ω ⊂ [0, 1] such that t ↦→ v̇t (1) is continuous on
[0, 1] \ Ω . Hence, t ↦→ Vt (1) is continuous on [0, 1] \ Ω . If this assertion is correct, then Vt (1)
is uniquely determined by ∇φ(γ1) at all t ∈ [0, 1] \ Ω . Then, due to Lemma 3.4, we know that
Vt (1) determines uniquely a geodesic vt : [0, 1] → G so that vt (1) = e. Therefore, γ2(t) is
uniquely determined by ∇φ(γ1) at t ∈ [0, 1] \ Ω . Since t ↦→ γ2(t) is continuous, then we get
the desired result that γ2 is uniquely determined by φ and γ1. Now we proceed to the proof of
previous assertion.

Case 1: If {γ2(t)−1γ1(t), t ∈ [0, 1]} does not go across the cut locus of e in G, then there exists
a unique family of minimizing geodesics

(
vt

)
t∈[0,1] such that vt (0) = γ−1

2 (t)γ1(t), vt (1) = e, and
t ↦→ v̇t (1) is continuous. The geodesic equation guarantees that t ↦→ vt (s)−1v̇t (s) for s ∈ [0, 1]
is also continuous, which implies the continuity of t ↦→ Vt (1) for t ∈ [0, 1].

Case 2: If γ−1
2 (t)γ1(t) goes across the cut locus of e. Then the continuity of γ1(t), γ2(t) and

the closeness of the cut locus of e yield that the set Ω containing all t such that γ−1
2 (t)γ1(t)

enters or leaves the cut locus of e is not empty and at most countable. So the set I1 := {t ∈

[0, 1] \ Ω; γ−1
2 (t)γ1(t) ̸∈ Cut(e)} and the set I2 := {t ∈ [0, 1] \ Ω; γ−1

2 (t)γ1(t) ∈ Cut(e)}
can both be represented as the union of at most countable open intervals. For each open interval
(s1, s2) ⊂ I1, above discussion in case 1 shows that there exists a curve t ↦→ Vt (1) for t ∈ (s1, s2).
For each open interval (s ′

1, s ′

2) ⊂ I2, our assumption (H) may guarantee that we can choose
a family of geodesics (vt )t∈(s′

1,s
′
2) such that vt (0) = γ−1

2 γ1(t), vt (1) = e, and t ↦→ v̇t (0) is
continuous on (s ′

1, s ′

2). This yields t ↦→ Vt (1) is continuous on (s ′

1, s ′

2).
In all, we can choose a (Vt (1))t∈[0,1] such that t ↦→ Vt (1) is continuous on [0, 1]\Ω . Therefore,

we have proved the assertion and complete the proof of this proposition. ■

Lemma 3.4. Using the notations as above. Then Vt (1) determines uniquely a minimizing
geodesic vt : [0, 1] → G such that vt (1) = e.

Proof. Let a ∈ G , ε ∈ R and c ∈ C2([0, 1],R) such that c(0) = c(1) = 0. Consider
vt,ε(s) = vt (s)eεc(s)a, s ∈ [0, 1]. Then vt,ε(0) = vt (0) and vt,ε(1) = vt (1).

dsvt,ε(s) = vt,ε(s)
(

Ade−εc(s)avt (s)−1v̇t (s) + εc′(s)a
)

ds,

and

L(vt,ε)2
=

∫ 1

0

⏐⏐Ade−εc(s)avt (s)−1v̇t (s) + εc′(s)a
⏐⏐2
G

ds.
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Since ε ↦→ L(vt,ε)2 arrives its minimum at ε = 0, we get

0 =
d
dε

L(vt,ε)2
= 2

∫ 1

0
⟨vt (s)−1v̇t (s), c′(s)a⟩G ds

= 2
∫ 1

0
⟨V ′

t (s), c′(s)a⟩G ds

= 2⟨Vt (1), c′(1)a⟩G − 2⟨Vt (0), c′(0)a⟩G − 2
∫ 1

0
⟨Vt (s), c′′(s)a⟩G ds.

