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Pain is a complex biological phenomenon that encompasses intricate neurophysiological, behavioural,
psychosocial and affective components. Protracted or chronic pain alerts an individual to a possible
pathological abnormality and is the main reason why patients visit a primary care physician. Despite the
pervasiveness of chronic pain in the population, the effectiveness of current pharmacological therapies

remains woefully inadequate and prolonged treatment often leads to the development of undesirable side-
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effects. Since the vast majority of chronic pain originates in a specific tissue or group of tissues, it may be
advantageous to target pain control in the periphery and thereby circumvent the known risks associated with
non-specific systemic treatments. This review spotlights a number of promising targets for peripheral pain
control including the transient receptor potential (TRP) family of neuronal ion channels, the family of

Pain proteinase activated receptors (PARs), cannabinoids, and opioids. A critical appraisal of these targets in

Peripheral analgesia

preclinical models of disease is given and their suitability as future peripheral analgesics is discussed.

© 2010 Elsevier B.V. All rights reserved.

As most of us can attest, pain is an unpleasant sensory experience
which instils negative feelings and as such is something we generally
try to avoid. Pain can either be short-lasting (acute) or more
protracted (chronic). Acute pain is typically beneficial to the
individual as it warns of actual or impending tissue damage allowing
rapid, reflex evasive action to be carried out. This nociceptive pain
arises in the periphery via direct activation of pain-sensing nerve
terminals by noxious mechanical, thermal or chemical stimuli. Acute
pain can usually be relieved by local administration of pharmacolog-
ical agents (e.g. lidocaine, non-steroidal anti-inflammatory drugs) or
non-pharmacological approaches (e.g. rubbing the affected area or
application of ice). Chronic pain, on the other hand, tends to be a
maladaptive response to some underlying pathology. Pain is consid-
ered chronic if it continues unabated beyond about 3 months and
typically outlasts the normal healing response or continues in the
absence of any observable tissue damage [1]. Chronic pain is the
primary reason why people seek medical attention, yet the arsenal of
available effective remedies is limited. Furthermore, all of the
currently available analgesics have some degree of negative side-
effect associated with them. The time has come to develop more
effective, safe and consistent analgesics.

Firstly an overview of the classic pain pathway is provided. Most
types of pain begin in the periphery with a noxious stimulus
activating unspecialised free nerve endings associated with small
diameter primary afferent neurones (Fig. 1). This physical stimulus is
subsequently transduced into an electrochemical signal which is
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transmitted from the periphery towards the central nervous system
along slowly conducting primary afferent nerves. Upon entering the
dorsal horn of the spinal cord, these impulses are transmitted via
chemical synapses to second order neurones where they are
subsequently conveyed along ascending tracts to higher centres in
the brain. By relaying these impulses to specific areas of the brain such
as the somatosensory cortex and the amygdala, the electrochemical
signals are shaped into a psychophysical experience incorporating any
protective motor reflexes and emotional responses. The critical details
of this entire process are still inadequately understood and form the
basis of a fascinating area of neuroscientific research.

Current pharmacological agents attempt to tackle pain in both the
central as well as the peripheral divisions of the pain pathway. Since
centrally acting analgesics tend to produce numerous secondary
unwanted side-effects (e.g. dysphoria, motor deficits and addiction) it
stands to reason that peripherally acting drugs have the advantage of
circumventing these problems by targeting pain at the source. This
review will address these issues and highlight the palpable benefits of
peripherally-directed analgesia. While the peripheral mediators
covered here are by no means exhaustive, the intent is to highlight
emerging and possibly contentious targets worthy of further
discussion.

1. Transient receptor potential ion channels

In an era of molecular cloning technology, a large number of cation
channels have emerged belonging to the transient receptor potential
(TRP) family. Identification of these ion channels on polymodal
nociceptors triggered intense interest in the pain research commu-
nity, many of whom consider TRP channels to be central integrators of
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Fig. 1. The pain pathway from periphery to brain. Noxious environmental stimuli can activate peripheral nociceptors leading to the sensation of pain. Various cells residing in the
vicinity of the nerve terminal can release mediators which either heighten or reduce the activation threshold of the nerve.

pain transduction and modulation. Indeed, TRP channels have been
linked with all aspects of sensory physiology including mechan-
osensation, thermosensation, hearing, vision and taste. The latter
sensory modality prompted a slew of molecular biology studies and at
one point it felt like just about everything in the kitchen larder
activated a TRP channel. It is plain to see why these prevalent and
precocious ion channels have garnered favour as targets of interest by
academia and the pharmaceutical industry alike. A summary of the
most commonly studied TRP channels is shown in Table 1.

