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Abstract

In this paper we show that solutions of two-dimensional stochastic Navier–Stokes equations driven
by Brownian motion can be approximated by stochastic Navier–Stokes equations forced by pure jump
noise/random kicks.
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1. Introduction
Stochastic Navier–Stokes equations (SNSEs) are now a widely accepted model for fluid

motion with random perturbations. In this paper, we consider the two-dimensional stochastic
Navier–Stokes equations with Dirichlet boundary conditions on a bounded domain, which is
given as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

du − κ∆u dt + (u · ∇)u dt + ∇P dt = F(u) dt +

m∑
i=1

σ i (u) dW i , in O × (0, T ],

div u = 0 in O × (0, T ],
u = 0 in ∂O × (0, T ],
u(0) = h in O,

(1.1)

where O is a bounded domain of R2 with boundary ∂O of class C3. u = (u1, u2) and P
represent the random velocity and modified pressure, respectively. κ is the kinematic viscosity,
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for simplicity, we let κ = 1 in this paper. W = (W 1(t), . . . , W m(t)) is a m-dimensional
standard Brownian motion. The fluid is driven by external force F(u) dt and the random noise∑m

i=1 σ i (u) dW i .
Stochastic Navier–Stokes equations have been studied by many people. There is a great

amount of literature. Let us mention a few. SNSEs driven by white noise in time were first
studied by Bensoussan and Temam in [2]. The existence and uniqueness of solutions of 2-D
SNSEs driven by Lévy noise were obtained in [4], large deviation and moderate deviation
principles were established in [6,14]. The ergodic properties and invariant measures of the 2-D
SNSEs were studied in [9] and [8].

The aim of this paper is to study the approximations of SNSEs in (1.1) by SNSEs forced
by Poisson random measures. One of the motivations is to shed some light on numerical
simulations of SNSEs driven by pure jump noise. Recently, Nunno and Zhang in [5] obtained
such an approximation for a general class of SPDEs. However, the results in [5] could not cover
the stochastic Navier–Stokes equations, an important model in fluid dynamics. The difficulty
lies in establishing the tightness of the approximating equations in the space of Hilbert space-
valued right continuous paths with left limits. To overcome this difficulty, we first assume that
the initial value has higher regularity, the external force and the coefficients of the jump noise
take values in a more regular space, so that we can derive a uniform estimate of the stronger
norm of the approximating solutions. With these estimates, we are able to prove the tightness
of the approximating equations by Aldou’s criterion, then through martingale characterization
we show that the limit of the solutions of approximating equations is the solution of the SNSE
driven by Brownian motion. We emphasize that the method of establishing the tightness here
is different and simpler than that used in [5]. In the second step, we are able to remove the
regularity restrictions on the coefficients and the initial condition by using finite dimensional
approximations and establishing some uniform convergence in probability of the approximating
solutions. In the final part of the paper, we provide several illustrating examples.

The rest of the paper is organized as follows. In Section 2 we lay down the precise
framework. The main part is Section 3, where the approximations are established. In Section 4
some examples are provided.

2. Framework

Let (Ω ,F , P) be a probability space equipped with a filtration {Ft }t≥0 satisfying the
usual conditions. νi (dx), i = 1, . . . , m denote σ -finite measures on the measurable space
(R0,B(R0)), where R0 := R \ {0}. Let N i , i = 1, . . . , m be mutually independent Ft -Poisson
random measures on [0, T ]×R0 with intensity measure dt×νi (dz) respectively. For U ∈ B(R0)
with νi (U ) < ∞, we write

Ñ i ((0, t] × U ) := N i ((0, t] × U ) − tνi (U ), t ≥ 0,

for the corresponding compensated Poisson random measures on [0, T ] × Ω × R0. See [10]
for the details on Poisson random measures.

We introduce the following standard space

V = {u ∈ H 1(O)2
: ∇ · u = 0, u|∂O = 0},

with the norm ∥u∥V := (
∫
O |∇u|

2dx)1/2 and the inner product ((·, ·)). Denote by H the closure
of V in the L2-norm ∥u∥H := (

∫
O |u|

2dx)1/2. The inner product on H will be denoted by (·, ·).
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Identifying the Hilbert space H with its dual space H∗, via the Riesz representation, we
consider the system (1.1) in the framework of Gelfand triple:

V ⊂ H ∼= H∗
⊂ V ∗.

We also denote by ⟨·, ·⟩ the dual pair between V ∗ and V from now on.
Define the Stokes operator by

Au := −PH∆u, u ∈ D(A) := H 2(O)2
∩ V, (2.1)

where PH : L2(O)2
−→ H is the usual Helmholtz–Leray projection. Actually, the map A is

an isomorphism between V and V ∗, and

⟨Au, v⟩ = ⟨u, Av⟩ = ((u, v)), ∀ u, v ∈ V . (2.2)

Note that ∥Au∥H is a norm on V ∩ H 2(O)2 which is equivalent to the Sobolev norm in
H 2(O)2(for simplicity denoted by H 2 from now on), see Lemma III.3.7 in [13]. It is known that
there exist an orthonormal basis {ei , i ∈ N} in H and corresponding eigenvalues 0 < λi ↑< ∞,
that is

Aei = λi ei , i ∈ N. (2.3)

Since the boundary ∂O is of class C3, it follows from Chapter I.2.6 in [13] that

ei ∈ H 3(O). (2.4)

Set

b(u, v, w) :=

2∑
i, j=1

∫
O

ui∂iv jw j dx, u, v, w ∈ V . (2.5)

Using integration by parts, it is easy to see that

b(u, v, w) = −b(u, w, v), b(u, v, v) = 0, u, v, w ∈ V . (2.6)

Throughout the paper, we will denote various generic positive constants by the same letter C ,
although the constants may differ from line to line. We now list some well-known estimates
for b which will be used in the sequel (see [13] for example):

|b(u, v, w)| ≤ 2∥u∥

1
2
H∥u∥

1
2
V ∥w∥

1
2
H∥w∥

1
2
V ∥v∥V , u, v, w ∈ V, (2.7)

|b(u, u, v)| ≤ C∥u∥

1
2
H2∥u∥V ∥u∥

1
2
H∥v∥H , u ∈ V ∩ H 2, v ∈ H. (2.8)

For u, v ∈ V , we denote by B(u, v) the element of V ∗ defined by

⟨B(u, v), w⟩ = b(u, v, w), ∀ w ∈ V . (2.9)

Therefore,

∥B(u, v)∥V ∗ = sup
∥w∥V ≤1

|b(u, v, w)| ≤ 2∥u∥

1
2
H∥u∥

1
2
V ∥v∥

1
2
H∥v∥

1
2
V ; (2.10)

hence

∥B(u, u)∥V ∗ ≤ 2∥u∥H∥u∥V . (2.11)

We will often use the short notation B(u) := B(u, u). On the other hand, the nonlinear operator
PH ((u · ∇)v) is well defined whenever u, v are such that (u · ∇)v belongs to L2. One can show
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that PH ((u · ∇)v) can be linearly extended to V × V −→ V ∗, and actually coincides with the
previous B(u, v).

It is known that the system (1.1) can be reformulated as follows:⎧⎪⎨⎪⎩ du(t) = −Au(t)dt − B(u(t), u(t))dt + F(u(t))dt +

m∑
i=1

σ i (u(t))dW i (t),

u(0) = h.

(2.12)

Let F, σ i , i = 1, . . . , m be measurable mappings from H into H . We introduce the
following condition:

(H.1) F(·), σ i (·) : H → H are globally Lipschitz maps, i.e., there exists a constant C < ∞

such that

∥F(u1) − F(u2)∥2
H +

m∑
i=1

∥σ i (u1) − σ i (u2)∥2
H ≤ C∥u1 − u2∥

2
H , ∀ u1, u2 ∈ H. (2.13)

Definition 2.1. A continuous H -valued (Ft )-adapted process u = (u(t))t≥0 is said to be a
solution to Eq. (2.12) if for any T > 0, X ∈ L2([0, T ] ×Ω , dt × P, V ) and for any t ≥ 0, the
following equation holds in V ∗, P-a.s.:

u(t) = h −

∫ t

0
Au(s)ds −

∫ t

0
B(u(s))ds +

∫ t

0
F(u(s))ds +

m∑
i=1

∫ t

0
σ i (u(s))dW i (s). (2.14)

Under the assumption (H.1) and h ∈ H , it is known that Eq. (2.12) admits a unique solution
(see e.g. [4]).