This yields

⟨Vt (1), c′(1)a⟩G =

∫ 1

0
⟨Vt (s), c′′(s)a⟩G ds. (3.15)

Assume ṽt be another minimizing geodesic such that ṽt (1) = e and Ṽt (1) = Vt (1), where
Ṽt (u) =

∫ u
0 ṽt (s)−1 ˙̃vt (s) ds, u ∈ [0, 1]. Then analogous deduction yields∫ 1

0
⟨Ṽt (s), c′′(s)a⟩G ds =

∫ 1

0
⟨Vt (s), c′′(s)a⟩G ds.

Since s ↦→ c′′(s)a is dense in L2(µ; G ),

Vt (s) = Ṽt (s), for almost every s ∈ [0, 1].

The continuity of s ↦→ Vt (s) and s ↦→ Ṽt (s) yields

Vt (s) = Ṽt (s), for all s ∈ [0, 1].

Therefore,
d
ds

Vt (s) =
d
ds

Ṽt (s), i.e. vt (s)−1v̇t (s) = ṽt (s)−1 ˙̃vt (s) =: kt (s).

Since the solution of

dsvt (s) = vt (s)kt (s)ds, vt (1) = e

is unique, it follows that ṽt (s) = vt (s) for all s ∈ [0, 1]. In particular, ṽt (0) = vt (0). The proof is
complete. ■

Proof of Theorem 1.1 for p = 2. We have shown in (3.4) that

W2(ν, σ )2
=

∫
P(G)

φ(γ1) dν +

∫
P(G)

ψ(γ2) dσ.

By Lemma 3.2, φ is in D2
1(µ). So φ is µ-almost everywhere differentiable, so does also with

respect to ν by the absolute continuity of ν relative to µ. Since dL2 (·, ·) is continuous from
P(G) ×P(G) to R, and C (ν, σ ) is tight, there exists an optimal transport plan π ∈ C (ν, σ ) such
that

W2(ν, σ )2
=

∫
P(G)×P(G)

dL2 (γ1, γ2)2 π (dγ1, dγ2).

Hence,∫
P(G)×P(G)

φ(γ1) + ψ(γ2)π (dγ1, dγ2) =

∫
P(G)×P(G)

dL2 (γ1, γ2)2 π (dγ1, dγ2).
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As φ = ψc, there exists a measurable set Ω1 ⊂ P(G) × P(G) such that π (Ω1) = 1, and

φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)2, ∀ (γ1, γ2) ∈ Ω1.

Since φ is ν-a.e. differentiable, there exists a measurable set A ⊂ P(G) with ν(A) = 1 on which
φ is differentiable everywhere. Let Ω = Ω1 ∩ (A × P(G)), then π (Ω ) = 1.

For a point (γ1, γ2) ∈ Ω , Proposition 3.3 yields that γ2 ∈ P(G) is uniquely determined by γ1
and φ such that

φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)2.

Denote this map by γ2 = T (γ1). Assume T is measurable, then for any measurable function F
on P(G) × P(G),∫

P(G)×P(G)
F(γ1, γ2)π (dγ1, dγ2) =

∫
P(G)×P(G)

F(γ1,T (γ1))π (dγ1, dγ2)

=

∫
P(G)

F(γ1,T (γ1)) ν(dγ1).

This implies that

π = (id × T )∗ν and (T )∗ν = σ. (3.16)

If there exists another measurable map S : P(G) → P(G) such that (S )∗ν = σ and

W2(ν, σ )2
=

∫
P(G)

dL2 (γ,S (γ ))2 ν(dγ ).

Then the measure π̃ := (id × S )∗ν is an optimal transport map. Since in above discussion π is
arbitrary optimal transport plan in C (ν, σ ), applying (3.16) to π̃ , we obtain

π̃ = (id × T )∗ν, and S = T , ν-a.e..

This proves the uniqueness of T .
Now we proceed to the measurability of T .
Let {βn, n ≥ 1} ⊂ C∞([0, 1],R) be an orthonormal basis of the space H (R) =

{
f : [0, 1] →

R; f (0) = 0,
∫ 1

0 | f ′(s)|2ds < +∞
}
. Define

cn(t) =

∫ t

0
βn(s) ds − t

∫ 1

0
βn(s) ds.

Let {e1, . . . , ed} be an orthonormal basis of G . Then {βnei , n ≥ 1, i = 1, . . . , d} be an
orthonormal basis of H (G ). Let Ut (u) =

∫ u
0 Vt (s) ds. Then (3.15) can be rewritten as

⟨Vt (1), c′

n(1)ei ⟩G =

∫ 1

0
⟨U̇t (s), β ′

n(s)ei ⟩G ds = ⟨Ut , βnei ⟩H (R).