The channel which has received the greatest attention is the TRP-
vanilloid 1 (TRPV1) channel. Cloned in 1997 [2], TRPV1 is known to be
activated by protons, temperatures in excess of 42 °C, endovanilloids,
cannabinoids, and a host of other chemical mediators known to be
present in the “inflammatory brew”. The promiscuous nature of the
TRPV1 channel renders it a central modulator of pro-algesic stimuli from
disparate sensory modalities. Consequently, several small molecule
TRPV1 antagonists are currently being assessed for potential analgesic
properties in various painful diseases. In joints, intra-articular injection
of the TRPV1 agonist capsaicin was found to cause synovial vasodila-
tation [3] which can be blocked by the selective TRPV1 antagonist
SB366791 [4]. Thus, a role for TRPV1 in arthritic processes was
established. This was later confirmed by the observation that the
severity of inflammatory joint disease was significantly less in TRPV1
knockout mice compared to wild-types [5,6]. Pain behaviour studies
found that the tactile allodynia associated with Freund's complete
adjuvant-induced arthritis was less in TRPV1 deficient mice compared
to genetically normal controls [6,7]. Similarly, systemic treatment of
osteoarthritic rats with the TRPV1 antagonist A-425619 reduced the
weight bearing deficit associated with this disease [8].

In the gastrointestinal system, TRPV1 contributes to visceral
hypersensitivity making it an intriguing target for intractable
abdominal pain syndromes. Intestinal biopsies taken from subjects
undergoing routine colonoscopy revealed that patients with inflam-

matory bowel syndrome had over three times as many TRPV1-
positive nerve fibres compared to control subjects [9]. These
additional TRPV1-positive afferents can then be sensitized by
peripherally circulating inflammatory mediators released from en-
teric nerves, endothelial cells, and immunocytes. Data supporting a
neuroimmune component of peripheral sensitization has recently
been reported [10]. Supernatants of peripheral blood mononuclear

Table 1
Some of the commonly studied TRP channels in pain research and their activators/
blockers.

TRP Activator Temperature Selective channel

channel sensitivity blocker

TRPV1 Protons 43-52 °C SB366791
Vanilloids Capsazepine
Ethanol

TRPV2  A9-Tetrahydrocannabinol >52°C None
2-aminoethoxydiphenyl borate
Mechanical swelling

TRPV3  Eugenol 32-39°C None
2-aminoethoxydiphenyl borate
Vanillin
Camphor

TRPV4  4o-Phorbol 12,13-didecanoate  25-34 °C HC-067047

RN-1734

Epoxyeicosatrienoic acids
Mechanical

TRPA1  Cinnamaldehyde 17°C AP18
Allicin HC-030031
Acrolein
Formalin
Mustard oil

TRPM8 Menthol 18-24°C 5-Benzyloxytryptamine
Eucalyptol
Spearmint
Icilin
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cells taken from patients with post-infectious inflammatory bowel
syndrome caused increased firing of mouse visceral primary afferents.
This observation suggests that during inflammatory bowel syndrome,
immunocytes can locally release mediators that sensitize colonic
nociceptors leading to intestinal pain.

Having established TRPV1 as an integrator of peripheral pain
processes, a number of small molecule TRPV1 antagonists rapidly
emerged and touted as potential novel analgesics. Subsequent tests
with small molecule TRPV1 antagonists, however, revealed that some
of these pharmacological agents produced profound hyperthermia
[11,12] and as such could not be used therapeutically. Later studies
found that the primary site of TRPV1 antagonist-induced hyperther-
mia was the periphery and that targeting TRPV1 channels in the
central nervous system may be more beneficial for pain control while
avoiding thermoregulatory complications [13,14]. Some researchers
claim to have discovered TRPV1 antagonists with differential
pharmacology i.e. compounds which inhibit TRPV1-induced pain
but have no effect on core body temperature control [15]. Since TRPV1
is activated by a large array of sensory stimuli and chemical agents, it
remains to be seen whether it is possible to isolate the pain regulatory
aspect of TRPV1 without evoking undesirable side-effects.