3. Approximations of SNSEs by pure jump type SNSEs

For ε > 0, let σ i,ε
: H ×R0 → H be given measurable maps. Consider the following SNSE

driven by pure jump noise:

uε(t) =h −

∫ t

0
Auε(s)ds −

∫ t

0
B(uε(s))ds +

∫ t

0
F(uε(s))

+

m∑
i=1

∫ t

0

∫
R0

σ i,ε(uε(s−), z)Ñ i (dzds). (3.1)

We impose the following conditions on σ i,ε.

(H.2) There exist constants C > 0 and ε0 > 0 such that

∥F(u)∥2
H + sup

ε≤ε0

m∑
i=1

∫
R0

∥σ i,ε(u, z)∥2
Hνi (dz) ≤ C(1 + ∥u∥

2
H ), (3.2)

sup
ε≤ε0

m∑
i=1

∫
R0

∥σ i,ε(u, z)∥4
Hνi (dz) ≤ C(1 + ∥u∥

4
H ), (3.3)

∥F(u1) − F(u2)∥2
H + sup

ε≤ε0

m∑
i=1

∫
R0

∥σ i,ε(u1, z) − σ i,ε(u2, z)∥2
Hνi (dz)

≤ C∥u1 − u2∥
2
H . (3.4)
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Denote by D([0, T ], H ) the space of all càdlàg paths from [0, T ] into H equipped with the
Skorohod topology.

Definition 3.1. An H -valued (Ft )-adapted process uε
= (uε(t))t≥0 is said to be a solution

to Eq. (3.1) if
(i) for any T > 0, uε

∈ D([0, T ], H ) ∩ L2([0, T ] × Ω , dt × P, V );
(ii) for every t ≥ 0, (3.1) holds in V ∗, P-a.s.

Under the assumption (H.2) and h ∈ H , it is known that for ε ≤ ε0, Eq. (3.1) admits a
unique solution (see e.g. [4]).

Consider the following conditions.

(H.3) (i) For each i ∈ {1, . . . , m}, ∀ M > 0,

sup
∥u∥H ≤M

sup
z∈R0

∥σ i,ε(u, z)∥H
ε→0
−−→ 0. (3.5)

(ii) For each i ∈ {1, . . . , m} and each k, j ∈ N, u ∈ H ,∫
R0

(σ i,ε(u, z), ek)(σ i,ε(u, z), e j )νi (dz)
ε→0
−−→ (σ i (u), ek)(σ i (u), e j ). (3.6)

(H.4) For each i ∈ {1, . . . , m} and every u ∈ H ,∫
R0

∥σ i,ε(u, z)∥2
Hνi (dz)

ε→0
−−→ ∥σ i (u)∥2

H . (3.7)

Remark 3.2. In order to approximate Brownian motion by pure jump noise, intuitively, the
jump height of all jumps must converge to zero, which motivate us to introduce condition (i) of
(H.3). Applying Ito’s formula to ∥·∥

2
H , we introduce (H.4) such that the H -norm of the solutions

of (3.1) approximates to the H -norm of the solution of (2.12) in some sense. Condition (ii) of
(H.3) is introduced to justify the limit of the solutions of (3.1) is a probabilistic weak solution
of (2.12) through the associated martingale problem.

From condition (i) of (H.3) and (H.4), it can be seen that the jump measures νi , i = 1, . . . , m
must have infinite volume, otherwise, (H.4) contradicts condition (i) of (H.3) by the dominated
convergence theorem.

(H.5) The maps F, σ i,ε take the space V into itself and there exist constants C > 0 and ε0 > 0
such that

∥F(u)∥2
V + sup

ε≤ε0

m∑
i=1

∫
R0

∥σ i,ε(u, z)∥2
V νi (dz) ≤ C(1 + ∥u∥

2
V ). (3.8)

3.1. Preliminary estimates

We first prepare some preliminary results needed for the proofs of the main results. In the
rest of the paper, for simplicity of the exposition, we let m = 1 and omit the superscript i of
σ i , Ñ i , νi . The case of m > 1 does not cause extra difficulties.
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Lemma 3.3. Assume (H.2) and h ∈ H, let uε be the solution of Eq. (3.1), then we have

sup
ε≤ε0

{
E sup

0≤t≤T
∥uε(t)∥4

H + E
(∫ T

0
∥uε(s)∥2

V ds
)2}

< ∞. (3.9)

Remark 3.4. If we assume (H.1) and h ∈ H , then using similar methods, it can be shown
that the following norm estimate holds for the solution u of Eq. (2.12),

E sup
0≤t≤T

∥u(t)∥4
H + E

(∫ T

0
∥u(s)∥2

V ds
)2

< ∞.

Proof. By Itô’s formula and (2.6), we have

∥uε(t)∥2
H =∥h∥

2
H − 2

∫ t

0
⟨Auε(s), uε(s)⟩ds + 2

∫ t

0
(F(uε(s)), uε(s))ds

+ M(t) +

∫ t

0

∫
R0

∥σ ε(uε(s−), z)∥2
Hν(dz)ds, (3.10)

where

M(t) :=

∫ t

0

∫
R0

(
∥σ ε(uε(s−), z)∥2

H + 2
(
σ ε(uε(s−), z), uε(s−)

))
Ñ (dzds). (3.11)

Using Burkholder’s inequality and the assumption (H.2), we have

E sup
0≤r≤t

|M(r )|2

≤C E
∫ t

0

∫
R0

(
∥σ ε(uε(s−), z)∥2

H + 2
(
σ ε(uε(s−), z), uε(s−)

))2
ν(dz)ds

≤C E
∫ t

0
(1 + ∥uε(s)∥4

H )ds. (3.12)

By (2.2), it follows from (3.10) that for t ≤ T ,

∥uε(t)∥4
H +

(∫ t

0
∥uε(s)∥2

V ds
)2

≤ C∥h∥
4
H + C

∫ t

0
(1 + ∥uε(s)∥4

H )ds + C M(t)2. (3.13)

Take supremum over the interval [0, t] in (3.13), and use (3.12) to get

E sup
0≤s≤t

∥uε(s)∥4
H + E

(∫ t

0
∥X ε

s ∥
2
V ds

)2

≤ C∥h∥
4
H + C E

∫ t

0
(1 + ∥uε(s)∥4

H )ds. (3.14)

Applying Gronwall’s inequality completes the proof of the lemma. ■

Lemma 3.5. Assume (H.2), (H.5) and h ∈ V . For any constant M > 0, define

τ ε
M := T ∧ inf{t ≥ 0 :

∫ t

0
∥uε(s)∥2

V ds > M} ∧ inf{t ≥ 0 : ∥uε(t)∥2
H > M}, (3.15)

where we set inf{∅} = ∞. Then we have

sup
ε≤ε0

{
E sup

0≤t≤τ ε
M

∥uε(t)∥2
V + E

(∫ τ ε
M

0
∥uε(s)∥2

H2 ds
)2}

< ∞. (3.16)
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Proof. Through Galerkin approximations, it can be shown that for ε ≤ ε0, the solution
uε

∈ L∞([0, T ], V ) ∩ L2([0, T ], H 2) with probability one (see e.g. Proposition 2.2 in [12]).
Apply Itô’s formula to ∥uε(t)∥2

V to get

∥uε(t)∥2
V =∥h∥

2
V − 2

∫ t

0
∥Auε(s)∥2

H ds − 2
∫ t

0

(
B(uε(s)), Auε(s)

)
ds

+ 2
∫ t

0

((
F(uε(s)), uε(s)

))
ds + M1(t) + M2(t), (3.17)

where

M1(t) : = 2
∫ t

0

∫
R0

((
σ ε(uε(s−), z), uε(s−)

))
Ñ (dzds), (3.18)

M2(t) : =

∫ t

0

∫
R0

∥σ ε(uε(s−), z)∥2
V N (dzds). (3.19)

Use (2.8) and Young’s inequality to obtain

|(B(uε(s)), Auε(s))| ≤ C∥uε
∥

3
2
H2∥uε

∥V ∥uε
∥

1
2
H ≤ ∥uε

∥
2
H2 + C∥uε

∥
4
V ∥uε

∥
2
H . (3.20)