It follows that

Ut (s) =

∑
n≥1

d∑
i=1

⟨Vt (1), c′

n(1)ei ⟩G βn(s)ei . (3.17)

We have shown in the proof of Proposition 3.3 that Vt (1) is measurable with respect to γ1 if Vt (1)
is continuous at t . So for t ̸∈ Ω , Ut (s) is also measurable with respect to γ1 for each s ∈ [0, 1],
so does Vt (s). Then by the definition (3.12),

dsvt (s) = vt (s)dVt (s), vt (1) = e.
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Therefore for each t ∈ [0, 1] \ Ω , vt (s) is a measurable mapping of γ1 for each s ∈ [0, 1]. Then
we obtain the measurability of γ1 ↦→ γ2(t) = γ1(t)vt (0)−1 for t ∈ [0, 1] \ Ω .

Take a subdivision P = {0 < 1/N < · · · < (N − 1)/N < 1} of [0,1]. We can take N
large enough so that for each i = 0, . . . , N − 1, γ2(i/N ) and γ2((i + 1)/N ) are not in the cut
locus of each other. Define a continuous curve γ (N )(t) = γ2(t) for t ∈ P and connect γ (N )(i/N )
with γ (N )((i + 1)/N ) by the unique minimizing geodesic. γ (N ) is continuous, and γ1 ↦→ γ (N ) is
measurable due to the measurability of the solution of geodesic equation. Letting N tend to +∞,
γ (N ) converges uniformly to γ2, so γ1 ↦→ γ2 = T (γ1) is also measurable. Therefore, we have
shown the measurability of the map T , which shows the existence and uniqueness of optimal
transport map in Theorem 1.1.

To complete the proof of this theorem, it remains to prove the explicit expression of
the optimal transport map T . As in Proposition 3.3, for each t ∈ [0, 1], there exists a
constant geodesic (vt (s))s∈[0,1] on G connecting γ2(t)−1γ1(t) to e. For any given continuously
differentiable function c : [0, 1] → R with c(0) = c(1) = 0, define v̂t,ε(s) = vt (s)ec(s)εh(t) for
h ∈ H and ε ∈ R. Then v̂t,ε(0) = vt (0), v̂t,ε(1) = vt (1). Thus the function ε ↦→ L(v̂t,ε)2 attains
its minimum value at ε = 0, which yields that

d
dε

⏐⏐⏐
ε=0

L(v̂t,ε)2
=

∫ 1

0
⟨v−1

t (s)v̇t (s), c′(s)h(t)⟩G ds = 0.

Taking c(s) = sin(kπs) for k ∈ Z and h(t) = a ∈ G in previous equation, we obtain∫ 1

0
⟨v−1

t (s)v̇t (s), cos(kπs)a⟩G ds = 0. (3.18)

The arbitrariness of k ∈ Z and a ∈ G means that s ↦→ v−1
t (s)v̇t (s) is a constant function over

[0, 1]. According to (3.12) and (3.13), if φ is differentiable at γ1, then

Vt (1) =

∫ 1

0
v−1

t (s)v̇t (s)ds = v−1
t (0)v̇t (0),

and ∫ 1

s
Vt (1)dt = −

1
2

d
ds

(
∇φ(γ1)

)
(s). (3.19)

Since t ↦→ Vt (1) is continuous on [0, 1] \ Ω as shown in Proposition 3.3, (3.19) yields that

Vt (1) =
1
2

d2

dt2

(
∇φ(γ1)

)
(t), t ∈ [0, 1] \ Ω . (3.20)

As s ↦→ γ2(t)vt (s) is a geodesic connecting γ1(t) to γ2(t), it can be expressed in terms of geodesic
exponential map as

γ2(t) = expγ1(t)

(
ℓγ1(t)vt (0)−1v̇t (0)

)
= expγ1(t)

(1
2
ℓγ1(t)

d2

dt2

(
∇φ(γ1)

)
(t)

)
. (3.21)

By Lemma 3.2, φ is in D2
1(µ) and is µ-almost surely differentiable. The expression (3.21) means

that for µ-a.e. γ ∈ P(G)

T (γ )(t) = expγ (t)

(1
2
ℓγ (t)

d2

dt2

(
∇φ(γ )

)
(t)