Another vanilloid channel receiving increasing attention is the
TRPV4 channel. It is expressed on sensory free nerve endings [16] and
is known to be activated by moderate temperatures (25-34 °C),
mechanical stimuli [17], and chemical ligands such as 4o-phorbol
12,13 didecanoate (4a-PDD) and epoxyeicosatrienoic acids [18,19].
The identification of TRPV4 channels on cochlear hair cells and
vibrissal Merkel cells gave the first indication that this particular TRP
channel may be involved in mechanosensation [20]. Subsequent
studies showing TRPV4 expression on Ad and C fibres in mouse skin
highlighted the possibility that TRPV4 could be involved in peripheral
mechanonociception [16]. In fact, TRPV4 knockout mice have a higher
threshold to noxious mechanical stimuli compared to wildtype
animals [21]. In the gut, TRPV4 is co-localised with inflammatory
neuropeptides in small diameter sensory neurones and administra-
tion of a TRPV4 agonist greatly enhances visceral mechanosensation
[22]. Furthermore, behavioural responses to noxious colonic disten-
sion were inhibited in animals lacking TRPV4 cation channels [22].

Moving from hot to cold, the first channel found to be responsive to
lower temperatures was found to be expressed by a subset of TRPV1
expressing polymodal nociceptors and due to its large number of
ankyrin repeating motifs was named TRPA1 [23,24]. TRPA1 channels are
believed to be activated by moderate temperatures (approximately
17 °C) and their expression has been shown to be increased in dorsal
root ganglia (DRG) ipsilateral to Freund's complete adjuvant-induced
inflammation [25] or nerve injury [26]. Mice missing functional TRPA1
channels show reduced thermal and mechanical pain responses to
intraplantar injection of bradykinin or allylisothiocyanate [27,28].
Peripheral injection of the TRPA1 antagonist AP18 [(Z)-4-(4-chloro-
phynyl)-3-methylbutyl-3-en-2-oxime] significantly reduced mechani-
cal hyperalgesia and cold allodynia in a model of chronic inflammation
[29]. Another TRPA1 antagonist HC-030031 [(2-[1,3-dimethyl-2,6-
dioxo-1,2,3,6-tetrahydro-7H-purin-7yl)-N-(4-isopropylphenyl)acet-
amide] dose-dependently reduced flinching in the formalin model of
chemonociception [30] as well as mechanonociception in Freund's
complete adjuvant model of inflammatory pain and in the spinal nerve
ligation model of neuropathic pain [31]. More recently, mechanical
hyperalgesia produced by either intra-plantar administration of tumour
necrosis factor-a or intra-articular injection of Freund's complete
adjuvant was attenuated by AP18 suggesting that TRPA1 channels are
involved in inflammatory and arthritic pain [32].

Another ion channel known to be involved in cold sensation
belongs to the melastatin family of TRP channels and was termed
TRPMS [33,34]. Triggered by temperatures in the range 18-24 °C, as
well as other cooling compounds such as menthol, eucalyptol and
icilin, TRPMS is expressed by about 15% of small diameter DRG and

trigeminal neurones [33-35]. Being a non-selective cation channel,
stimulation of TRPM8 channels leads to membrane depolarization and
afferent nerve firing. Involvement of TRPMS8 channels in cold
hypersensitivity is not yet certain although the emerging evidence
is highly suggestive of the involvement of TRPMS8 in cold pain
processing. In several neuropathic and inflammatory pain models,
TRPMS expression is increased and the channel offsets thermal as well
as mechanical hypersensitivity although it is unclear whether this is
achieved by TRPMS8 activation or blockade [26,36,37]. Experiments
examining acute inflammatory pain induced by intraplantar injection
of Freund's complete adjuvant found that pain was inhibited by
peripheral TRPMS8 agonism [36]. Similarly, neuropathic pain elicited
by chronic constriction injury to the sciatic nerve or peripheral nerve
demyelination using lysolecithin could be ameliorated by topical
cooling, menthol and icilin [36]. Katsura et al., however, found that
antisense inactivation of central TRPM8 channels had no effect on L5
spinal nerve ligation-induced neuropathic pain [25]. The role of
TRPMS in pain modulation still requires further analysis; however,
some of the controversy could be related to whether the agonists/
antagonists are administered centrally versus peripherally leading to
differential responses.

