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 PSumoylation is a posttranslational modification that regulates a wide spectrum of cellular activities. Cardiomy-

opathy is the leading cause of heart failure. Whether sumoylation, particularly SUMO-2/3 conjugation, is in-
volved in cardiomyopathy has not been investigated. We report here that SUMO-2/3 conjugation was
elevated in the human failing hearts, and we investigated the impact of increased SUMO-2 conjugation on
heart function by using the gain-of-function approach inmice, in which cardiac specific expression of constitu-
tively active SUMO-2was governed by alphamyosin heavy chain promoter (MHC-SUMO-2 transgenic, SUMO-
2-Tg). Four of five independent SUMO-2-Tg mouse lines exhibited cardiomyopathy with various severities,
ranging from acute heart failure leading to early death to chronically developed hypertrophic cardiomyopathy
with aging.We further revealed that SUMO-2directly regulated apoptotic process by at least partially targeting
calpain 2 and its natural inhibitor calpastatin. SUMO conjugation to calpain 2 promoted its enzymatic activity,
and SUMO attachment to calpastatin mainly promoted its turnover and altered its subcellular distribution.
Thus, enhanced SUMO-2 conjugation led to increased apoptosis and played a pathogenic role in the develop-
ment of cardiomyopathy and heart failure.

© 2015 Published by Elsevier B.V.
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1. Introduction

SUMOconjugation, or sumoylation, is the posttranslationalmodifica-
tion in which SUMO proteins are covalently and reversibly attached to
the substrates via a series of enzymatic reactions [1]. SUMO family con-
tains three conjugatablemembers named SUMO-1, SUMO-2 and SUMO-
3. While SUMO-1 only exhibits ~45% sequence similarity with SUMO-2
and SUMO-3, the latter two share ~95% identify at the level of amino
acid sequence, and are believed to have largely overlap functions
in vivo [1]. The number of SUMO targets has been increasing rapidly in
recent years, and through modifying its targets, SUMO conjugation has
been implicated in diverse cellular activities such as DNA repair [2] and
chromatin function [3]. In the past several years SUMO conjugation
pathway has been receiving a great deal of attention due to its potential
implication in thepathogenesis of certain humandiseases suchas cancer
[4] and neurodegeneration [5].

Accumulating evidence suggests that the SUMO conjugation is al-
tered under certain pathological conditions in both vitro (cultured
76

77

78.

lvement of activated SUMO-2
cells) and vivo (tissues/organs). In brain ischemic study, SUMO-2/3 con-
jugation increased in the harmful ischemic brain model [6–8], but
decreased in delayed ischemic tolerance in an in vitromodel [9], indicat-
ing its potentially harmful role in ischemic-induced injury. However, an
increased expression of Ubc9, the sole sumoylation conjugation enzyme
identified in mammals, augmented global sumoylation and limited the
ischemic damage inmousebrain [10]. Therefore, a neuroprotective effect
of increased SUMO conjugation against ischemic-induced injury has also
been proposed. In addition, increased SUMO-1 conjugation was also
observed in the polyglutamine diseases [11,12], pointing to its pathogen-
ic role in neurodegenerative pathology. In the cardiovascular field, stud-
ies suggest that SUMO-1 conjugation plays an important role in early
heart development, as evidenced by the congenital heart defects present
in the SUMO-1 knockout mice [13], and in the transgenic mouse model
with cardiac specific expression of SENP2, an isopeptidase that
deconjugates all SUMO proteins [14]. SUMO-1 conjugation was also
responsive to hypoxic insult to murine hearts [15], and was proposed
to play a protective role in human and mouse heart failure via modulat-
ing the activity of SERCA2 [16]. However, the activity of Erk5 (extracellu-
lar signal-regulated kinase 5), an important factor against ischemic/
reperfused injury and inhibitor of apoptosis, was suppressed by
conjugation in cardiomyopathy, Biochim. Biophys. Acta (2015), http://
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sumoylation [17]. Sumoylation of Erk5 was increased in myocardial
infarction, in the H2O2-induced inflammation and in the diabetic aorta
of mice [17,18]. Thus, an increase in the level of SUMO-1 conjugated
Erk5 appears to enhance the inflammation, induce cell death, and conse-
quently worsen the injury.

Compared with the aforementioned several lines of research that
implicate SUMO-1 conjugation in cardiac development and pathophys-
iology, little is known about whether and how SUMO-2/3 conjugation
play a role in the cardiovascular diseases. Several studies suggest the
potential implication of SUMO-2/3 conjugation in cardiomyopathy.
First, SENP2 transgenic mice also developed cardiac hypertrophy and
dysfunction with aging, and these symptoms were not ameliorated by
overexpressed SUMO-1 [14]. Second, a recent study revealed that the
levels of SENP5, another SUMO isopeptidase that mainly deconjugated
SUMO-2/3, were elevated in the human failing hearts, and the gain-of-
function murine model suggests that SENP5 played a pathogenic role
in dilated cardiomyopathy and heart failure [19]. However, the direct
evidence that implicates the SUMO-2/3 conjugation in cardiovascular
disease is still missing, despite the fact that SUMO-2/3 had more free
reservoir and rendered stronger responses to external stimuli such as
heart shock than SUMO-1 in the cultured cells [20]. Given that many
SUMO substrates that possess opposing activities are implicated in
cardiovascular pathophysiology [21], the net functional consequence
of the altered conjugation of SUMO-2/3 warrants investigation.