)
, t ∈ [0, 1] \ Ω . (3.22)

We have completed the proof till now. ■
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4. Proof of main result: general case p > 1, p ̸= 2

Now we shall prove Theorem 1.1 for general p > 1, p ̸= 2. Recall that for two probability
measures ν and σ on P(G), define the L p-Wasserstein distance between them by:

Wp(ν, σ ) = inf
π

{∫
P(G)×P(G)

dL2 (γ1, γ2)p π (dγ1, dγ2)
}1/p

, (4.1)

where the infimum is taken over C (ν, σ ). The difficulty in the case p > 1 and p ̸= 2 is to prove
the uniqueness of γ2 by the equation

φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)p.

We get around this difficulty by using a more delicate variational method than the method used
in the proof of Proposition 3.3.

Proof of Theorem 1.1 for p > 1 and p ̸= 2. According to Theorem 3.1, there exists a couple
of functions φ and ψ on P(G) such that φ = ψc, where the function c(γ1, γ2) = dL2 (γ1, γ2)p

now. The boundedness of dL2 yields easily that φ = ψc is dL2 -Lipschitz continuous, and hence
belongs to D2

1(µ) thanks to Lemma 3.2.
To prove Theorem 1.1 for p > 1, we can get along with the same lines as the proof for p = 2.

We omit similar steps in the argument, and only prove the main different part, which is to prove
that: if it holds

φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)p,

where p > 1, then γ2 is uniquely determined by γ1 and φ. In fact, let vt : [0, 1] → G be a
constant speed geodesic such that vt (0) = γ2(t)−1γ1(t), vt (1) = e and L(vt )2

= ρ(γ1(t), γ2(t))2.
Using the same variation as in the argument of Proposition 3.3 again, we can obtain

⟨∇φ(γ1), h⟩H = −pdL2 (γ1, γ2)p−2
∫ 1

0
⟨Vt (1), h(t)⟩G dt (4.2)

instead of formula (3.13). This yields that dL2 (γ1, γ2)p−2Vt (1) is uniquely determined by ∇φ(γ1)
for almost every t ∈ [0, 1]. Using the same variation as in the argument of Lemma 3.4, we get
formula (3.15) again

⟨Vt (1), c′(1)a⟩G =

∫ 1

0
⟨Vt (s), c′′(s)a⟩G ds,

for any c ∈ C2([0, 1],R) with c(0) = c(1) = 0, any a ∈ G , and each t ∈ [0, 1]. Taking
a = dL2 (γ1, γ2)p−2b for b ∈ G , we get

⟨dL2 (γ1, γ2)p−2Vt (1), c′(1)b⟩G =

∫ 1

0
⟨dL2 (γ1, γ2)p−2Vt (s), c′′(s)b⟩G ds. (4.3)

Assume γ̃2 ∈ P(G) such that

φ(γ1) + ψ(γ̃2) = dL2 (γ1, γ2)p.

Let ṽt : [0, 1] → G be a minimizing geodesic such that ṽt (1) = e and ṽt (0) = γ̃2(t)−1γ1(t).
Analogously, define Ṽt (u) =

∫ u
0 ṽt (s)−1 ˙̃vt (s) ds and it holds that

⟨dL2 (γ1, γ̃2)p−2Ṽt (1), c′(1)b⟩G =

∫ 1

0
⟨dL2 (γ1, γ̃2)p−2Ṽt (s), c′′(s)b⟩G ds. (4.4)



168 J. Shao / Stochastic Processes and their Applications 129 (2019) 153–173

Since dL2 (γ1, γ̃2)p−2Ṽt (1) is also determined by ∇φ(γ1) for almost everywhere t ∈ [0, 1], there
exists a subset Ω̄ ⊂ [0, 1] with full Lebesgue measure in [0, 1] such that

dL2 (γ1, γ2)p−2Vt (1) = dL2 (γ1, γ̃2)p−2Ṽt (1), ∀ t ∈ Ω̄ . (4.5)

Due to the denseness of functions in the form s ↦→ c′′(s)b in L2(µ; G ), and the continuity of
s ↦→ Vt (s) and s ↦→ Ṽt (s), we get

dL2 (γ1, γ2)p−2Vt (s) = dL2 (γ1, γ̃2)p−2Ṽt (s), ∀ s ∈ [0, 1], t ∈ Ω̄ . (4.6)