2. Proteinase activated receptors

Proteinases hydrolyse the peptide bonds in long chain proteins and
are involved in multiple physiological processes such as tissue
degradation, apoptosis, the blood clotting cascade and tissue remodel-
ling. Further to this classic enzymatic activity, proteinases can also act as
signalling molecules by triggering a small group of G-protein
coupled receptors. There are currently four members of these
proteinase activated receptors (PAR;_4) and they are expressed
in a plethora of organs such as joints, skin, gut and lungs. Unlike
other G-protein coupled receptors which rely on the binding of a
specific chemical ligand to cause receptor stimulation, PARs are
activated by a proteinase causing a change in receptor conformation.
Tethered to the extracellular N-terminal loop of the receptor there is
a short amino acid sequence which has the potential to stimulate the
same receptor but is impeded from doing so by an amino acid cap. A
locally released proteinase cleaves the receptor at a specific point
thereby removing the cap and exposing the functional amino acid
sequence which can now bind to its complementary domain on the
extracellular N-terminal loop of the receptor rather like the hammer
of a gun engaging with a cartridge. The stimulated receptor then
initiates a series of second messenger cascades leading to intracel-
lular signalling. Experimentally, it is possible to activate the PARs
with a small peptide agonist which matches the tethered ligand
sequence (see Table 2 for a list of the various PAR activating
peptides). This approach has the benefit of selectively stimulating
the PAR of interest without possible off target effects that would
undoubtedly be initiated by addition of the proteinase.

With the exception of PARs, all of the PARs have been implicated in
the control of peripheral nociception. PAR; is primarily activated by
thrombin and plays an important role in cardiovascular disease and
inflammation [38]. Recent evidence has shown that PAR; is expressed
by mouse DRG and treating these sensory neuronal cell bodies with a
PAR; agonist leads to calcium mobilization [39]. Local injection of the
PAR; agonist TFLLR-NH, dose-dependently blocks hyperalgesia in
both acute and chronic models of inflammation [39-41]. It is believed
that PAR; achieves anti-nociception by causing the secondary release
of endogenous opioids since PAR; responses are attenuated by the
non-specific opioid antagonist naloxone [39]. Interestingly, PAR;
knockout mice respond normally to noxious thermal and mechanical
stimuli suggesting that PAR; is only active during inflammation and
does not affect physiological pain [39].

PAR, has been localised on sensory nerves and is primarily
activated by trypsin and mast cell tryptase resulting in the release of
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Table 2
Summary of PAR modulators and the role of PARs in pain.
PAR  Activating Inactive peptide Antagonist Role in pain
peptide
PART TFLLR-NH,  FTLLR-NH, RWJ-58259 | Pain [36-38]
SCH-205831
SCH-5303048
PAR2 SLIGRL-NH,  LSIGRL-NH, ENMD-1068 1 Pain [40-42]
2-Furoyl- 2-Furoyl-
LIGRLO-NH, OLRGIL-NH,
PAR3 None None None Unknown

PAR4 AYPGKF-NH, YAPGKF-NH, Pepducin p4Pal-10 1 Pain joints [45,46]

| Pain skin, gut [49]

algogenic neuropeptides such as substance P and calcitonin gene-
related peptide [42]. As such, PAR, is considered to be a pro-
nociceptive receptor whose activation causes increased pain in joints
[43], gut [44], and hindpaws [45]. The mechanism by which PAR,
promotes pain appears to involve capsaicin-sensitive TRPV1 ion
channels. Evidence supporting this concept comes from the fact that
the PAR, agonist SLIGRL-NH, does not cause secondary hyperalgesia
in TRPV1 knockout animals and PAR,-mediated nociception can be
blocked by the TRPV1 receptor antagonist SB366791 [43]. Further-
more, Grant et al. found that TRPV4 ion channels are sensitised by
PAR; agonists and PAR;-induced mechanical hyperalgesia is absent in
TRPV4 knockout mice and attenuated by the TRPV4 antagonist 4ocPDD
[46]. Mast cells have also been implicated in PAR, responses as the
receptor has been localised on the surface of these cells and PAR;
activation leads to mast cell degranulation [45,47]. The endogenous
proteinases released during inflammation and which activate PAR; in
vivo leading to pain have yet to be fully ascertained. Serine protease
levels are known to be elevated in the synovial fluid of arthritis
patients [48,49] and in the faeces from inflammatory bowel syndrome
patients [50]. In the latter study, faecal supernatants taken from
inflammatory bowel syndrome patients caused colono-rectal me-
chanical allodynia in wildtype mice which was less pronounced in
PAR, knockout animals. This finding suggests that enzymatic
mediators released during inflammatory bowel syndrome have the
potential to sensitize visceral afferents leading to pain.