Therefore, by (3.20) and (H.5), we obtain

∥uε(t)∥2
V +

∫ t

0
∥uε(s)∥2

H2ds

≤∥h∥
2
V + C

∫ t

0
∥uε(s)∥4

V ∥uε(s)∥2
H ds + C

∫ t

0
(1 + ∥uε(s)∥2

V )ds + M1(t) + M2(t). (3.21)

Applying Gronwall’s inequality yields that

∥uε(t)∥2
V +

∫ t

0
∥uε(s)∥2

H2ds

≤
(
CT + ∥h∥

2
V + sup

0≤t≤τ ε
M

|M1(t)| + M2(τ ε
M )
)

× exp
(

CT + C
∫ t

0
∥uε(s)∥2

V ∥uε(s)∥2
H ds

)
, t ∈ [0, τ ε

M ]. (3.22)

Take supremum over the interval [0, τ ε
M ], remember the definition of τ ε

M and take expectations
to get

E sup
0≤t≤τ ε

M

∥uε(t)∥2
V + E

∫ τ ε
M

0
∥uε(s)∥2

H2ds

≤

(
CT + ∥h∥

2
V + E sup

0≤t≤τ ε
M

|M1(t)| + E M2(τ ε
M )
)

exp(CT + C M2). (3.23)

By Burkholder’s inequality, (H.5) and Young’s inequality, we have for δ > 0,

E sup
0≤t≤τ ε

M

|M1(t)| ≤ 2E

[∫ τ ε
M

0

∫
R0

((
σ ε(uε(s−), z), uε(s−)

))2
ν(dz)ds

] 1
2

≤ 2E

[∫ τ ε
M

0
C∥uε(s)∥2

V (1 + ∥uε(s)∥2
V )ds

] 1
2
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≤ 2(CT + C M)
1
2 E sup

0≤t≤τ ε
M

∥uε(t)∥V

≤ δE sup
0≤t≤τ ε

M

∥uε(t)∥2
V +

1
δ

(CT + C M). (3.24)

By (H.5) and (3.9), we have

E M2(τ ε
M ) =E

∫ τ ε
M

0

∫
R0

∥σ ε(uε(s−), z)∥2
V N (dzds)

=E
∫ τ ε

M

0

∫
R0

∥σ ε(uε(s−), z)∥2
V ν(dz)ds

≤E
∫ τ ε

M

0
C(1 + ∥uε(s)∥2

V )ds ≤ C < ∞. (3.25)

Combining (3.23), (3.24) and (3.25) and choosing sufficiently small δ, we obtain

E sup
0≤t≤τ ε

M

∥uε(t)∥2
V + E

∫ τ ε
M

0
∥uε(s)∥2

H2ds ≤ CT,M∥h∥
2
V + CT,M (3.26)

completing the proof of (3.16). ■

Proposition 3.6. Assume (H.2), (H.5) and h ∈ V . Then the family {uε, ε ≤ ε0} is tight in the
space D([0, T ], H ).

Proof. Note that V is compactly embedded into H . Thus, by Aldou’s tightness criterion (see
Theorem 1 in [1]), it suffices to show that:

(i) for any 0 < η < 1, there exists Lη > 0 such that

sup
ε≤ε0

P
(

sup
0≤t≤T

∥uε(t)∥V > Lη

)
< η; (3.27)

(ii) for any stopping time 0 ≤ ζ ε
≤ T with respect to the natural filtration generated by

{uε(s), s ≤ t}, and any η > 0,

lim
δ→0

sup
ε≤ε0

P(∥uε(ζ ε
+ δ) − uε(ζ ε)∥H > η) = 0, (3.28)

where we set ζ ε
+ δ := T ∧ (ζ ε

+ δ).
Note that (3.9) implies

sup
ε≤ε0

P
(
τ ε

M < T
)

≤ sup
ε≤ε0

P
(∫ T

0
∥uε(s)∥2

V ds > M
)

+ sup
ε≤ε0

P
(

sup
0≤s≤T

∥uε(s)∥2
H > M

)
≤

1
M

sup
ε≤ε0

E
∫ T

0
∥uε(s)∥2

V ds +
1
M

sup
ε≤ε0

E sup
0≤t≤T

∥uε(s)∥2
H

≤
C
M

. (3.29)
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For any L > 0, by (3.29) and (3.16), we have

sup
ε≤ε0

P
(

sup
0≤t≤T

∥uε(t)∥V > L
)

≤ sup
ε≤ε0

P
(

sup
0≤t≤T

∥uε(t)∥V > L , τ ε
M = T

)
+ sup

ε≤ε0

P
(
τ ε

M < T
)

≤ sup
ε≤ε0

P

(
sup

0≤t≤τ ε
M

∥uε(t)∥V > L

)
+

C
M

≤
1
L2 sup

ε≤ε0

E sup
0≤t≤τ ε

M

∥uε(t)∥2
V +

C
M

≤
CM

L2 +
C
M

. (3.30)

Given any η > 0, we can first take sufficiently large constant M , and then choose the constant
L so that the right hand side of (3.30) will be smaller than η. Hence (i) is satisfied.

Now, we come to verify (ii). For any η > 0,

sup
ε≤ε0

P(∥uε(ζ ε
+ δ) − uε(ζ ε)∥H > η)

≤ sup
ε≤ε0

P
( ∫ ζ ε

+δ

ζ ε

Auε(s)ds


H
>

η

4

)
+ sup

ε≤ε0

P
( ∫ ζ ε

+δ

ζ ε

B(uε(s))ds


H
>

η

4

)
+ sup

ε≤ε0

P
( ∫ ζ ε

+δ

ζ ε

F(uε(s))ds


H
>

η

4

)
+ sup

ε≤ε0

P
( ∫ ζ ε

+δ

ζ ε

∫
R0

σ ε(uε(s−), z)Ñ (dzds)


H
>

η

4

)
:= I1 + I2 + I3 + I4. (3.31)

By Hölder’s inequality and Chebyshev’s inequality, it follows from (3.16) and (3.29) that for
M > 0,

I1 ≤ sup
ε≤ε0

P
(
δ

∫ ζ ε
+δ

ζ ε

∥Auε(s)∥2
H ds >

η2

16

)
≤ sup

ε≤ε0

P
(
δ

∫ ζ ε
+δ

ζ ε

∥Auε(s)∥2
H ds >

η2

16
, τ ε

M = T
)

+ sup
ε≤ε0

P(τ ε
M < T )

≤ sup
ε≤ε0

P
(
δ

∫ τ ε
M

0
∥Auε(s)∥2

H ds >
η2

16

)
+

C
M

≤
16
η2 δ sup

ε≤ε0

E
∫ τ ε

M

0
∥Auε(s)∥2

H ds +
C
M

≤
CM

η2 δ +
C
M

. (3.32)
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By (2.8), we have ∥B(uε(s))∥H ≤ C∥uε(s)∥
1
2
H2∥uε(s)∥V ∥uε(s)∥

1
2
H . Using (3.16) and (3.29),

we have

I2 ≤ sup
ε≤ε0

P
(∫ ζ ε

+δ

ζ ε

∥B(uε(s))∥H ds >
η

4

)
≤ sup

ε≤ε0

P
(∫ ζ ε

+δ

ζ ε

∥uε(s)∥
1
2
H2∥uε(s)∥V ∥uε(s)∥

1
2
H ds >

η

4C

)
≤ sup

ε≤ε0

P
(∫ ζ ε

+δ

ζ ε

∥uε(s)∥
1
2
H2∥uε(s)∥V ∥uε(s)∥

1
2
H ds >

η

4C
, τ ε

M = T
)

+ sup
ε≤ε0

P(τ ε
M < T )

≤ sup
ε≤ε0

P
(∫ (ζ ε

+δ)∧τ ε
M

ζ ε

∥uε(s)∥
1
2
H2∥uε(s)∥V ∥uε(s)∥

1
2
H ds >

η

4C

)
+

C
M

≤
4C
η

sup
ε≤ε0

[(
E
∫ (ζ ε

+δ)∧τ ε
M

ζ ε

∥uε(s)∥2
H ds

) 1
4
(

E
∫ (ζ ε

+δ)∧τ ε
M

ζ ε

∥uε(s)∥2
H2ds

) 1
4

×

(
E
∫ (ζ ε

+δ)∧τ ε
M

ζ ε

∥uε(s)∥2
V ds

) 1
2
]