The calpain–calpastatin proteolytic system, a calcium-dependent
intracellular proteolytic system, is involved in a variety of cellular pro-
cesses including apoptosis [22], and plays an important role in cardiovas-
cular pathophysiology and heart failure [23–25]. The function of one of
the two ubiquitously expressed calpains (Capns), Capn2, has been well
studied. Neonatal induction of Capn2 in murine hearts decreased frac-
tional shortening and increased LVESD (left ventricular end-systolic di-
mension) [26], indicating the harmful impact of increased activity of
Capn2 on heart function. However, how the activity of Capn2 ismodulat-
ed in vivo remains poorly understood. In this regard, posttranslational
modifications serve as a device to modulate Capn2's function. For in-
stance, phosphorylation of Capn2 by PKA suppressed, but Erk-induced
phosphorylation elevated its activity [27,28]. Also, sumoylationmodified
Capn2 on lysine 390 promoted Capn2-dependent cell mobility [29].
However, how the association of sumoylated Capn2with apoptotic path-
way has not been investigated. On the other hand, knockout of
calpastatin (CAST), a natural endogenous inhibitor for Capns, in mice
led to potentiated activity of Capns [30]. However, overexpression of
CAST in murine hearts also caused cardiomyopathy [26], indicating the
importance of a balanced calpain–calpastatin system to themaintenance
of normal cardiac function. Although CAST exhibits high selectivity for
Capns' function, how the activity of CAST itself is regulated is largely
unknown.

In the present report, we first showed that an increase in SUMO-2/3
conjugation was observed in the human failing hearts. We then used a
gain-of-function approach to generate a number of independent trans-
genic mouse lines that expressed constitutively active form of SUMO-2
in the hearts (SUMO-2-Tg). The majority of these mouse lines showed
premature death, increased apoptosis and cardiomyopathy. We further
revealed that SUMO targeted at least two components, Capn2 and the
natural calpain inhibitor CAST, of the calpain–calpastatin proteolytic sys-
tem, a critical regulatory pathway of apoptotic process. Thus, our studies
demonstrate a direct regulation of the apoptotic pathway by SUMO-2/3
conjugation, and suggest a pathogenic role that SUMO-2/3 conjugation
plays in the development of cardiomyopathy and heart failure.

2. Materials and methods

2.1. Experimental animals

The construct alpha-MHC-flag-SUMO-2, whichwas used to generate
SUMO-2 transgenic mouse lines, was generated as detailed previously
Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
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[14,19,31]. Briefly, the transgene flag-tagged SUMO-2-GG was
subcloned into the region between the 5.4 kb mouse α-MHC promoter
(provided by Dr. J. Robbins, University of Cincinnati) and the Simian
virus 40 polyadenylation sequence via SalI sites. The orientation of the
inserted flag-SUMO-2 cDNA was confirmed by sequencing. This con-
struct was microinjected into the fertilized eggs of FBV mouse strain.
The founders (F0) of SUMO-2-Tg lines were backcrossed with C57BL/6
mice for over one to five generations. The positive offspring were iden-
tified using PCRwith the following oligos (5′ to 3′): forward, CGGCACTC
TTAGCAAACCTC and reverse, CTAACCTCCCGTCTGCTGT. All animal
experimental protocols were approved by the Institute for Animal Stud-
ies of the Institute of Biosciences and Technology at Texas A&M Health
Sciences Center and the University of Texas Health Science Center Ani-
mal Welfare Committee.

2.2. Human samples

Idiopathic myocardial samples from patients with end-stage heart
failure were provided from the Department of Cardiac Pathology at
Texas Heart Institute, and the donated non-transplantable normal
human heart samples were provided by the International Institute for
the Advancement of Medicine (IIAM) based on an official agreement
with the laboratory of electrophysiology at Texas Heart Institute. For-
malin fixed and paraffin embedded tissue blocks from the left ventricu-
lar freewall of humanhearts, includingfive non-failing controlswithout
a history of cardiac diseases and five failing hearts with idiopathic dilat-
ed cardiomyopathy were selected for immunohistochemical staining.
The protocols for the use of human heart samples were approved by
the Institutional Review Board at St. Luke's Episcopal Hospital and at
the University of Rochester Medical Center.

2.3. Plasmid constructs

For adenoviral expression, flag-epitobed SUMO-2-GG or SUMO-2-
ΔGG was PCR amplified, and ligated into pShuttle-IRES-hrGFP-1 vector
via EcoRV and XhoI sites. Capn2 wild type (wt) and the sumoylation-
deficient K390R mutant (the conversion of lysine 390 to arginine)
were PCR amplified and subcloned into pShuttle-IRES-hrGFP-1 on SpeI
and SalI sites. For SUMO-2 fused Capn2 construct, Capn2 cDNA was
first subcloned into pcDNA4A vector on XhoI and XbaI sites (pcDNA-
Capn2), followed by SUMO-2 cDNA subcloning in frame into pcDNA-
Capn2 before Capn cDNA on NheI and XhoI sites (SUMO-Capn2). The
SUMO-Capn2 was then PCR amplified and ligated in frame into
pShuttle-IRES-hrGFP-1 on SpeI and SalI sites to generate the adenoviral
expression vector. Mouse CAST cDNA was purchased from
Openbiosystem and subcloned into pcDNA4A-V5/His vector on EcoR
andXbaI sites (CAST-V5). To generate SUMO fused CAST expression vec-
tor, SUMO-1 or -2 cDNAwas subcloned in frame before CAST on HindIII
and EcoRV sites, generating SUMO-CAST-V5 expression vector. HA- and
His6-tagged SUMO-1-wt (HA-His6-SUMO-1-wt) was obtained by ligat-
ing PCR-amplified His6-tagged SUMO-1 provided by Dr. Ron T. Hay in
frame into PCGN vector via XbaI and KpnI sites.