Recent studies have demonstrated PAR4 expression in rat DRG [51]
as well as in neural elements associated with joints [51,52] and the
bladder [53]. Immunolocalisation and reverse transcription-polymer-
ase chain reaction studies on rat cultured DRG found that PARy is co-
localised with the inflammatory neuropeptides substance P and
calcitonin gene-related peptide [54]. The role of PAR, in nociceptive
processing is still unclear with conflicting reports of hyperalgesia and
analgesia. Peripheral administration of the PAR, agonist AYPGKF-NH,
to knee joints, for example, results in increased mechanosensitivity of
joint afferents and a reduction in pain threshold [51,52]. This pro-
nociceptive effect of PAR, activation can be blocked by the bradykinin
B, antagonist HOE140 but not by TRPV1 antagonism. In contrast,
intraplantar and intracolonic injection of AYPGKF-NH, caused a
reduction in nociception by deactivating the pain promoting effects
of the TRPV4 channel [55]. Furthermore, feacal supernatants taken
from patients suffering from ulcerative colitis produced visceral
hyposensitivity in mice which was found to be due to the actions of
the serine proteinase cathepsin G on PAR, [56]. Thus, the effect of
PAR, activation on peripheral pain modulation appears to be organ
specific and suggests the possible existence of PAR, subtypes (e.g.
PAR,., PARyp, etc.) This hypothesis requires further investigation and
characterisation.

3. Cannabinoids

Cannabinoids are highly lipophillic alkaloids derived from the
hemp plant Cannabis sativa. At least 66 distinct chemicals have been

identified in C. sativa and these plant-borne agents are collectively
called phytocannabinoids. There is a growing collection of man-made
cannabinoids (synthetocannabinoids) which are based on the
structure of their plant counterparts. Finally, it has been found that
the body produces its own natural cannabinoids called endocanna-
binoids of which anandamide and 2-arachidonylglycerol are the most
prominent.

Cannabinoids bind to two G protein-coupled receptor subtypes
(CB; and CB,) with a third putative cannabinoid receptor (GPR55)
having recently been described [57]. The CB; receptor was originally
identified in the central nervous system [58] where it is believed to be
the most abundant G protein-coupled receptor [58-60]. The CB,
receptor was later identified on peripherally circulating macrophages
and in the spleen [61]. Originally thought to be restricted to the
periphery, CB, receptors have also been localised in the brainstem
where they regulate emesis [62]. CB; receptors are present through-
out the pain pathway including on peripheral neurones, spinal
neurones and in pain processing areas of the brain [63-66].
Stimulation of neuronal CB; receptors by a cannabinoid ligand leads
to hyperpolarisation and a decrease in calcium dependent neuro-
transmitter release. Since CB, receptors are relatively scarce in the
central nervous system, they were originally thought to be an ideal
target for pain control as selective CB, receptor agonists would not be
able to produce the psychotropic effects commonly associated with
CB; receptor activation. The reality has been less impressive with a
number of CB, receptor agonists having low selectivity and producing
multiple off-target responses. Some of the pharmacological tools used
in cannabinoid research are listed in Table 3.

A plethora of cultures have used phytocannabinoids for millennia
to treat a whole host of illnesses. Public acceptance of cannabinoids as
a viable means of treating disease has been slow to catch on despite a
significant body of evidence supporting a role for cannabinoids in the
safe treatment of various chronic pain disorders. In joints, for
example, the CB; receptor has been identified on nerve terminals
innervating the synovium [67] and peripheral administration of the
selective CB; receptor agonist arachidonyl-2-chloroethylamide
(ACEA) dramatically reduced nociception in a rat model of osteoar-
thritis [68]. Local injection of the CB; receptor antagonist AM251 into
arthritic joints led to an increase in nociceptor activity suggesting that
endocannabinoids are released into the joint to help offset articular
pain [68]. Other studies looking at models of inflammatory joint
disease have found that both CB; and CB, receptors are involved in
mediating articular analgesia [69-71]. Thus, there is a strong rationale
for putting cannabis in our joints. The mechanism by which
cannabinoids achieve anti-nociception in joints appears to involve
TRPV1 ion channels [68,72,73]. During inflammation, TRPV1 channels

Table 3
Overview of some of the commonly used cannabinoid reagents and their target
receptor.