+
C
M

≤
CM

η
δ

3
4 sup

ε≤ε0

(
E sup

0≤s≤T
∥uε(s)∥2

H

) 1
4

× sup
ε≤ε0

(
E
∫ τ ε

M

0
∥uε(s)∥2

H2ds
) 1

4

× sup
ε≤ε0

(
E sup

0≤s≤τ ε
M

∥uε(s)∥2
V

) 1
2

+
C
M

≤
CM

η
δ

3
4 +

C
M

. (3.33)

On the other hand, by (H.2) and (3.9) we have

I3 ≤
4
η

sup
ε≤ε0

E
∫ ζ ε

+δ

ζ ε

∥F(uε(s))∥H ds

≤
4
η

sup
ε≤ε0

E
∫ ζ ε

+δ

ζ ε

C(1 + ∥uε(s)∥H )ds

≤
C
η

δ
(

1 + sup
ε≤ε0

E sup
0≤s≤T

∥uε(s)∥H

)
≤

C
η

δ. (3.34)

Similarly,

I4 ≤
16
η2 sup

ε≤ε0

E
 ∫ ζ ε

+δ

ζ ε

∫
R0

σ ε(uε(s−), z)Ñ (dzds)
2

H

≤
16
η2 sup

ε≤ε0

E
∫ ζ ε

+δ

ζ ε

∫
R0

∥σ ε(uε(s−), z)∥2
Hν(dz)ds



Please cite this article as: S. Shang and T. Zhang, Approximations of stochastic Navier–Stokes equations, Stochastic Processes and their Applications
(2019), https://doi.org/10.1016/j.spa.2019.07.007.

S. Shang and T. Zhang / Stochastic Processes and their Applications xxx (xxxx) xxx 11

≤
16
η2 sup

ε≤ε0

E
∫ ζ ε

+δ

ζ ε

C(1 + ∥uε(s)∥2
H )ds

≤
C
η2 δ. (3.35)

Combine (3.32)–(3.35) together, first let δ → 0, then let M → ∞ to obtain (3.28). Thus (ii)
is verified, which completes the proof. ■

3.2. The weak convergence

Denote by µε, µ respectively the laws of uε and u on the spaces D([0, T ], H ) and
C([0, T ], H ). We will establish the weak convergence by two stages. We first obtain the
weak convergence in Theorem 3.7 under stronger conditions, and then we remove the extra
assumptions and get the general convergence result in Theorem 3.8.

Theorem 3.7. Assume (H.1), (H.2), (H.3), (H.5) and h ∈ V . Then, for any T > 0, µε

converges weakly to µ, as ε → 0, on the space D([0, T ], H ) equipped with the Skorohod
topology.

Proof. By Proposition 3.6, the family {µε, ε ≤ ε0} is tight in D([0, T ], H ). Let µ0 be the weak
limit of any convergent subsequence {µεn }. We will show that µ0 = µ. The rest of the proof
is divided into three steps. In step 1, we show that µ0 is supported on the space C([0, T ], H ).
In step 2, we prove that µ0 is a solution of a martingale problem. In step 3, we show that µ0
is the law of a weak solution of SNSE (2.12), hence complete the proof.

Step 1. For any η > 0, M > 0, we have

P
(

sup
0≤t≤T

∥uε(t) − uε(t−)∥H ≥ η

)
≤P

(
sup

0≤t≤T
sup
z∈R0

∥σ ε(uε(t−), z)∥H ≥ η

)

≤P

(
sup

0≤t≤T
sup
z∈R0

∥σ ε(uε(t), z)∥H > η, sup
0≤t≤T

∥uε(t)∥ ≤ M

)

+ P
(

sup
0≤t≤T

∥uε(t)∥ > M
)

≤P
(

sup
∥x∥H ≤M

sup
z∈R0

∥σ ε(x, z)∥H > η
)

+
1

M2 sup
ε≤ε0

E sup
0≤t≤T

∥uε(t)∥2
H . (3.36)

By (3.9) and (3.5), we first let ε → 0 and then M → ∞ to see that

sup
0<t≤T

∥uε(t) − uε(t−)∥H
ε→0
−−→ 0 in probability. (3.37)

Therefore, it follows from Theorem 13.4 in [3] that µ0 is supported on the space C([0, T ], H ).
As a consequence, the finite dimensional distributions of µεn converge to that of µ0.

Step 2. For k, j ∈ N, let f (x) = (x, ek)(x, e j ), x ∈ H . The gradient of f (denoted by ∇ f )
and the operator (denoted by f ′′) associated with the second derivatives of f are respectively
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given by

∇ f (x) = (x, e j )ek + (x, ek)e j , (3.38)
f ′′(x) = e j ⊗ ek + ek ⊗ e j . (3.39)

Set

Lε f (x) := − (A∇ f (x), x) − ⟨B(x), ∇ f (x)⟩ + (F(x), ∇ f (x))

+

∫
R0

[
f (x + σ ε(x, z)) − f (x) − (∇ f (x), σ ε(x, z))

]
ν(dz), (3.40)

L f (x) := − (A∇ f (x), x) − ⟨B(x), ∇ f (x)⟩ + (F(x), ∇ f (x)) +
1
2

( f ′′(x)σ (x), σ (x)).

(3.41)

By Itô’s formula,

f (uε(t)) − f (h) −

∫ t

0
Lε f (uε(s))ds

=

∫ t

0

∫
R0

[
f
(
uε(s−) + σ ε(uε(s−), z)

)
− f

(
uε(s−)

)]
Ñ (dzds) (3.42)

is a martingale. Denote by X t (ω) := ω(t), ω ∈ D([0, T ], H ) the coordinate process on
D([0, T ], H ). By the above martingale property, for any m ∈ N, 0 ≤ s0 < s1 < · · · <

sm ≤ s < t and f0, f1, . . . , fm ∈ Cb(H )(the collection of bounded continuous functions on
H ), it holds that

Eµε

[(
f (X t ) − f (Xs) −

∫ t

s
Lε f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
= 0. (3.43)

Let

Gε(x) :=

⏐⏐⏐ ∫
R0

(σ ε(x, z), ek)(σ ε(x, z), e j )ν(dz) − (σ (x), ek)(σ (x), e j )
⏐⏐⏐, (3.44)

x ∈ H . By (3.40) and (3.41), we have

|Lε f (Xr ) − L f (Xr )| = Gε(Xr ). (3.45)

We claim that

lim
n→∞

Eµεn
[∫ t

s
|Lεn f (Xr ) − L f (Xr )|dr

]
= 0. (3.46)

Note that

Eµεn
[∫ t

s
|Lεn f (Xr ) − L f (Xr )|dr

]
=

∫ t

s
EGεn (uεn (r ))dr, (3.47)

sup
ε≤ε0

Gε(x) ≤ C(1 + ∥x∥
2
H ). (3.48)

By the dominated convergence theorem and (3.9), to prove (3.46), it suffices to prove that for
every r ∈ [0, T ],

lim
n→∞

EGεn (uεn (r )) = 0. (3.49)

Now, we take any r ∈ [0, T ] and fix it. Since the finite dimensional distributions of µεn

converge weakly to that of µ0, by Skorohod’s representation theorem, in order not to introduce
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more notations, we can assume that uεn (r ) converges almost surely to an H -valued random
variable u0. In view of (3.9), {∥uεn (r )∥2

H }n≥1 is uniformly integrable, and therefore we can
further deduce that u0

∈ L2(Ω , H ) and

lim
n→∞

E∥uεn (r ) − u0
∥

2
H = 0. (3.50)

By the dominated convergence theorem, it follows from (3.6) and (3.48) that

lim
n→∞

EGεn (u0) = 0. (3.51)

Hence to prove (3.49), it suffices to prove

lim
n→∞

E |Gεn (uεn (r )) − Gεn (u0)| = 0. (3.52)

We have

E |Gεn (uεn (r )) − Gεn (u0)|

≤E
⏐⏐⏐ ∫

R0

(
σ εn (uεn (r ), z), ek

)(
σ εn (uεn (r ), z), e j

)
ν(dz)

−

∫
R0

(
σ εn (u0, z), ek

)(
σ εn (u0, z), e j

)
ν(dz)

⏐⏐⏐
+ E |(σ (uεn (r )), ek)(σ (uεn (r )), e j ) − (σ (u0), ek)(σ (u0), e j )|

:=I1 + I2. (3.53)