2.4. Antibodies and chemicals

Anti-V5-HRP, Annexin-VAlexa Fluor 594, Alexa Fluoro®488 anti-goat
antibody, goat serum, Histostain-SP Kit (Invitrogen), anti-V5 antibody
(Bethyl Laboratories, Inc.), anti-HA-HRP (Genscript), anti-GAPDH-HRP,
anti-SUMO-1, anti-SUMO-2/3 and anti-Calpastatin antibodies (Santa
Cruz), anti-Calpain 2 antibody (Cell Signaling Technology), anti-V5
agarose affinity gel (Sigma-Aldrich), bead-conjugated anti-SUMO-2/3
antibody (Santa Cruz), anti-mouse IgG agarose (Sigma-Aldrich), t-BOC-
Leu-Met-chloromethylaminocoumarin (t-BOC-LM-CMAC, Invitrogen),
Ni-NTA agarose (Qiagen), RestoreWestern blot stripping buffer (Thermo
Scientific Pierce), inhibitors for calpains 1 and 2, cathepsin, and caspases
(pan caspase inhibitor Z-VAD(OM3)-FMK) (Santa Cruz).
conjugation in cardiomyopathy, Biochim. Biophys. Acta (2015), http://
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2.5. Cell culture and transfection

Regular Hela cells were maintained in Dulbecco's Modified Eagle's
Medium (DMEM) plus 10% fetal bovine serum (FBS). Transient transfec-
tion was performed using Lipofectamine 2000 on either 6 cm plates for
Western blot analysis or 10 cm plates for nickel-nitrilotriacetic acid (Ni-
NTA) pulldown assays (see below). Neonatal rat cardiomyocyte culture
was described previously [32]. For CAST-V5 and SUMO-CAST-V5 turn-
over and protease inhibition analysis, 24 h posttransfection, cyclohexi-
mide (10 μg/ml) was added into the cell culture medium for 12 or
16 h in the absence or presence of various protease inhibitors with
two dosages per inhibitor as indicated in the legend of Fig. 7, followed
by Western blots to detect the expression levels of CAST-V5 and
SUMO-CAST-V5. GAPDH was used as a loading control in the Western
blot analysis.

2.6. Western blot, sumoylation assays and Ni-NTA pulldown assays

For Western blot analysis, the lysis buffer (50 mM Tris, 150 mM
NaCl, 1% NP-40) was used to lyse cells or homogenize hearts. 40 μg pro-
teins purified from Hela cell lysates containing overexpressed proteins
of interest, or 100 μg of protein lysates extracted frommouse left ventri-
cles, were boiled, subjected to 4–12% NuPAGE, and transferred to the
polyvinylidene difluoride (PVDF) membrane. The blot was probed
with the antibodies of interest as indicated in each figure legend. The
protein bandswere visualized using HyGlo Quick Spray (Denville Scien-
tific) or ECL plus (GEHealthcare). The procedure for in vivo sumoylation
assays was similar to that for the Western blot, except that the
isopeptidase inhibitor N-ethylmaleimide (NEM) was added to the cell
lysates (final concentration 25 mM) to prevent desumoylation. Ni-
NTA affinity chromatography was detailed previously [33].

2.7. Co-immunoprecipitation

Protein lysates purified from frozen human hearts were prepared.
400 μg of total protein was diluted to a final concentration of 0.4 mg/
ml in the lysis buffer. 4 μg of bead-conjugated anti-SUMO-2/3 antibody
was applied to the lysis buffer (as a negative control) or the protein
sample and incubated for 2 h at 4 °C on a rotary platform. The beads
were subsequently pelleted by centrifugation, washed five times with
binding buffer. These protein lysates were subsequently subjected to
4–12%NuPAGE, transferred to PVDFmembrane, detected by the desired
antibodies, which was then visualized with chemiluminescence.

2.8. Adenovirus-mediated expression

Recombinant adenoviruses were generated using the AdEasy XL Ad-
enoviral Vector System (Stratagene). Briefly, all cDNAs of interest in
adenoviral-mediated expression were subcloned into the pShuttle-
IRES-hrGFP1 vector as described above. The entire expression cassettes
from the resulting vectors were recombined in BJ5183 bacterial strain
with serotype 5 first-generation adenoviral backbone, AdEasy-1. These
recombinant adenoviral backbones were transfected into AD293 cells
to generate infectious viral particles. Viral titer was determined by the
tissue culture infectious dosemethod [34]. Cardiomyocyteswere infect-
ed with recombinant adenoviruses for 2 h at a multiplicity of infection
(MOI) of 100 particles/cell and incubated for additional 24–48 h to en-
sure transgene expression.

2.9. Cardiomyocyte size measurement

WGA-TRITC staining was used on heart sections of P5 or P80 of wt
and SUMO-2-Tg mice to distinguish sarcolemmal membrane. 10–20
randomly selected fields from each individual heart sample were used
to measure surface areas of cardiomyocytes using Software ImageJ
(http://rsbweb.nih.gov).
Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
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2.10. Immunofluorescence

Hela cells were plated into twowell Lab-Tek II chamber slide (Nunc)
and were transiently transfected with CAST-V5 and SUMO-CAST-V5
using Lipofectamine 2000 (Invitrogene) according to the manufac-
turer's protocol. Hela cells were then fixed in 3.5% paraformaldehyde
(PFA) and permeabilized with 0.5% Triton X-100. Stainingwas conduct-
ed using anti-V5 antibody (1:200). Cells were sequentially incubated
with secondary antibodies, Alexa Fluoro® 488 anti-goat antibody and
then mounted with Vectashield with DAPI (Vector Laboratory).
Annexin-V staining was performed using Annexin-V Alexa Fluor 594
on neonatal rat cardiomyocytes cultured on cover slides.
Cardiomyocytes were incubated with 5 μl of Annexin-V Alexa Fluor
594 for 15 min at room temperature. Thereafter the cells were washed
and mounted with Vectashield (Vector Laboratory).

2.11. Immunobiochemistry

4 μm sections of human hearts were deparaffinized and antigen re-
trieval was performed in sodium citrate buffer (pH = 6.0) by heating
to 99 °C for 20 min with PT Link system by Dako (Carpinteria, CA). En-
dogenous peroxidase activity was quenched with 3% H2O2 and non-
specific binding was blocked with 10% non-immune goat serum and
then incubated with primary antibody at 4 °C overnight. The signals
were amplified with the Histostain-SP Kit and detected with DAB sub-
strate (Dako). Special attention was paid to avoid color overdevelop-
ment. Hematoxylin was used as a counterstain. Negative controls
were incubated with appropriate serum instead of primary antibody
under the same conditions.