Cannabinoid receptor

CB, CB, GPR55
Non-selective agonists WIN55,212-2 N/A
CP55,940
HU210
Full agonists Arachidonyl-2-chlroethylamide (ACEA) AM1241 01602
01812 JWHO015
Methanandamide JWH133
Arachidonyl-cyclopropylamide GW405833
HU308
L-759,633
L-759,656
Selective antagonists AM251 AMG630 01908
AM281 SR144528
SR141716A
LY320135
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are upregulated [74,75] and TRPV1/ CB; receptor co-expression is
enhanced [76]. In inflamed tissue, the TRPV1 channel exists in a
phosphorylated state [77] rendering it more sensitive to endocanna-
binoids such as anandamide [78-80]. Endocannabinoids then bind
directly to either TRPV1 channels or TRPV1/ CB; receptor hetero-
dimers leading to channel deactivation and pain relief.

Cannabis has been used as an adjunct to chemotherapy in cancer
patients due to its anti-emetic effects and palliation properties. A
seminal study by Noyes et al. found that low dose A-9 tetrahydro-
cannabinol was equipotent to codeine in alleviating pain in cancer
patients, although higher doses produced psychotropic side-effects
such as ataxia, dizziness and blurred vision [81]. In pancreatic cancer
patients, it was noted that peripheral CB; receptor density was
inversely proportional to subjective pain scores suggesting that
cannabinoid receptors may be involved in controlling cancer pain
[82]. Animal studies also support a role for cannabinoids in reducing
cancer pain. The non-selective synthetocannabinoids WIN55,212-2
and CP55,940 were found to reduce bone cancer pain and this effect
could be blocked by a CB, receptor antagonist but not a CB, receptor
blocker [83,84]. The cancer pain produced by intraplantar injection of
human oral carcinoma cells could also be attenuated by peripheral
injection of WIN55,212-2 or the CB, receptor agonist AM1241 [85].

Cannabinoids have also been shown to be analgesic in painful
disorders of the gastrointestinal system. The writhing response
elicited by intraluminal deposition of formic acid in mice could be
alleviated by oral administration of either A-9 tetrahydrocannabinol
or cannabinol [86]. Pain induced by colorectal distension could also be
reduced by treating animals with a local injection of either
WIN55,212-2 or the CB, receptor agonist JWHO15 [87]. By adminis-
tering the same cannabinoid agonists, these investigators were also
able to reduce mechanical hyperalgesia in a model of colitis [87]
confirming that peripherally administered cannabinoids may be
viable analgesics for the treatment of visceral pain.

Damage to peripheral sensory nerves by either injury, altered
metabolism or viral infection often results in neuropathic pain which
may be episodic or constant. Neuropathic pain is often difficult to
diagnose and hence treat since there is often no overt sign of tissue
injury. Animal studies indicate that cannabinoids can alleviate
neuropathic pain, offering a much needed alternative to the current
first order treatment options of anti-convulsants and tricyclic anti-
depressants. In the rat spinal ligation model of neuropathic pain [88],
CP55,940 was able to reverse tactile allodynia while WIN55,212-2 has
been shown to reduce pain in the sciatic nerve chronic constriction
model [89]. Unfortunately, these non-selective cannabinoid agonists
were administered systemically in these studies rendering it
impossible to know which cannabinoid receptor subtype was
involved and where the site of analgesic action was taking place.
Peripheral injection of WIN55,212-2 into the hindpaw was found to
be anti-nociceptive in neuropathic pain rats with the effect being
blocked by the CB; receptor antagonist SR141716A [90]. In contrast,
spinal cfos expression is elevated in CB; receptor knockout mice
compared to wild-type littermates [91] while CB; receptor deficiency
has no effect on neuropathic pain responses [92]. In an ingenious

Table 4

model in which peripheral CB; receptors were deleted and central CB;
receptors were maintained, the analgesia produced by systemic
injection of cannabinoids was reduced [93]. These data indicate that
peripheral CB; receptors are critical for neuropathic pain control and
suggest that peripherally-restricted CB; receptor agonists could be
efficacious in the treatment of neuropathic pain.