In view of (3.2) and (3.4), we have

I1 ≤E
∫
R0

⏐⏐⏐(σ εn (uεn (r ), z), ek
)(

σ εn (uεn (r ), z) − σ εn (u0, z), e j
)⏐⏐⏐ν(dz)

+ E
∫
R0

⏐⏐⏐(σ εn (uεn (r ), z) − σ εn (u0, z), ek
)(

σ εn (u0, z), e j
)⏐⏐⏐ν(dz)

≤

[
E
∫
R0

σ εn (uεn (r ), z)
2

Hν(dz)
] 1

2
[

E
∫
R0

σ εn (uεn (r ), z) − σ εn (u0, z)
2

Hν(dz)
] 1

2

+

[
E
∫
R0

σ εn (u0, z)
2

Hν(dz)
] 1

2
[

E
∫
R0

σ εn (uεn (r ), z) − σ εn (u0, z)
2

Hν(dz)
] 1

2

≤C
[
(1 + E∥u0

∥
2
H )

1
2 + sup

εn

(1 + E∥uεn (r )∥2
H )

1
2

](
E∥uεn (r ) − u0

∥
2
H

) 1
2 . (3.54)

This yields that I1 → 0 taking into account (3.9) and (3.50). A similar argument leads to
I2 → 0. Therefore, (3.52) holds. Hence the claim (3.46) is proved.

Next we prove that

Mk, j (t) := f (X t ) − f (h) −

∫ t

0
L f (Xr )dr (3.55)

is a martingale under µ0. This is equivalent to proving that

Eµ0
[(

f (X t ) − f (Xs) −

∫ t

s
L f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
= 0. (3.56)

Since the finite dimensional distributions of µεn converge to that of µ0, noticing that ∥ f (x)∥H ≤

∥x∥
2
H and (3.9), it follows from Theorem 1.6.8 in [7] that

Eµ0
[

f (X t ) f0(Xs0 ) · · · fm(Xsm )
]

= lim
n→∞

Eµεn
[

f (X t ) f0(Xs0 )... fm(Xsm )
]
. (3.57)
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In view of (2.4), we have

|⟨B(x, x), ek⟩| = |⟨B(x, ek), x⟩| ≤ C∥x∥
2
H∥∇ek∥L∞ ≤ C∥ek∥H3∥x∥

2
H . (3.58)

Thus, L f (x) is a continuous function on H and

|L f (x)| ≤ C(1 + ∥x∥
3
H ). (3.59)

Therefore, for the same reason as (3.57), we have for every r ∈ [s, t],

Eµ0
[(

L f (Xr )
)

f0(Xs0 )... fm(Xsm )
]

= lim
n→∞

Eµεn
[(

L f (Xr )
)

f0(Xs0 )... fm(Xsm )
]
. (3.60)

By the Fubini theorem and the dominate convergence theorem, we obtain

Eµ0
[(∫ t

s
L f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
= lim

n→∞
Eµεn

[(∫ t

s
L f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
. (3.61)

Using (3.57), (3.61), (3.46) and (3.43), we have

Eµ0
[(

f (X t ) − f (Xs) −

∫ t

s
L f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
= lim

n→∞
Eµεn

[(
f (X t ) − f (Xs) −

∫ t

s
L f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
= lim

n→∞
Eµεn

[(
f (X t ) − f (Xs) −

∫ t

s
Lεn f (Xr )dr

)
f0(Xs0 )... fm(Xsm )

]
=0. (3.62)

Hence Mk, j (t) in (3.55) is a martingale under µ0.
For k ∈ N, let g(x) = (x, ek), x ∈ H . By a similar argument, we can show that

Mk(t) := g(X t ) − g(h) −

∫ t

0
Lg(Xr )dr

=(X t , ek) − (h, ek) +

∫ t

0
(Aek, Xs)ds +

∫ t

0
⟨B(Xs), ek⟩ds −

∫ t

0

(
F(Xs), ek

)
ds (3.63)

is a martingale under µ0.
Step 3. (3.55) and (3.63) together with Itô’s formula yield that

⟨Mk, M j ⟩(t) =

∫ t

0
(σ (Xs), ek)(σ (Xs), e j )ds, (3.64)

where ⟨Mk, M j ⟩ stands for the sharp bracket of the two martingales. Now by Lemma A.1 in
the Appendix, there exists a probability space (Ω ′,F ′, P ′) with a filtration F ′

t such that on
the standard extension

(Ω × Ω ′,F × F ′,Ft × F ′

t , µ0 × P ′)

of (Ω ,F ,Ft , P) there exists a one-dimensional Brownian motion W (t), t ≥ 0 such that

Mk(t) =

∫ t

0
(σ (Xs), ek)dW (s), (3.65)
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namely,

(X t , ek) − (h, ek) = −

∫ t

0
(Aek, Xs)ds −

∫ t

0
⟨B(Xs), ek⟩ds

+

∫ t

0
(F(Xs), ek)ds +

∫ t

0
(σ (Xs), ek)dW (s) (3.66)

for every k ≥ 1. Thus, under µ0, {X t , t ≥ 0} is a solution to SNSE (2.12). By the uniqueness
of the SNSE, we conclude that µ0 = µ completing the proof of the theorem. ■

In the next theorem, we will remove the restrictions placed on the coefficients and the initial
value h.

Theorem 3.8. Assume (H.1), (H.2), (H.3), (H.4) and h ∈ H. Then, for any T > 0, µε converges
weakly to µ, as ε → 0, on the space D([0, T ], H ) equipped with the Skorohod topology.

Proof. For each n ∈ N, let hn, Fn(u), σn(u), σ ε
n (u, z) denote the corresponding orthogonal

projections of h, F(u), σ (u), σ ε(u, z) into the n-dimensional space span{e1, . . . , en}. Then, for
each n ∈ N, {σ ε

n }ε≤ε0 and Fn satisfy (H.2)—(H.5). Moreover, there is a constant C independent
of n such that for every u, u1, u2 ∈ H ,

sup
n∈N

∥Fn(u)∥2
H + sup

n∈N
∥σn(u)∥2

H + sup
n∈N,ε≤ε0

∫
R0

∥σ ε
n (u, z)∥2

Hν(dz) ≤ C(1 + ∥u∥
2
H ), (3.67)

sup
n∈N

∥Fn(u1) − Fn(u2)∥2
H + sup

n∈N
∥σn(u1) − σn(u2)∥2

H

+ sup
n∈N,ε≤ε0

∫
R0

∥σ ε
n (u1, z) − σ ε

n (u2, z)∥2
Hν(dz) ≤ C∥u1 − u2∥

2
H .

(3.68)

Let un,ε, un be the solutions of the SNSEs:

un,ε(t) =hn
−

∫ t

0
Aun,ε(s)ds −

∫ t

0
B(un,ε(s))ds +

∫ t

0
Fn(un,ε(s))ds

+

∫ t

0

∫
R0

σ ε
n (un,ε(s−), z)Ñ (dzds), (3.69)

un(t) =hn
−

∫ t

0
Aun(s)ds −

∫ t

0
B(un(s))ds +

∫ t

0
Fn(un(s))ds

+

∫ t

0
σn(un(s))dW (s). (3.70)

By Theorem 3.7, we have for each n ∈ N,

un,ε ε→0
−−→ un in distribution on the space D([0, T ], H ). (3.71)

Moreover, as in the proof of (3.9), using (3.67) we can show that

sup
n∈N,ε≤ε0

{
E sup

0≤t≤T
∥un,ε(t)∥4

H + E
(∫ T

0
∥un,ε(s)∥2

V ds
)2
}

< ∞, (3.72)

sup
n∈N

{
E sup

0≤t≤T
∥un(t)∥4

H + E
(∫ T

0
∥un(s)∥2

V ds
)2
}

< ∞. (3.73)
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We claim that for any δ > 0,

lim
n→∞

P
(

sup
0≤t≤T

∥un(t) − u(t)∥H > δ

)
= 0, (3.74)

lim
n→∞

lim
ε→0

P
(

sup
0≤t≤T

∥un,ε(t) − uε(t)∥H > δ

)
= 0. (3.75)