2.12. In vivo Calpain 2 activity assay

In vivo Calpain 2 activity was analyzed using synthetic calpain sub-
strate t-BOC-LM-CMAC [35]. Hela cells were plated at 70–80% conflu-
ence in 22 mm square coverglass (Corning) and grown in the
complete media for 24 h. Cells were thereafter transfected with the
pShuttle-IRES-hrGFP-1 alone (as a control) or the individual expression
vectors encoding Capn2, SUMO-2-Capn2 or Capn2-K390R, respectively.
After 48 h incubation, cells were incubated for 30min in the presence of
10 μM t-BOC-LM-CMAC. The cells were then washed with 1× PBS and
coveredwith a glass cover slide. Both GFP and t-BOC-LM-CMAC positive
cells were scored for analysis. Fluorescence was visualized using a fluo-
rescence microscope (Olympus fluorescence microscope). Intensity of
fluorescence caused by cleavage of synthetic substrate was measured
using ImageJ. Because the backgrounds among the slides prepared
slightly varied, background measurements were also taken and
subtracted. Capn2 activity was expressed as CTCF (corrected total cell
fluorescence), which is calculated as follows: integrated density −
(area of selected cell × mean fluorescence of background readings).

2.13. Echocardiography

Mice of interest were anesthetized by inhalation of 1% isofluorane
and rested on a warm pad during transthoracic measurements of cardi-
ac function using two dimensionalM-mode of a Vevo 770 in vivomicro-
imaging system (Visual Sonics, Toronto, Canada). The probe contacted
the hair-removed chest to record cardiac function indices. The investi-
gator that performed and analyzed cardiac functions was blind to ani-
mal genotypes.

2.14. Histopathology

Mouse hearts were dissected and fixed overnight in 4% paraformal-
dehyde (PFA). Hematoxylin and eosin (H&E) or Masson's trichrome
stainingwasperformed onheart sections (10 μm)according to standard
protocols.
conjugation in cardiomyopathy, Biochim. Biophys. Acta (2015), http://
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2.15. Transmission electron microscopy (TEM)

Left ventricle tissues were fixed in 2% paraformaldehyde (PFA) and
3% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.3 and prepared ac-
cording to the standard protocol. Electron microscopy was examined
in a JEM 1010 transmission electron microscope (JEOL, USA, Inc.) at an
accelerating voltage of 80 kV. Digital images were obtained using AMT
Imaging System (Advanced Microscopy Techniques Corp.). This work
was performed in MD Anderson HREM facility.

2.16. Statistical analysis

The number of mice for each group used was indicated in the figure
legends. Two-tailed Student's t test or one way ANOVA followed by
Bonferroni correction was used to determine statistical significance
between groups when applicable and data were represented as
mean ± SEM. p b 0.05 was considered statistically significant and
p b 0.01 highly significant.

3. Results

3.1. Increased SUMO-2/3 conjugation in human failing hearts

As an initial step to explore if SUMO-2/3 conjugation is implicated
in human cardiac muscle disorders, we performed Western blots on
the protein lysates purified from five untransplantable healthy
human hearts (control) and seven failing hearts caused by idiopathic
cardiomyopathy, the diagnosis of which was confirmed by clinical
symptoms and cardiac functional analysis, to evaluate the changes in
SUMO-2/3 conjugation in these samples. As shown in Fig. 1A and
SF1, increased levels of SUMO-2/3 conjugates (high molecular weight
conjugates, HMW)were observed in the human failing heart muscles,
U
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Fig. 1. Increased SUMO-2/3 conjugation in human failing hearts. A. Western blots were perfor
hearts caused by idiopathic cardiomyopathy. Left panels: blotted with anti-SUMO-2/3 (up) an
Right panel is the statistical analysis of the right panel and Supplemental Fig. 1 (SF1). **p b 0.0
B. Immunohistochemistry showed enhanced SUMO-2/3 staining in human control and failing
nuclei were count-stained with hematoxylin. Representative data were shown. Magnification,

Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
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while they were barely detected in the control heart samples. Consis-
tent with this finding, immunobiochemistry also revealed enhanced
SUMO-2/3 staining in human cardiomyopathic heart samples com-
pared with the control ones (Fig. 1B). Thus, SUMO-2/3 conjugation
was altered under pathological conditions in the human failing hearts,
although its role in the development of cardiac muscle disorders was
not clear.
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3.2. Elevation of SUMO-2 conjugation in murine hearts leads to
cardiomyopathy

To investigate whether increased SUMO-2/3 conjugation in the
heartwas just an irrelevant event, or had any beneficial/detrimental im-
pacts on cardiac function, we generated six independent transgenic
mouse lines that expressed constitutively active SUMO-2-GG in the
hearts under the control of murine cardiac α-myosin heavy chain
(MHC) promoter. The mice from four lines (#9606, #9610, #9592,
#9608)were confirmed to develop cardiomyopathywith various sever-
ities and mortality rate (Fig. 2A). The expression of SUMO-2 transgene
in these SUMO-2-Tg hearts was also confirmed (Fig. 2B). The levels of
increased SUMO-2/3 conjugation in the heart were correlated to the
phenotypic severity/mortality rate of SUMO-2-Tg line. For instance,
line #9606, which showed the highest mortality rate, exhibited the
highest levels of SUMO-2/3 conjugation, followed by line #9610. Line
#9614mice, which showed the least cardiac phenotypic severity, exhib-
ited the least increase in SUMO-2/3 conjugation in the heart. The SUMO-
2-Tgmice from line#9601 also had premature death, but due to the fact
that we lost this line without obtaining sufficient number of animals
(see below), this line was not further analyzed. The brief summary of
phenotypic manifestation of each of these SUMO-2-Tg mouse lines
was presented below:
med on protein lysates purified from the left ventricles (LV) of human control and failing
d anti-GAPDH (down) antibodies, respectively. HMW, high molecular weight conjugates.
05. n, the number of samples in each experimental group was indicated within each bar.
heart tissues. Experiments were performed on five human control and failing hearts and
×400.
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Line #9606: Mice of this Tg line had the most severe phenotypes, and
the mortality rate analysis from three litters of totally 31 animals
showed 100% premature death of those Tg+ pups before P10
with enlarged hearts (Figs. 2A and 3A). WGA staining showed
slightly but significantly enlarged sizes of cardiomyocytes in Tg+
hearts compared with those in littermate controls at P5 (Fig. 3B
and C). Apoptosis was significantly increased prior to a change
in heart weight (HW) to body weight (BW) ratio (Fig. 3D),
U
N
C
O