CB, receptors have also been implicated in neuropathic pain control.
The CB, receptor agonists AM1241 and JWH133 have been found to
attenuate neuropathic pain in the spinal nerve ligation model [94,95].
Furthermore, neuropathic pain generated by sciatic nerve constriction
was ameliorated by GW405833 [96,97], although it should be noted that
extremely high doses of the compound were required to achieve anti-
nociception and compound selectivity is equivocal.

4. Opioids

Lauded for their therapeutic benefits, infamous for their euphoric
effects, opioids are the archetypical pain killer. Opioids are a group of
alkaloids derived from the poppy plant Papaver somniferum. The
earliest description of poppies being actively cultivated as a crop was
in c. 3400 BC by the Sumerians in Mesopotamia who referred to the
plant as Hul Gil or “Joy Plant”. For millennia opioids have been used
medically to treat health problems as diverse as dysmenorrhoea,
cough, teething, asthma and arthritis. The most familiar opioid is
morphine which was first isolated by the pharmacologist Friedrich
Sertiiner in 1806. Named after Morpheus the Greek god of dreams,
morphine is one of the most widely used analgesics and is still a first
line treatment for most chronic pain sufferers.

The opioids act on four distinct G-protein-coupled receptors viz.
the 6-opioid receptor (DOR), k-opioid receptor (KOR), p-opioid
receptor (MOR), and the nociceptin/orphanin FQ receptor (NOP).
Stereospecific binding assays originally discovered that opioid
receptors were located in the central nervous system [98-100]
although the identification of the individual opioid receptor subtypes
would not be determined for another 3 years. Martin et al. [101] found
that morphine and ketacyclozine acted via the MOR and KOR
respectively while Hughes et al. determined that the endogenous
opioids Met- and Leu-enkephalin bound to a receptor in the vas
deferens and called it the DOR [102]. In 1995, a novel opioid peptide
with significant homology to dynorphin A was discovered by two
independent laboratories [103,104]. One group called the peptide
orphanin FQ since it did not bind to any known receptor subtype,
while the other group referred to the opioid as nociceptin based on its
ability to modulate pain processing in mammals. Based on these two
independent findings, the peptide was referred to the rather clumsy
concatenation of nociceptin/orphanin FQ.

Following on from their identification in the central nervous
system, opioid receptors were found to be expressed in the periphery
[105]. Functional studies showed that prostaglandin-induced hyper-
algesia in the rat hindpaw could be ameliorated by locally applied low
dose morphine thereby establishing a role for opioids in peripheral
pain control [106]. This effect was confined to the treated hindpaw
since contralateral morphine injection was unable to offset ipsilateral

Overview of some of the commonly used opioid agonists/antagonists and their target receptor.

Opioid receptor

DOR KOR MOR NOP
Selective agonists DPDPE U69593 DAMGO N/OFQ, Ro646198 UFP112
[DAla?]deltorphin-I or II C1977 Endomorphin-1 or -2
SNC80 Salvinorin A Sufentanil
Selective antagonists Naltrindole Nor-binaltorphimine CTOP J113397
GNTI SB612111