It follows then

dL2 (γ1, γ2)p−2V̇t (s) = dL2 (γ1, γ̃2)p−2 ˙̃V t (s), for a.e. s ∈ [0, 1], t ∈ Ω̄ ,

where dot · denotes the derivative relative to s. Since vt (s) and ṽt (s) are both minimizing
geodesics, integrating both sides of previous equation over s from 0 to 1 yields that

dL2 (γ1, γ2)p−2ρ(γ1(t), γ2(t)) = dL2 (γ1, γ̃2)p−2ρ(γ1(t), γ̃2(t)), ∀ t ∈ Ω̄ . (4.7)

Then, integrating the square of both sides over t from 0 to 1 yields

dL2 (γ1, γ2)2(p−1)
= dL2 (γ1, γ̃2)2(p−1). (4.8)

Combining this with (4.5), we obtain

Vt (1) = Ṽt (1), ∀ t ∈ Ω̄ .

Using Lemma 3.4, we have γ2(t) = γ̃2(t) for t ∈ Ω̄ . The continuity of γ2(t) and γ̃2(t) yields
γ2(t) ≡ γ̃2(t) for t ∈ [0, 1], and hence γ2 ∈ P(G) is uniquely determined. ■

Proof of Theorem 1.3. We only prove the assertion of this theorem for path groups, and the
corresponding assertion for loop groups can be proved in the same way.

For ν0, ν1 ∈ P0(P(G)) with ν0 being absolutely continuous w.r.t. the Wiener measure µ,
according to Theorem 1.1, there exists a unique optimal map T : P(G) → P(G) such that

π0 := (id × T )∗ν0

attains the L2-Wasserstein distance between ν0 and ν1, i.e.

W2(ν0, ν1)2
=

∫
P(G)×P(G)

dL2 (γ1, γ2)2π0(dγ1, γ2).

Let φ and ψ be the Kantorovich potentials, then

W2(ν0, ν1)2
=

∫
P(G)×P(G)

(
φ(γ1) + ψ(γ2)

)
π0(dγ1, dγ2).

Then the support of π0 is clearly located in the set

A = {(γ1, γ2) ∈ P(G) × P(G); φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)2
}.

For γ1, γ2 satisfying

φ(γ1) + ψ(γ2) = dL2 (γ1, γ2)2,

in the proof of Proposition 3.3, we have shown that for each t ∈ [0, 1] there exists a constant
speed geodesic vt : [0, 1] → G such that vt (0) = γ2(t)−1γ1(t), vt (1) = e, and

L(vt )2
=

∫ 1

0

⏐⏐v−1
t (s)

d
ds
vt (s)

⏐⏐2
G

ds = ρ(γ1(t), γ2(t))2.
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Set ut (s) = γ2(t)vt (s) for s ∈ [0, 1], then ut (0) = γ1(t) and ut (1) = γ2(t). For any given
λ ∈ [0, 1], let uλ

·
be in P(G) defined by uλt = ut (λ) for t ∈ [0, 1]. The distance between γ1 and

uλ is

dL2 (γ1, uλ) = λdL2 (γ1, γ2). (4.9)

Indeed, the curves s ↦→ ut (λs) and s ↦→ ut (λ+ (1 − λ)s) connect respectively γ1(t) to uλt and uλt
to γ2(t). Then

ρ(γ1(t), uλt ) ≤

(∫ 1

0
λ2

⏐⏐v−1
t (λs)

d
ds
vt (λs)

⏐⏐2ds
)1/2

= λρ(γ1(t), γ2(t)).

Similarly, ρ(uλt , γ2(t)) ≤ (1 − λ)ρ(γ1(t), γ2(t)). Together with the triangle inequality, we can get
ρ(γ1(t), uλt ) = λρ(γ1(t), γ2(t)) for all λ ∈ [0, 1], and further (4.9) holds. Consequently, λ ↦→ uλ

is a geodesic in (P(G), dL2 ) connecting γ1 to γ2.
Set Φλ(γ1) = uλ

·
and νλ = (Φλ)∗ν0 for λ ∈ [0, 1]. Then

W2(ν0, νλ) ≤

(∫
P(G)×P(G)

dL2 (γ1, uλ)2dν0(γ1)
)1/2

= λW2(ν0, ν1),

and

W2(νλ, ν1) ≤

(∫
P(G)×P(G)

dL2 (uλ, γ2)2dν0(γ1)
)1/2

= (1 − λ)W2(ν0, ν1).