R
R
E

Fig. 3. Line #9606mice had a severe cardiac phenotype leading to early postnatal death. A. SUMO-2
staining showed slightly but significantly enlarged size of cardiomyocytes of SUMO-2-Tg hearts
**p b 0.001. D. Increased TUNEL positive cells preceded the significant change in heart weight (H
SUMO-2-Tg and littermate controls at P4 (a and b), at which time HW/BW ratio of SUMO-2-Tg mi
of SUMO-2-Tg heartswas equivalent to that observed in thehuman cardiomyopathic hearts. Quantit
each bar represents the number of samples used for the analysis of each group.

Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2 con
dx.doi.org/10.1016/j.bbadis.2015.03.013
Dindicating a pathogenic role of apoptosis in SUMO-2-induced car-
diomyopathy. At a later stage P7, although a more substantial in-
crease in apoptosis was observed in the Tg+ heart, TEM
examination revealed no significant changes such as swelling in
the mitochondrial structure of the Tg+ heart (SF2). The increased
levels of SUMO-2 conjugates in Tg+ hearts from this Tg line were
equivalent to those observed in the human cardiomyopathic
hearts (Fig. 3E).
-Tg heart was significantly larger than the littermate control heart at P6. B and C.WGA
compared with the control hearts at P5. Bar, 50 μm. C is the statistical analysis of B.
W)/body weight (BW) ratio. TUNEL staining was performed on heart sections from
ce was comparable to that of littermate control (c). Bar, 200 μm. E. The level of HMW
ative analysis of thoseHMWconjugateswasmeasured as in Fig. 1A. The number inside
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Line #9610: Mice of this Tg line exhibited the second most severe
phenotypes. Over 90% of Tg+mice analyzed from three litters of to-
tally 24 animals died before P90. Non-invasive cardiac functional
analysis performed at ~P60 showed that these Tg mice exhibited
left ventricular (LV) mass/BW ratio and significantly decreased
%EF and FS%. Consistent with the finding of increased LV mass,
Tg+ cardiomyocytes were enlarged compared with control
cardiomyocytes (Fig. 4B), suggesting cardiac hypertrophy. Masson's
trichrome staining revealed extensive interstitial fibrosis in Tg+
mouse hearts compared with that in control hearts (Fig. 4C).
Line#9592: Themortality rate analysis from6 litters of totally 40 an-
imals collected from this Tg line showed that36%Tgmice diedwithin
one year after birth (Fig. 2A). The surviving Tg+ mice gradually
developed cardiac hypertrophy over duration of one year, with
increased LV mass/BW ratio and LVPW/d (SF3. A and B), although
no significant impairment in cardiac contractility in Tg+ mice was
observed in comparison with that in control mice (data not
shown), indicating a compensatory stage of cardiac hypertrophy at
this age. The transcription levels of a number of cardiac disease
markers such as ANF, BNP, β-MHC, and skeletal alpha actinwere sig-
nificantly elevated, while α-MHC transcripts were decreased, as re-
vealed by the real time PCR (SF3. C), in agreement with the
development of cardiac muscle disorders.
Line #9608: Themortality rate analysis from four litters of totally 29
animals from this Tg line showed that 33% of Tg+mice died within
one year after birth. The surviving Tg+ mice gradually developed
cardiomyopathy with compromised cardiac functions analyzed by
echocardiography (Supplement Table 1). The time course of devel-
oping cardiomyopathy of this Tg line was similar to that of the line
#9592.
Line #9614: Analysis from five litters of totally 47 animals of this line
showed no premature death of Tg mice within one year after birth,
and the cardiac functions of Tg+ mice measured at ~P404 showed
at equivalent levels compared with those of littermate controls
(data not shown).
Line #9601: The founder 9601 (male) had very low fertility, and
gave birth to totally three litters of 11 animals, including only two
positive pups. The first Tg+ pup was used for transgene expression
U
N
C
O

R

4. Line #9610 mice exhibited cardiac hypertrophy with compromised cardiac function. A.
e with p value shown on each cardiac function index. Note that compared with control m
0.05 was considered significant. B. WGA staining showed a significant increase in the siz
b 0.001. Bar, 100 μm. C. Masson's trichrome staining revealed massive fibrosis in the SUMO

lease cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
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analysis, which showed expression of flag-SUMO-2-GG and in-
creased SUMO-2 conjugation in the heart (data not shown). The sec-
ond Tg+ pup died at P2. This line was excluded from the study due
to insufficient number of Tg+ animals.

3.3. SUMO-2 promotes apoptotic process in cultured cardiomyocytes

Since increased apoptosis preceded the heart enlargement (Fig. 3D),
we wondered if SUMO-2 conjugation could directly regulate apoptosis
in cardiomyocytes. SUMO-2-GG or SUMO-2-ΔGG (unconjugatable mu-
tant of SUMO-2) was introduced into cultured cardiomyocytes via ade-
novirus (Ad) infection. Ad-mediatedGFP expression alonewas used as a
control. As expected, SUMO-2-GG, but not SUMO-2-ΔGG, significantly
increased SUMO-2 conjugates (Fig. 5A). The immunostaining against
Annexin-V, which marks the early stage of apoptotic process, was per-
formed on those cardiomyocytes 36 h after infection. As shown in
Fig. 5B and C, the number of double positive (Annexin-V+/GFP+)
cardiomyocytes in the Ad-SUMO-2-GG group was significantly higher
than that of either Ad-GFP control group or Ad-SUMO-2-ΔGG group.
Also, we compared the SUMO-2/3 conjugation level in Ad-SUMO-2-
GG-infected cardiomyocytes with that in line #9606 mouse heart,
which showed increased apoptosis (Fig. 3D). While the similar amount
of proteins was loaded for both samples, it seems that transgenic heart
showed more robust modification than the cardiomyocytes overex-
pressing SUMO-2, although the free SUMO-2 levels in these two sam-
ples were comparably expressed (Fig. 5D). These findings suggest that
increased SUMO-2 conjugation, but not free SUMO-2 itself, promotes
or initiates apoptotic process. It is also very possible that SUMO-2/3 con-
jugation in the heart is mediated by themicroenvironment such as local
neurohormonal activity.