UFP101
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hyperalgesia. Similarly, the MOR agonist fentanyl reduced the pain
produced by bilateral intraplantar carrageenan injection, but only in
the paw in which the opioid was administered [107]. Systemic
treatment with low dose fentanyl had no effect on paw withdrawal
threshold confirming a peripheral site of action of the opioid. In
addition to MOR-mediated analgesia, peripheral administration of
DOR, KOR, and NOP agonists can also modulate inflammatory pain.
Table 4 highlights some of the commonly used opioids. The selective
KOR agonist U50488 reduced nociceptor spontaneous activity in
acutely inflamed cat knee joints [108] as well as reducing pain
behaviour in Freund's complete adjuvant inflamed paws [109].
Confirmation that U50488 was producing antihyperalgesia via KORs
was indicated by the blocking effects of the KOR antagonist nor-BNI
[110] but not the MOR antagonist CTAP [111] nor the DOR antagonist
ICI174864 [112]. The synthetic DOR agonist DPDPE has been found to
be antihyperalgesic when injected locally into the inflamed rat
hindpaw [109] and when administered around the primary tumour
site in an animal model of bone cancer pain [113]. Some of the original
studies looking at a peripheral site of action for nociceptin/orphanin
FQ found that the opioid acted on mast cells and caused secondary
release of substance P from nerve terminals leading to peripheral
sensitization and pain [114-117]. Curiously, during inflammation
nociceptin/orphanin FQ desensitized nerve fibres suggesting that the
peptide has a dual role in pain modulation depending upon the
inflammatory status of the tissue [118]. This anti-nociceptive effect of
nociceptin/orphanin FQ has been demonstrated in models of arthritis
[118], colitis [119], capsaicin-induced neurogenic inflammation [120],
as well as in response to noxious heat [121] and formalin-induced
hyperalgesia [122]. Thus, it appears that under normal conditions
peripherally administered nociceptin/orphanin FQ is pro-nociceptive
but switches to having anti-nociceptive properties in tissues where
there is pre-existing pain.

A number of reports describe an augmentation in the analgesic
capacity of opioids in various inflamed tissues [123-126]. The main
explanation proffered to account for this phenomenon is that during
inflammation there is believed to be an increased synthesis and
peripheral axonal transport of opioid receptors resulting in an
upregulation of receptors in the inflamed tissue [127-129]. Since
endogenous opioid expression is also increased following inflamma-
tion [130,131], it begs the question as to why these tissues are still
painful. Closer inspection of the preceding studies reveals that opioid
receptor expression was only assessed in the acute phase of
inflammation (i.e. up to four days after induction) and overlooks the
more clinically relevant chronic phase of the inflammatory process. In
a chronic model of arthritis, it was found that peripheral MORs are
actually downregulated leading to a loss in opioid anti-nociception
[132]. The decrease in receptor number is thought to be due to an
overaccumulation of endogenous ligand in the chronically inflamed
tissue leading to internalisation of membrane-bound MOR [130]. This
hypothesis would explain the inability of endogenous opioids to offset
chronic pain as well as accounting for the poor analgesia reported by
patients receiving intra-articular p-opioid therapy [133-135]. Recov-
ery strategies aimed at preserving opioid receptor number during
chronic inflammation could improve endogenous opioid analgesia
and improve the efficacy of peripherally restricted opioid agonists.

5. Summary

At first glance, the pain pathway appears to be a straightforward
line: pain signals originate in the periphery, travel centrally to the
spinal cord and thence to the brain. This overly simplistic notion is,
however, deceptive and belies complex neuroanatomical circuitry and
neurophysiological processing of which we still only have a
rudimentary understanding. Spinal and supraspinal mechanisms
augment, diminish and refine the nociceptive signal shaping it into
the emotional and psychophysical experience we call pain. Central

plasticity changes are thought to be responsible for the chronicity of
long-term pain, but are these higher centres truly necessary for the
ultimate treatment of nociceptive pain? Management of neuropathic
pain is of course entirely different since the source of pain appears to
be in the various divisions of the nervous system itself. However, for
the majority of chronic pain, targeting nociceptive activity in the
periphery should enable us to directly control pain generation at the
source and thereby limit input to the central nervous system. It could
be argued, however, that by the time a patient seeks medical
assistance and ultimately receives appropriate pain management,
the central nervous system has undergone plasticity changes and is
now driving the pain. But surely the opposite must also hold true. A
prolonged and targeted reduction in nociceptor activity by pharma-
cological means and/or physical therapy would allow the central
nervous system to undergo structural reorganisation back to normal
thereby returning the patient to a pain free state. As we have seen,
controlling nociceptor activity is a difficult task with a multitude of
chemical mediators and neurophysiological processes being involved.
Adding to the complexity is that peripheral targets can change their
sensitivity and even phenotype depending upon the severity of tissue
pathology, concentration of agonist and crossreactivity of other
inflammatory mediators. Nevertheless, by tackling pain in the
periphery it should be possible to provide symptomatic relief to
millions of chronic pain sufferers while avoiding the hazardous side-
effects of pervasive systemic treatments.
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