By the triangle inequality, it holds

W2(ν0, νλ) = λ(ν0, ν1), W2(νλ, ν1) = (1 − λ)W2(ν0, ν1).

Hence, νλ for λ ∈ [0, 1] is a geodesic in P(P(G)) w.r.t. the Wasserstein distance W2 connecting
ν0 to ν1. The proof is complete. ■

5. Optimal transport map on loop groups

Let G be a connected compact Lie group and its Lie algebra G is endowed with an Ad-
invariant metric ⟨ , ⟩G . Let

LeG = {ℓ : [0, 1] → G continuous; ℓ(0) = ℓ(1) = e}.

The product in LeG is defined pointwisely by (ℓ1 · ℓ2)(θ ) = ℓ1(θ ) · ℓ2(θ ), θ ∈ [0, 1]. With the
uniform topology

d∞(ℓ1, ℓ2) = sup
θ∈[0,1]

ρ(ℓ1(θ ), ℓ2(θ )),

where ρ is Riemannian distance on G, LeG becomes a topological group. Recall that

H (G ) =

{
h : [0, 1] → G ; h(0) = 0, |h|

2
H =

∫ 1

0

⏐⏐ḣ(t)
⏐⏐2
G

dt < +∞

}
.

Let

H0(G ) =
{
h ∈ H (G ); h(0) = h(1) = 0

}
.

For h ∈ H0(G ), set |h|H0
=

(∫ 1
0 |ḣ(θ )|

2
G dθ

)1/2
. It has been shown in [21] that there is a

Brownian motion (g(t)) on LeG. In order to be consistent in notations as convention, in the
sequel, we shall fix ν to be the law of Brownian motion g(1) on LeG, which is called heat
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kernel measure. Let µ0 denote the pinned Wiener measure on LeG. Due to [11], ν is absolutely
continuous with respect to the pinned Wiener measure µ0. According to [2], µ0 is also absolutely
continuous with respect to heat kernel measure ν.

For a cylindrical function F : LeG → R in the form

F(ℓ) = f (ℓ(θ1), . . . , ℓ(θn)), f ∈ C∞(Gn),

and h ∈ H0(G ), define

(Dh F)(ℓ) =
d
dε

⏐⏐⏐
ε=0

F(ℓeεh) =

n∑
i=1

⟨∂i f, ℓ(θi )h(θi )⟩Tℓ(θi )G,

where ∂i f denotes the i th partial derivative. The gradient operator ∇
L on LeG is defined as(

∇
LF

)
(ℓ) =

n∑
i=1

ℓ−1(θi )(∂i f )G(θi , ·),

where G(θi , θ) := θi ∧ θ − θiθ . Consider

E (F, F) :=

∫
LeG

|∇
LF |

2
H0

dν.

Then E defined on the set of cylindrical functions is closable, and let D2
1(ν) be the domain of the

associated Dirichlet form.
Now, we introduce several distance on LeG. Firstly, the L2-distance is defined by:

dL2 (ℓ1, ℓ2) =

(∫ 1

0
ρ(ℓ1(θ ), ℓ2(θ ))2 dθ

)1/2
, ℓ1, ℓ2 ∈ LeG. (5.1)

Secondly, we shall recall the definition of Riemannian distance on LeG. In [15], it has shown the
existence and uniqueness of optimal transport map for the Monge–Kantorovich problem with the
Wasserstein distance defined by the square of Riemannian distance on LeG.

A continuous curve γ : [0, 1] → LeG is said to be admissible if there exists z ∈ H (H0) such
that

∂

∂t
γ (t, θ) = γ (t, θ)

∂

∂t
z(t, θ), γ (0, θ) = e. (5.2)

Here

H (H0) =

{
z : [0, 1] → H0(G ); zt =

∫ t

0

∂

∂s
z(s) ds, ∥z∥2

:=

∫ 1

0
|
∂

∂s
z(s)|2H0

ds < +∞

}
.