Because of similarity, we only prove (3.75) here. Applying Itô’s formula, we have

e−γ
∫ t

0 ∥uε(ρ)∥2
V dρ

∥un,ε(t) − uε(t)∥2
H

=∥hn
− h∥

2
H − γ

∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H∥uε(s)∥2
V ds

− 2
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
⟨A(un,ε(s) − uε(s)), un,ε(s) − uε(s)⟩ds

− 2
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
⟨B(un,ε(s)) − B(uε(s)), un,ε(s) − uε(s)⟩ds

+ 2
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
(
Fn(un,ε(s)) − F(uε(s)), un,ε(s) − uε(s)

)
ds

+ 2
∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

×(
σ ε

n (un,ε(s−), z) − σ ε(uε(s−), z), un,ε(s−) − uε(s−)
)
Ñ (dzds)

+

∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s−), z) − σ ε(uε(s−), z)∥2

H N (dzds)

:=

7∑
k=1

I n,ε
k (t). (3.76)

By (2.6) and (2.7) we have

2|⟨B(un,ε(s)) − B(uε(s)), un,ε(s) − uε(s)⟩| = 2|⟨B(un,ε(s) − uε(s)), uε(s)⟩|
≤4∥un,ε(s) − uε(s)∥V ∥un,ε(s) − uε(s)∥H∥uε(s)∥V

≤∥un,ε(s) − uε(s)∥2
V + 4∥uε(s)∥2

V ∥un,ε(s) − uε(s)∥2
H . (3.77)

Therefore, by (2.2) and (3.77) we obtain that

4∑
k=2

I n,ε
k (t) ≤

∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
[
−∥un,ε(s) − uε(s)∥2

V

+ (4 − γ )∥uε(s)∥2
V ∥un,ε(s) − uε(s)∥2

H

]
ds

≤ −

∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

V ds, (3.78)

if we take γ ≥ 4. Using the Lipschitz continuity of F , we have

E sup
0≤s≤t

|I n,ε
5 (s)|

≤E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H ds
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+ E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥Fn(un,ε(s)) − F(uε(s))∥2

H ds

≤E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H ds

+ 2E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥Fn(un,ε(s)) − F(un,ε(s))∥2

H ds

+ 2E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥F(un,ε(s)) − F(uε(s))∥2

H ds

≤C E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H ds

+ 2E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥Fn(un,ε(s)) − F(un,ε(s))∥2

H ds. (3.79)

By Burkholder’s inequality, we get

E sup
0≤s≤t

|I n,ε
6 (s)|

≤2E
[∫ t

0

∫
R0

e−2γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s), z) − σ ε(uε(s), z)∥2

H×

∥un,ε(s) − uε(s)∥2
Hν(dz)ds

] 1
2

≤2E
[

sup
0≤s≤t

e−
γ
2
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥H×

(∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s), z) − σ ε(uε(s), z)∥2

Hν(dz)ds
) 1

2
]

≤
1
2

E sup
0≤s≤t

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H

+ 2E
∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s), z) − σ ε(uε(s), z)∥2

Hν(dz)ds

≤
1
2

E sup
0≤s≤t

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H

+ C E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H ds

+ 4E
∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s), z) − σ ε(un,ε(s), z)∥2

Hν(dz)ds, (3.80)

where the uniform Lipschitz constant of σ ε has been used. Similar to (3.79), we have

E sup
0≤s≤t

|I n,ε
7 (s)|

=E
∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s), z) − σ ε(uε(s), z)∥2

Hν(dz)ds
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≤C E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H ds

+ 2E
∫ t

0

∫
R0

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥σ ε
n (un,ε(s), z) − σ ε(un,ε(s), z)∥2

Hν(dz)ds. (3.81)

Combining (3.76), (3.78)–(3.81) together yields that for t ≤ T ,

E sup
0≤s≤t

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H

+ 2E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

V ds

≤2∥hn
− h∥

2
H + C E

∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

H ds

+ 4E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥Fn(un,ε(s)) − F(un,ε(s))∥2

H ds

+ 12E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ

∫
R0

∥σ ε
n (un,ε(s), z) − σ ε(un,ε(s), z)∥2

Hν(dz)ds. (3.82)

Applying Gronwall’s inequality we obtain for t ∈ [0, T ],

E sup
0≤s≤t

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H

+ E
∫ t

0
e−γ

∫ s
0 ∥uε(ρ)∥2

V dρ
∥un,ε(s) − uε(s)∥2

V ds

≤C ×

[
∥hn

− h∥
2
H + E

∫ t

0
∥Fn(un,ε(s)) − F(un,ε(s))∥2

H ds

+ E
∫ t

0

∫
R0

∥σ ε
n (un,ε(s), z) − σ ε(un,ε(s), z)∥2

Hν(dz)ds
]
. (3.83)

We claim that

lim
n→∞

lim
ε→0

E
∫ T

0

∫
R0

∥σ ε
n (un,ε(s), z) − σ ε(un,ε(s), z)∥2

Hν(dz)ds = 0, (3.84)

lim
n→∞

lim
ε→0

E
∫ T

0
∥Fn(un,ε(s)) − F(un,ε(s))∥2

H ds = 0. (3.85)

Suppose the above claims are proved. Then we conclude from (3.83) that

lim
n→∞

lim
ε→0

E sup
0≤s≤T

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H = 0. (3.86)

Let us only prove (3.84). The proof of (3.85) is similar and simpler. Let

Gε
n(x) :=

∫
R0

∥σ ε
n (x, z) − σ ε(x, z)∥2

Hν(dz), x ∈ H. (3.87)

Note that

sup
n∈N,ε≤ε0

Gε
n(x) ≤ C(1 + ∥x∥

2
H ). (3.88)
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By (3.72) and the dominated convergence theorem, to prove (3.84), it suffices to show that for
each s ∈ [0, T ],

lim
n→∞

lim
ε→0

EGε
n(un,ε(s)) = 0. (3.89)

Obviously, (3.89) will follow if the following three equalities are proved.

lim
ε→0

EGε
n(un,ε(s)) = lim

ε→0
EGε

n(un(s)), ∀ n ∈ N, (3.90)

lim
n→∞

lim
ε→0

EGε
n(un(s)) = lim

n→∞
lim
ε→0

EGε
n(u(s)), (3.91)

lim
n→∞

lim
ε→0

EGε
n(u(s)) = 0. (3.92)

We first prove (3.90). Since un is a continuous process, due to (3.71), we see that for each
n ∈ N, s ∈ [0, T ],

un,ε(s)
ε→0
−−→ un(s) in distribution. (3.93)

Therefore, to prove (3.90), we can use Skorohod’s representation theorem to assume that
∥un,ε(s)−un(s)∥H → 0 almost surely as ε → 0. In view of (3.72), {∥un,ε(s)∥2

H }ε≤ε0 is uniformly
integrable, and therefore, we can further deduce that

lim
ε→0

E∥un,ε(s) − un(s)∥2
H = 0. (3.94)

On the other hand,

E |Gε
n(un,ε(s)) − Gε

n(un(s))|

≤E
∫
R0

⏐⏐⏐∥σ ε
n (un,ε(s), z) − σ ε(un,ε(s), z)∥2

H − ∥σ ε
n (un(s), z) − σ ε(un(s), z)∥2

H

⏐⏐⏐ν(dz)

≤E
∫
R0

(
∥σ ε

n (un,ε(s), z) − σ ε
n (un(s), z)∥H + ∥σ ε(un,ε(s), z) − σ ε(un(s), z)∥H

)
×

(
∥σ ε

n (un,ε(s), z) − σ ε(un,ε(s), z)∥H + ∥σ ε
n (un(s), z) − σ ε(un(s), z)∥H

)
ν(dz)

≤

[
2E

∫
R0

(
∥σ ε

n (un,ε(s), z) − σ ε
n (un(s), z)∥2

H

+ ∥σ ε(un,ε(s), z) − σ ε(un(s), z)∥2
H

)
ν(dz)

] 1
2

×

[
4E

∫
R0

(
∥σ ε

n (un,ε(s), z)∥2
H + ∥σ ε(un,ε(s), z)∥2

H + ∥σ ε
n (un(s), z)∥2

H

+ ∥σ ε(un(s), z)∥2
H

)
ν(dz)

] 1
2

:=I ε
1 × I ε

2 . (3.95)