3.4. SUMO directly targets calpain–calpastatin proteolytic system

Since increased SUMO-2 conjugation led to elevated apoptosis, we
hypothesized that SUMO targeted one or more factors that are implicat-
ed in theapoptosis pathway. It iswell documented that theCapns, a fam-
ily of calcium-dependent cysteine proteases that are widely distributed
among tissues, along with their natural and highly specific endogenous
inhibitor CAST, are involved in apoptotic processes [22]. We therefore
asked if any of the components of the calpain–calpastatin proteolytic
system was a SUMO substrate. We first identified CAST as a novel
Non-invasive echocardiography was performed on age-matched control and SUMO-2-Tg
ice, SUMO-2-Tg mice exhibited elevated LV mass/BW ratio and decreased %EF and %FS.
e of cardiomyocytes of SUMO-2-Tg hearts compared with its littermate controls at P80.
-2-Tg hearts. Bar, 200 μm.
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RSUMO substrate as shown in Fig. 6A. Western blot was performed on

Hela cell lysates transfected with V5-tagged CAST alone, or together
with SUMO-1-wt or SUMO-1-ΔGG (defective in conjugation). The pres-
ence of SUMO-1-wt, but not SUMO-1-ΔGG, promoted the appearance of
a retardedmigratory band. SUMO conjugation to CAST was further con-
firmed by Ni-NTA assays (SF4). In the cultured Hela cells, CAST was a
weak SUMO-2 substrate compared with SUMO-1 (Fig. 6B). We also
found that SUMO conjugated CAST exhibited a shorter halflife than
free CAST as shown in Fig. 6C, in which 12 h treatment of cycloheximide
(CHX), a protein synthesis inhibitor, promoted turnover of SUMO-
conjugated CAST but not free CAST. To further confirm this observation,
we tested turnover of SUMO-ligated V5-tagged-CAST (SUMO-CAST-V5)
in the absence or presence of CHX for 12 h. Indeed, CHX treatment de-
creased the level of SUMO-CAST-V5, but not the level of free CAST-V5
(Fig. 6D). Since CAST can be cleaved by a number of proteases, we next
sought to find which protease(s) was responsible for the cleavage of
SUMO-attached CAST. Specific inhibitors for calpain 1, calpain 2, cathep-
sins and pan-caspasewith two dosages eachwere tested in the presence
of CHX treatment for 16 h, andwe found that only pan-caspase inhibitor
significantly slowed turnover of SUMO-1-CAST-V5 (Fig. 6E, compare
lanes 9 and10with lane 2). SUMO-2 fusedCAST exhibited a similar turn-
over pattern caused by CHX treatment (data not shown). Collectively,
these data indicated that SUMO conjugation promoted cleavage of
CAST by caspases. Also, it appears that most of caspases contributed
more or less to this degradation, because only pan-caspase inhibitor,
but not any other individual caspase inhibitors tested substantially
Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
dx.doi.org/10.1016/j.bbadis.2015.03.013
stabilized SUMO-CAST-V5 (data not shown). In addition to the increased
turnover of SUMO-CAST, we also found that SUMO fusion to CAST al-
tered subcellular distribution of CAST. As shown in Fig. 7A and B, free
CAST mainly exhibited diffused distribution pattern in the cytoplasm,
however, the majority of SUMO-CAST showed aggregated (dotted) pat-
tern of cytoplasmic distribution. Taken together, SUMO conjugation
alters cytoplasmic distribution pattern of CAST, and promotes its
turnover.

Capn2, one of the two major Capns that were extensively studied,
was previously identified as a SUMO substrate, and SUMO conjugation
enhanced its ability to promote cell mobility [29]. We confirmed that
SUMO targeted Capn2 on lysine 390 (data not shown). To probe if
SUMO conjugation to Capn2 could positively mediate apoptotic path-
way, Ad-GFP, Ad-Capn2, Ad-SUMO-2 fused Capn2 (Ad-SUMO-Capn2),
or Ad-Capn2-K390R (unsumoylatable mutant) were introduced into
the cultured cardiomyocytes and up to 36 h after infection, Annexin-
V staining was performed. In agreement with the previous report
[29], K390R mutant showed less activity than Capn2 wt in promoting
Annexin-V staining in cardiomyocytes (Fig. 8A and B), and SUMO-
Capn2 possessed the most potent capability to activate the apoptotic
pathway. To further evaluate the changes in the enzymatic activity
of Capn2 once SUMO-conjugated, cultured cardiomyocytes were in-
fected with Ad-GFP, Ad-Capn2, Ad-SUMO-Capn2, or Ad-Capn2-
K390R, in the presence of the synthetic substrate, t-BOC-LM-CMAC
for 30 min, which is visualized by calpain via a cleavage-dependent
manner [35]. As shown in Fig. 8C, Capn2 increased fluorescence from
conjugation in cardiomyopathy, Biochim. Biophys. Acta (2015), http://
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Rt-BOC-LM-CMAC as expected, and mutation of lysine 390 to arginine
partially repressed its enzymatic activity. SUMO-Capn2 exhibited
highest enzymatic function among these three tested. Thus, we con-
clude that SUMO attachment to Capn2 substantiates its enzymatic
activity, thus leading to increased capacity to activate the apoptotic
pathway.
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N3.5. Increased SUMO-2/3 conjugation to CAST and Capn2 in human