For a continuous curve γ on LeG, if it is admissible, its length is defined by

L(γ ) =

(∫ 1

0
|
∂

∂s
z(s)|

2

H0

ds
)1/2

;

otherwise, its length L(γ ) = +∞. The Riemannian distance dL on LeG is defined by

dL (ℓ1, ℓ2) = inf
{

L(γ ); γ (0) = ℓ1, γ (1) = ℓ2
}
, (5.3)

where γ runs over the set of all continuous curves on LeG. It is clear that dL is left invariant:
dL (ℓℓ1, ℓℓ2) = dL (ℓ1, ℓ2), ℓ, ℓ1, ℓ2 ∈ LeG. It has been shown in [26, Proposition 3.4] that for
ℓ1, ℓ2 ∈ LeG, dP (ℓ1, ℓ2) ≤ dL (ℓ1, ℓ2). Therefore, it holds

dL2 (ℓ1, ℓ2) ≤ d∞(ℓ1, ℓ2) ≤ dP (ℓ1, ℓ2) ≤ dL (ℓ1, ℓ2). (5.4)

According to the Rademacher’s theorem [26, Theorem 1.5], we get
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Lemma 5.1. Every dL -Lipschitz (hence, dL2 -Lipschitz) continuous function F is in D2
1(ν).

After these preparations, we are in a position to state our results. The results in Theorem 1.2
are parts of the results in the following two theorems.

Theorem 5.2. For every probability measures σ1 and σ2 on LeG. Assume σ1 is absolutely
continuous with respect to the heat kernel measure ν on LeG. Then for each p > 1, there
exists a unique measurable map Tp : LeG → LeG such that it pushes σ1 forward to σ2 and

Wp,dL2 (σ1, σ2)p
=

∫
LeG

dL2 (ℓ,Tp(ℓ))p σ1(dℓ),

where

Wp,dL2 (σ1, σ2)p
:= inf

{∫
LeG×LeG

dL2 (ℓ1, ℓ2)p π (dℓ1, dℓ2)
}
,

where the infimum runs over the set of all probability measures on LeG × LeG with marginals
σ1 and σ2 respectively.

Proof (Sketched). The proof of this theorem gets along the same lines as the proof of
Theorem 1.1. First, Theorem 3.1 guarantees the existence of the Kantorovich potential φ and
ψ such that

φ(ℓ) = ψc(ℓ) := inf
ℓ′∈LeG

{
dL2 (ℓ, ℓ′)p

− ψ(ℓ′)
}
.

Then φ is dL2 -Lipschitz continuous. By the Rademacher’s theorem, Lemma 5.1, φ belongs to
D2

1(ν). Then using the variational method to show the uniqueness of ℓ2 ∈ LeG such that

φ(ℓ1) + ψ(ℓ2) = dL2 (ℓ1, ℓ2)p,

if φ is differentiable at ℓ1. This progress is completely similar to the proof of Proposition 3.3 for
case p = 2 and the discussion in Section 3 for case p > 1. In this step, the different point is just
to replace h ∈ H (G ) with h ∈ H0(G ). Then the desired map is the map defined by Tp(ℓ1) = ℓ2

such that above equation holds. The measurability of this map comes from the construction as in
the argument of Theorem 1.1. ■

Theorem 5.3. On LeG, for each p > 1, there exists a unique measurable map Tp : LeG →

LeG such that Tp pushes heat kernel measure ν forward to pinned Wiener measure µ0 such that

Wp,dL2 (ν, µ0)p
=

∫
LeG

dL2 (ℓ,Tp(ℓ))p dν(ℓ). (5.5)

Moreover, Tp is ν-a.e. reversible, and its inverse T −1
p pushes µ0 forward to ν.

Proof. Noting that µ0 and ν is mutually absolutely continuous with respect to each other,
applying Theorem 5.2 yields that there exists a measurable map Tp : LeG → LeG which
pushes ν forward to µ0 and a measurable map Sp : LeG → LeG which pushes µ0 forward to
ν. Furthermore,

Wp,dL2 (ν, µ0)p
=

∫
LeG

dL2 (ℓ,Tp(ℓ)) dν(ℓ) =

∫
LeG

dL2 (Sp(ℓ), ℓ)p dµ0(ℓ). (5.6)
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For any measurable function F on LeG, we have∫
LeG

F(ℓ) dν(ℓ) =

∫
LeG

F(Sp(ℓ)) dµ0(ℓ) =

∫
LeG

F(Sp(Tp(ℓ))) dν(ℓ). (5.7)

Therefore,

Sp ◦ Tp = id, ν-a.e.,

where id denotes the identity map. We conclude the argument immediately. ■
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