By (3.67), (3.2), (3.72) and (3.73), we deduce that

sup
ε≤ε0

|I ε
2 |

2
≤ C sup

n∈N,ε≤ε0

E(1 + ∥un,ε(s)∥2
H + ∥un(s)∥2

H ) < ∞. (3.96)

(3.4), (3.68) and (3.94) imply

|I ε
1 |

2
≤ C E∥un,ε(s) − un(s)∥2

H
ε→0
−−→ 0. (3.97)
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Therefore, (3.90) follows from (3.95), (3.96) and (3.97). In view of (3.74), a similar argument
leads to

lim
n→∞

sup
ε≤ε0

E |Gε
n(un(s)) − Gε

n(u(s))| = 0. (3.98)

Hence (3.91) holds. Note that (H.4) and the condition (ii) of (H.3) imply

lim
n→∞

lim
ε→0

∫
R0

∥σ ε
n (x, z) − σ ε(x, z)∥2

Hν(dz)

= lim
n→∞

lim
ε→0

[∫
R0

∥σ ε(x, z)∥2
Hν(dz) −

∫
R0

∥σ ε
n (x, z)∥2

Hν(dz)
]

=∥σ (x)∥2
H − lim

n→∞
∥σn(x)∥2

H = 0, ∀ x ∈ H. (3.99)

Therefore, (3.92) immediately follows from (3.99) and (3.88) by the dominated convergence
theorem. Thus, (3.84) is proved, and so is (3.86).

Next, we proceed with the proof of (3.75). For any given δ1 > 0, in view of (3.9), we can
choose a positive constant M1 such that

sup
n∈N,ε≤ε0

P
(

sup
0≤t≤T

∥un,ε(t) − uε(t)∥H > δ,

∫ T

0
∥uε(s)∥2

V ds > M1

)

≤ sup
n∈N,ε≤ε0

P
(∫ T

0
∥uε(s)∥2

V ds > M1

)
≤ δ1. (3.100)

On the other hand, by (3.86), we have

lim
n→∞

lim
ε→0

P
(

sup
0≤t≤T

∥un,ε(t) − uε(t)∥H > δ,

∫ T

0
∥uε(s)∥2

V ds ≤ M1

)
≤ lim

n→∞
lim
ε→0

P
(

sup
0≤s≤T

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H ≥ e−γ M1δ2

)
≤eγ M1

1
δ2 lim

n→∞
lim
ε→0

E sup
0≤s≤T

e−γ
∫ s

0 ∥uε(ρ)∥2
V dρ

∥un,ε(s) − uε(s)∥2
H = 0. (3.101)

Combining (3.100) and (3.101) together yields

lim
n→∞

lim
ε→0

P
(

sup
0≤t≤T

∥un,ε(t) − uε(t)∥H > δ

)
≤ δ1. (3.102)

Since δ1 is arbitrary, (3.75) is proved.
Finally we prove that µε converges weakly to µ. Let µε

n , µn denote respectively the laws of
un,ε and un on S := D([0, T ], H ). Let G be any given bounded, uniformly continuous function
on S. For any n ≥ 1, we write∫

S
G(w)µε(dw) −

∫
S

G(w)µ(dw)

=

∫
S

G(w)µε(dw) −

∫
S

G(w)µε
n(dw) +

∫
S

G(w)µε
n(dw) −

∫
S

G(w)µn(dw)

+

∫
S

G(w)µn(dw) −

∫
S

G(w)µ(dw)
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=E[G(uε) − G(un,ε)] +

(∫
S

G(w)µε
n(dw) −

∫
S

G(w)µn(dw)
)

+ E[G(un) − G(u)]. (3.103)

Give any δ > 0. Since G is uniformly continuous, there exists δ1 > 0 such that⏐⏐⏐⏐E [G(uε) − G(un,ε); sup
0≤s≤T

∥un,ε(s) − uε(s)∥H ≤ δ1

]⏐⏐⏐⏐ ≤
δ

4
(3.104)

for all n ≥ 1, ε > 0. In view of (3.75) and (3.74), there exists n1 and then εn1 such that

sup
ε≤εn1

⏐⏐⏐⏐E [G(uε) − G(un1,ε); sup
0≤s≤T

∥un1,ε(s) − uε(s)∥H > δ1

]⏐⏐⏐⏐
≤C sup

ε≤εn1

P
(

sup
0≤s≤T

∥un1,ε(s) − uε(s)∥H > δ1

)
≤

δ

4
, (3.105)

and

|E[G(un1 ) − G(u)]| ≤
δ

4
. (3.106)

On the other hand, by (3.71), there exists ε1 > 0 such that for ε ≤ ε1,⏐⏐⏐⏐∫
S

G(w)µε
n1

(dw) −

∫
S

G(w)µn1 (dw)
⏐⏐⏐⏐ ≤

δ

4
. (3.107)

Putting (3.103)–(3.107) together, we obtain that for ε ≤ min{εn1 , ε1},⏐⏐⏐⏐∫
S

G(w)µε(dw) −

∫
S

G(w)µ(dw)
⏐⏐⏐⏐ ≤ δ. (3.108)

Since δ > 0 is arbitrarily small, we deduce that

lim
ε→0

∫
S

G(w)µε(dw) =

∫
S

G(w)µ(dw) (3.109)

completing the proof of the Theorem. ■

4. Examples

In this section, we give some examples of {σ ε
} which satisfy the Hypotheses in Section 3.

Proposition 4.1. Let σ be a global Lipschitz mapping from H into H. For each ε > 0, let

σ ε(u, z) = σ (θε(z)u)hε(z), u ∈ H, z ∈ R0, (4.1)

where {θε(·)}, {hε(·)} are two families of real-valued functions on R0. Assume that {θε} satisfies

sup
z∈R0

|θε(z) − 1|
ε→0
−−→ 0, (4.2)

and {hε} satisfies∫
R0

|hε(z)|2ν(dz)
ε→0
−−→ 1, (4.3)

sup
z∈R0

|hε(z)|
ε→0
−−→ 0. (4.4)

Then {σ ε
} satisfies (H.2)–(H.4).
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Proof. By (4.2), there exists a constant ε1 such that

sup
ε≤ε1

sup
z∈R0

|θε(z)| ≤ 2. (4.5)

By (4.3), there exists a constant ε2 such that

sup
ε≤ε2

∫
R0

|hε(z)|2ν(dz) ≤ 2. (4.6)

By (4.4), there exists a constant ε3 such that

sup
ε≤ε3

sup
z∈R0

|hε(z)| ≤ 1. (4.7)

Let ε0 = min{ε1, ε2, ε3} and assume ε ≤ ε0 in the following calculation. The linear growth
condition for σ together with (4.5) and (4.4) yield

sup
∥x∥H ≤M

sup
z∈R0

∥σ ε(x, z)∥H = sup
∥x∥H ≤M

sup
z∈R0

∥σ (θε(z)x)∥H |hε(z)|

≤ sup
∥x∥H ≤M

sup
z∈R0

C(1 + |θε(z)|∥x∥H ) sup
z∈R0

|hε(z)|

≤C(1 + 2M) sup
z∈R0

|hε(z)|
ε→0
−−→ 0. (4.8)

Thus, (i) of (H.3) is satisfied. By the Lipschitz condition of σ , we have⏐⏐⏐⏐ ∫
R0

(
σ (θε(z)x), ek

)(
σ (θε(z)x), e j

)
|hε(z)|2ν(dz)

−

∫
R0

(
σ (x), ek

)(
σ (x), e j

)
|hε(z)|2ν(dz)

⏐⏐⏐⏐
≤

∫
R0

⏐⏐(σ (θε(z)x) − σ (x), ek
)(

σ (θε(z)x), e j
)⏐⏐|hε(z)|2ν(dz)

+

∫
R0

⏐⏐(σ (x), ek
)(

σ (θε(z)x) − σ (x), e j
)⏐⏐|hε(z)|2ν(dz)

≤

[∫
R0

∥σ (θε(z)x) − σ (x)∥2
H |hε(z)|2ν(dz)

] 1
2

×

[∫
R0

∥σ (θε(z)x)∥2
H |hε(z)|2ν(dz)

] 1
2

+

[∫
R0

∥σ (θε(z)x) − σ (x)∥2
H |hε(z)|2ν(dz)

] 1
2

×

[∫
R0

∥σ (x)∥2
H |hε(z)|2ν(dz)