cardiomyopathic heart muscles

We next investigated if SUMO-2/3 conjugation to CAST and Capn2
altered in the muscle-diseased human hearts. Co-IP was performed on
two control and two diseased human hearts with SUMO-2/3
antibody-conjugated beads, and the blot was subsequently probed
with anti-Capn2 antibody or anti-CAST antibody, respectively. Clearly,
two specific bands above 98 kDawere detected by anti-Capn2 antibody
in both diseased heart samples but not in the either negative control
(only containing binding buffer and SUMO-2/3-conjugated beads) or
control heart samples (Fig. 9A), indicating increased SUMO-2/3 conju-
gation to Capn2. Similarly, SUMO-2/3 conjugated CAST was detected
in both diseased heart samples but not in the control samples
(Fig. 9B). Thus, we argue that in the cardiomyopathic hearts, SUMO-2/
Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
dx.doi.org/10.1016/j.bbadis.2015.03.013
3 conjugation to Capn2 and CAST is elevated, which may play a role in
disease development/progression.

4. Discussion

4.1. SUMO-2/3 conjugation and cardiomyopathy

Cardiomyopathy represents a major health threat and is a leading
cause of heart failure [36]. Twomain types of cardiomyopathy are dilat-
ed and hypertrophic cardiomyopathy. The exact mechanism underlying
these cardiomyopathies is poorly understood, although it is believed
that multiple factors, including genetic factors and environmental cues,
play important roles in disease initiation and development. In the pres-
ent study, we reported an increase in SUMO-2/3 conjugation in human
failing hearts and recapitulated cardiomyopathy phenotype in the mu-
rine model by using the gain-of-function approach, i.e., increasing the
levels of SUMO-2 conjugation in cardiomyocytes. Furthermore, the se-
verity of cardiac phenotypes was shown to be associated with the levels
of SUMO-2 conjugation in the heart. Thus, we provided the direct evi-
dence that links SUMO-2 conjugation to the development/progression
of cardiomyopathy and heart failure. In contrast to this finding, an in-
crease in SUMO-2/3 conjugation was observed in the transient ischemic
brain [6–8] and was proposed to be protective [10,37]. While a short
conjugation in cardiomyopathy, Biochim. Biophys. Acta (2015), http://
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term or transient increase in pan-SUMO conjugationmight be beneficial
against certain particular insults, the consequence of a long term
increase in SUMO-2/3 conjugation alone had never been investigated.
Our data indicated that the increase in SUMO-2 conjugation in the
long run may be detrimental to heart function. We noted that cardiac
specific overexpression of SUMO-1 did not cause any discernible
phenotype(s) at baseline activity [14,16]. One possible explanation for
this is that SUMO-1 and SUMO-2 may modify different substrates, or
modify the same targets with different affinity in vivo under certain cir-
cumstances, subsequently leading to various functional outcomes. We
also noted that the SUMO-2-Tgmice (line #9606) with the most severe
heart phenotype exhibited an equivalent increase in SUMO-2 conjuga-
tion compared with that observed in the human failing hearts. Given
the long term nature of development of human heart failure and the
acute diseasemanifestation of line 9606, it is possible that the sensitivity
to increased SUMO-2/3 conjugation is species-dependent. In human, it is
currently not clear whether the elevated SUMO-2/3 conjugation was an
intrinsic nature down the road from cardiomyopathy to heart failure, or
it was just related to any particular clinical treatments the patients re-
ceived. However, since an increase in SUMO-2 conjugation is harmful
to cardiac function as shown in our SUMO-2 gain-of-function models,
our findings collectively raise the possibility that SUMO-2/3 conjugation
may be a potential therapeutic target.

Since overexpression of SUMO-2 did not significantly alter the tran-
scripts of endogenous SUMO-1 and SUMO-3 (data not shown), we be-
lieved that cardiomyopathy observed in the SUMO-2-Tg mice was
solely attributable to SUMO-2 conjugation. In human andmouse hearts,
little SUMO-2/3 conjugationwas observed during basal activity, butwas
substantially potentiated under certain pathological circumstances. This
observation is consistent with the previous report showing that SUMO-
2/3 responded well to the external stimuli in vitro [20]. It is tempting to
further interrogate whether the increase in SUMO-2/3 conjugation is a
common phenomenon in other cardiac myopathic models, and the
Please cite this article as: E.Y. Kim, et al., Involvement of activated SUMO-2
dx.doi.org/10.1016/j.bbadis.2015.03.013
importance of this increase in the initiation/development of cardiac
muscle disorders warrants further investigation using loss-of-function
mouse models.

We observed an increase in apoptosis in SUMO-2-Tg hearts and in
cultured cardiomyocytes overexpressing SUMO-2, indicating the poten-
tial implication of cell death in the progression of cardiomyopathy asso-
ciated with SUMO-2 overexpression. Since the overexpressed SUMO-2-
GG, but not the mutant SUMO-2-ΔGG, in cultured cardiomyocytes pro-
moted apoptotic process, we concluded that it was the SUMO-2 conju-
gation, but not SUMO-2 itself, that was critical in the cell death
process and cardiomyopathy development. Thus, it is highly likely that
the functional consequence of a globally elevated SUMO-2 conjugation
may depend on the primary targets, and any pathological stimuli that
shift the substrates for conjugation even without significantly changing
the global levels of SUMO-2 conjugation may result in different func-
tional outcomes. In addition, we also observed cardiac hypertrophy in-
duced by increased SUMO-2, suggesting a potential implication of
SUMO-2 in cardiac remodeling. We are currently investigating this
issue.

4.2. Modulation of calpain–calpastatin proteolytic system by SUMO-2

Calpain–calpastatin system plays an important role inmediating the
apoptotic process. Our findings suggested that SUMO-2 targeted at least
two components of this system. CAST, the natural inhibitor of Capns,
was a novel SUMO substrate identified by our study, and SUMO attach-
ment promoted its turnover and altered its nature of subcellular distri-
bution, subsequently decreasing its inhibitory impact on Capns. CAST
had a relatively stable half-life [38], although it can be cleaved/degraded
by a number of proteases including calpains, cathepsin and caspases
[39–41]. Interestingly, SUMO-linked CAST was mainly cleaved by
caspases, but not by other proteases tested, indicating that SUMO conju-
gation to CAST increased its sensitivity to caspases and/or decreased its
conjugation in cardiomyopathy, Biochim. Biophys. Acta (2015), http://
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strate, t-BOC-LM-CMAC, was visualized in a cleavage-dependent manner by calpain. Randomly selected cells (at least over 100 cells/field) were scored by double positive signals of GFP
and t-BOC-LM-CMAC. Note that SUMO-2 fusion enhanced proteolytic activity of Capn2, while SUMO site mutation attenuated the enzymatic activity of Capn2. Data were collected from
three independent experiments. **p b 0.005 vs GFP, #p b 0.005 vs Capn2.
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Csensitivity to other proteases. Themechanisms underlying this sensitiv-

ity change merit further investigation. MG132, the proteasome-
associated degradation inhibitor, also slightly but significantly inhibited
the turnover of SUMO-fused CAST (data not shown), indicating that the
proteasome-associated protein degradation was also involved in its
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Fig. 9. Increased SUMO conjugation of Capn2 and CAST in the human cardiomyopathic
heart muscles. Co-IP was performed on protein lysates extracted from two control and
two diseased human left ventricles using SUMO-2/3 conjugated beads, followed byWest-
ern blot probedwith anti-Capn2 antibody (A) or anti-CAST antibody (B).−, negative con-
trol group, which only contained binding buffer and SUMO-2/3 conjugated beads. N,
normal heart; CM, cardiomyopathy; NS, non-specific.
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facilitated turnover to some degree. Thus, it appears that the stability
of SUMO conjugated CAST was regulated via at least two means: cas-
pase cleavage and proteasome-associated degradation.

A previous study reported Capn2 as a SUMO target on lysine 390
[29], and SUMO conjugation to Capn2 potentiated, but SUMO sitemuta-
tion (K390R) repressed, its ability to promote cell mobility [29]. In
agreement with the above observations, SUMO-2-fused form of Capn2
exhibited elevated enzymatic activity and promoted apoptotic process
in cultured cardiomyocytes, as evidenced by more significantly in-
creased Annexin-V staining in SUMO-2-Capn2 group compared with
the free Capn2 group. Interestingly, Capn2was the only SUMOsubstrate
among the Capn family members we tested; Capn1, Capn3 and Capn4
were not SUMO targeted (data not shown), indicating a unique regula-
tion of Capn2 activity by the SUMO conjugation pathway. Since the
SUMO conjugation pathway is governed by a number of enzymes, it
will be interesting to probe whether there is any crosstalk between
any of those enzymes involved in the SUMO conjugation pathway
such as SUMO E3 ligases and/or SENPs and calpain–calpastatin proteo-
lytic system.

In the present study, we used SUMO fused form to study the func-
tions of SUMO modified CAST and Capn2. Although SUMO fused sub-
strates are not identical to the native SUMO conjugated substrates, it
has beenwidely used in the SUMO field [42,43], mainly due to the tech-
nical difficulty with purifying a sufficient amount of functionally active
SUMO conjugated targets for functional analysis.
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4.3. SUMO conjugation and apoptosis

The crosstalk between the SUMO conjugation pathway and the apo-
ptosis pathwayhas been previously explored in a number of studies. For
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instance, an elevated SUMO conjugation was reported to protect cells
from oxidative stress-induced apoptosis [44,45]. However, some other
reports favored the notion that enhanced SUMO conjugation promoted
apoptosis. For example, the increased SUMO-1 conjugation was linked
to cell death inducedbyexternal stimuli suchasH2O2 [46] or by treatment
with progesterone receptor antagonists [47]. A more recent report sug-
gested that knockout of SENP1, an isopeptidase that performs
deconjugation functions, led to elevated SUMOconjugation and increased
ER stress-induced apoptosis [48]. Our findings provided the evidence that
the enhanced SUMO-2 conjugation promoted cell death. Althoughwe re-
vealed that SUMO-2 conjugation altered the activity of calpain–
calpastatin system,wecannot rule out thepossibility that SUMO-2 linkage
toother substrates, suchas caspases [49,50],may alsoplay a role in the ap-
optotic process. Surprisingly, either increase or decrease in the levels of
SENP2, a potent desumoylation enzyme, failed to significantly alter the
cardiomyocyte survival status [14,51]. The exact mechanisms underlying
this observation are not known. Possibly, under basal activity, little SUMO
conjugation to the targets such as Capn2 and CASTwas present, as shown
in the control hearts; SUMO conjugation to these targets only increased
under pathophysiological condition. Thus, altering the SENP2 levels
under baseline conditions would not exert any significant effects on apo-
ptosis. It is also possible that the subcellular localization of SENP2 may
prevent it from efficiently “contacting” these SUMO modified targets to
perform its desumoylation duties. It is highly likely that the functional
interplay between the SUMO conjugation pathway and the cell death
pathway is context/substrate dependent.

In conclusion, our studies demonstrate that SUMO-2/3 conjugation is
involved in regulation of apoptosis at least partially via targeting calpain–
calpastatin proteolytic system. Two major components of this system,
calpain 2 and calpastatin, are SUMO substrates. SUMO-2 represses the
function of calpastatin via inducing its turnover, while it potentiates the
enzymatic activity of calpain 2, therefore subsequently increasing the
proteolytic activity of this system. We further uncovered the elevated
global SUMO-2/3 conjugation accompanied by increased levels
of SUMO-2/3-attached calpain 2 and calpastatin in the human
cardiomyopathic heartmuscles. Collectively, our current findings suggest
that the SUMO-2/3 conjugation pathway plays a pathogenic role in the
development of cardiomyopathy and heart failure, and this pathway
may serve as a potential novel target for therapeutic intervention in clinic.
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