] 1
2

≤C sup
z∈R0

|θε(z) − 1|∥x∥H

[∫
R0

|hε(z)|2ν(dz)
] 1

2
×

{[∫
R0

(1 + |θε(z)|2∥x∥
2
H )

× |hε(z)|2ν(dz)
] 1

2
+

[∫
R0

(1 + ∥x∥
2
H )|hε(z)|2ν(dz)

] 1
2
}

ε→0
−−→ 0, (4.9)
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where we have used (4.5), (4.6) and (4.2). On the other hand, (4.3) gives∫
R0

(
σ (x), ek

)(
σ (x), e j

)
|hε(z)|2ν(dz)

ε→0
−−→

(
σ (x), ek

)(
σ (x), e j

)
. (4.10)

Combining (4.9) with (4.10), condition (ii) of (H.3) is obtained. (H.2) and (H.4) can be similarly
verified, we omit the details. ■

Example 4.2. Here we give some examples of θε and hε in Proposition 4.1. One can take θε

to be any family of functions converging to 1 uniformly, such as

θε(z) = 1, 1 + ε cos z, 1 −
ε

√
2π

e−
ε2z2

2 , . . . . (4.11)

And the following examples of hε satisfy (4.3) and (4.4).
(i)

hε(z) =
1

√
ν({ε ≤ |z| ≤ 1})

1{ε≤|z|≤1}, (4.12)

where the characteristic measure ν satisfies

ν({ε ≤ |z| ≤ 1})
ε→0
−−→ ∞, i.e. ν(R0) = ∞. (4.13)

(ii)

hε(z) =
z√∫

1≤|z|≤ 1
ε
|z|2ν(dz)

1
{1≤|z|≤ 1

ε }
, (4.14)

where the characteristic measure ν satisfies

ε2
∫

1≤|z|≤ 1
ε

|z|2ν(dz)
ε→0
−−→ ∞. (4.15)

(iii)

hε(z) =
z√∫

0<|z|≤ε
|z|2ν(dz)

1{0<|z|≤ε}, (4.16)

where the characteristic measure ν satisfies
1
ε2

∫
0<|z|≤ε

|z|2ν(dz)
ε→0
−−→ ∞. (4.17)

For example, if να(dz) =
1

|z|1+α dz, which is the characteristic measure of symmetric α-stable
processes, then for each α ∈ (0, 2), να satisfies (4.13), (4.15) and (4.17).
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Appendix

The following lemma is an infinite dimensional martingale representation theorem, which
is a slight modification of Theorem 18.12 in [11].

Lemma A.1. Let (Ω ,F , P) be a probability space equipped with a filtration {Ft }t≥0. And let
{M i

}
∞

i=1 be a sequence of continuous local Ft -martingale such that for i, j ∈ N and t ≥ 0,

⟨M i , M j
⟩(t) =

∫ t

0

r∑
k=1

Ψik(s)Ψ jk(s)ds (A.1)

and ∑
i=1,2,...

k=1,2,...,r

∫ t

0
|Ψik(s)|2ds < ∞, P − a.s., (A.2)

for some real-valued Ft -progressive measurable processes Ψik , i = 1, 2, . . ., k = 1, 2, . . . , r .
Then on a standard extension (Ω̃ , F̃ , F̃t , P̃) of (Ω ,F ,Ft , P), there exist r independent
F̃t -Brownian motions B1(t), B2(t), . . . , Br (t) such that for all i ∈ N,

M i (t) =

r∑
k=1

∫ t

0
Ψik(s)d Bk(s), t ≥ 0. (A.3)

Proof. The proof of this lemma is a slight modification of the proof of Theorem 18.12 in [11].
We first introduce some notations. Let A be a bounded linear operator from Banach space X
to Banach space Y , we denote by A∗ the conjugate operator of A from the dual space of Y
to the dual space of X . If A is a matrix or a vector in Euclidean spaces, then A∗ denotes the
transpose of A. Define the Hilbert space

ℓ2
:= {v = (v1, v2, . . .)∗ :

∞∑
i=1

|vi |
2 < ∞}. (A.4)

For any t ≥ 0, and x ∈ Rr , we define the mapping Ψ (t) by

Ψ (t)x := (
r∑

k=1

Ψ1k xk,

r∑
k=1

Ψ2k xk, . . .)∗. (A.5)

From (A.2), it follows that for a.e. t ≥ 0, Ψ (t) is a Hilbert–Schmidt operator from Rr to
ℓ2. Let N (t) and R(t) be the null and range spaces of Ψ (t), and write N⊥(t) and R⊥(t) for
their orthogonal complements in Rr and ℓ2 respectively. Denote the corresponding orthogonal
projections by πN (t), πR(t), πN⊥(t), πR⊥(t), respectively. Note that Ψ (t) is a bijection from N⊥(t)
to R(t), and write Ψ−1(t) for the inverse mapping from R(t) to N⊥(t). All these mappings are
clearly Borel-measurable functions of Ψ (t), and hence again progressive measurable.

We introduce, on a probability space (Ω ′,F ′, P ′) equipped with a filtration {F ′
t }, an r -

dimensional F ′
t -Brownian motion B ′(t) = (B ′1(t), B ′2(t), . . . , B ′r (t))∗, and construct a standard

extension (Ω̃ , F̃ , F̃t , P̃) of (Ω ,F ,Ft , P) by Ω̃ := Ω × Ω ′, F̃ := F × F ′, F̃t := Ft × F ′
t ,

P̃ := P × P ′. Thus, Ψ remains F̃t -progressive measurable and the martingale properties of
M and B ′ are still valid for F̃t . In particular, on this extension, we have ⟨M i , B ′k

⟩(t) = 0,
⟨B ′k, B ′l

⟩(t) = δkl t and (A.1).
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Consider in Rr the continuous local F̃t -martingale

B(t) =

∫ t

0
Ψ−1(s)πR(s)d M(s) +

∫ t

0
πN (s)d B ′(s)

: =

∞∑
i=1

∫ t

0
Ψ−1(s)πR(s)ei d M i (s) +

r∑
k=1

∫ t

0
πN (s) fkd B ′k(s), (A.6)

where ei is the vector in ℓ2 with a 1 in the i th coordinate and zeros elsewhere, similarly, fk

is the vector in Rr with a 1 in the kth coordinate and zeros elsewhere. The stochastic integral
against M in (A.6) makes sense since

E
⏐⏐⏐⏐∫ t

0
Ψ−1(s)πR(s)d M(s)

⏐⏐⏐⏐2
=E

∫ t

0
tr
(
Ψ−1(s)πR(s)Ψ (s)Ψ ∗(s)(Ψ−1(s)πR(s))∗

)
ds

=E
∫ t

0
tr
(
πN⊥(s)(πN⊥(s))

∗
)

ds

=E
∫ t

0

r∑
k=1

|πN⊥(s) fk |
2ds < ∞, (A.7)

where tr means the trace of an operator, and we have used the equality Ψ−1(s)πR(s)Ψ (s) =

πN⊥(s). Furthermore,

⟨B, B⟩(t) =

∫ t

0
Ψ−1(s)πR(s)Ψ (s)Ψ ∗(s)(Ψ−1(s)πR(s))∗ds

+

∫ t

0
πN (s)(πN (s))∗ds

=

∫ t

0
πN⊥(s)(πN⊥(s))

∗ds +

∫ t

0
πN (s)(πN (s))∗ds

=

∫ t

0
(πN⊥(s) + πN (s))ds = t I, (A.8)

where I is the identity matrix of order r × r . Hence by Lévy’s characterization of Brownian
motion, B is an r -dimensional F̃t -Brownian motion. Note that∫ t

0
πR⊥(s)d M(s) = 0, (A.9)

since

⟨

∫ t

0
πR⊥(s)d M(s),

∫ t

0
πR⊥(s)d M(s)⟩

=

∫ t

0
πR⊥(s)Ψ (s)Ψ ∗(s)(πR⊥(s))

∗ds = 0, (A.10)

where we have used πR⊥(s)Ψ (s) = 0. Now using (A.9), we see that∫ t

0
Ψ (s)d B(s) =

∫ t

0
Ψ (s) × Ψ−1(s)πR(s)d M(s) +

∫ t

0
Ψ (s) × πN (s)d B ′(s)
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=

∫ t

0
πR(s)d M(s)

=

∫ t

0
(πR(s) + πR⊥(s))d M(s) = M(t). ■ (A.11)
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