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Tauopathies are a group of incurable neurodegenerative diseases, in which loss of neurons is accompanied by
intracellular deposition of fibrillar material composed of hyperphosphorylated forms of the microtubule-
associated protein Tau. A zebrafish model of Tauopathy could complement existing murine models by providing a
platform for genetic and chemical screens, in order to identify novel therapeutic targets and compounds with
disease-modifying potential. In addition, Tauopathy zebrafish would be useful for hypothesis-driven
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Tau experiments, especially those exploiting the potential to deploy in vivo imaging modalities. Several
Tauopathy considerations, including conservation of specialized neuronal and other cellular populations, and biochemical
Progressive supranuclear palsy pathways implicated in disease pathogenesis, suggest that the zebrafish brain is an appropriate setting in which
Zebrafish to model these complex disorders. Novel transgenic zebrafish lines expressing wild-type and mutant forms of
Alzheimer's disease human Tau in CNS neurons have recently been reported. These studies show evidence that human Tau undergoes
Transgenic disease-relevant changes in zebrafish neurons, including somato-dendritic relocalization, hyperphosphorylation

Neurodegeneration and aggregation. In addition, preliminary evidence suggests that Tau transgene expression can precipitate

neuronal dysfunction and death. These initial studies are encouraging that the zebrafish holds considerable
promise as a model in which to study Tauopathies. Further studies are necessary to clarify the phenotypes of
transgenic lines and to develop assays and models suitable for unbiased high-throughput screening approaches.
This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.

Published by Elsevier B.V.

1. Introduction

The microtubule-associated protein Tau (MAP-T, ‘Tau’) undergoes
biochemical alterations, cellular redistribution, and deposition as
insoluble intraneuronal fibrils (Fig. 1), in a variety of neurodegener-
ative conditions that are collectively termed ‘Tauopathies’. Together,
these diseases, which include Alzheimer's disease, progressive supra-
nuclear palsy and other conditions (Table 1), are an important cause
of morbidity and mortality, with diverse clinical manifestations. No
currently available treatments improve the prognosis of any of these
relentlessly progressive diseases. Consequently, investigations aimed
at determining the underlying pathophysiology of Tauopathies, and
isolating novel therapeutic agents that prevent disease progression,
are of great importance. In this review, we consider recent develop-
ments concerning the possibility that a zebrafish Tauopathy model
might be useful for therapeutic target and drug discovery in vivo. After
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briefly reviewing current knowledge and murine models of Tauo-
pathy, we discuss the possible advantages of a zebrafish model and
whether a truly representative model encompassing key biochemical
events underlying Tauopathy can be recapitulated in the zebrafish
central nervous system. Finally, we review recent publications
demonstrating initial proof of concept that Tauopathy zebrafish
models recapitulate core features of the human disorders.

2. The microtubule-associated protein Tau

Neurons rely on fast axonal transport to shuttle organelles and
macromolecules over long distances, allowing their physiological
distribution and turnover within axons and dendrites. Microtubules,
which provide the tracks along which molecular motors rapidly
transport these diverse cargos, are composed of polymerized tubulin
monomers. Assembly of tubulin into microtubules is promoted by
microtubule-associated proteins, the first of which to be identified
was termed ‘Tau’ (7 was used to denote a factor essential for tubule
formation) [1,2]. Tau is expressed widely in neurons, where it is
enriched in the axonal compartment [3]. The microtubule-binding
domain of Tau localizes to the C-terminal half of the protein [4,5]
(Fig. 2). The N-terminal, or projection domain, contains a proline-rich
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Fig. 1. Neurofibrillary tangles in Alzheimer's disease. A: Neurofibrillary tangles in
Alzheimer's disease prefrontal cortex are demonstrated using the Gallyas silver method
[127]. NFTs are seen as numerous argyrophilic (black) fibrillar intraneuronal inclusions
(arrows). Neuropil threads, axonal abnormalities also caused by accumulations of
fibrillar Tau, are also seen (arrowheads). B: Neurofibrillary tangles in Alzheimer's
disease hippocampus are demonstrated by immunohistochemistry, using an antibody
(AT8) that detects phospho-S202/T205-Tau. NFTs are seen as abundant immunoreac-
tive (red) intraneuronal inclusions (arrows). Accumulations of phospho-Tau are also
apparent in abnormal axonal terminals surrounding amyloid plaques (arrowheads).

region and multiple potential serine-threonine phosphorylation sites,
and is thought to be involved in interactions with other cellular
components.

2.1. The MAPT gene

Tau is encoded by the MAPT gene, which is located on chromosome
17 and contains 16 exons. Alternative splicing of the primary
transcript leads to a family of mRNAs, encoding different protein

Table 1
Neurodegenerative diseases associated with prominent Tau pathology.
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isoforms. In adult human brain, six isoforms are expressed, produced
by alternative splicing of exons 2, 3 and 10 (exons 4A, 6 and 8 are not
expressed in the CNS). Tau isoforms in the CNS contain either three or
four copies of a tandem repeat containing tubulin-binding sequences,
referred to as 3R- and 4R-Tau respectively (Fig. 2). Exon 10 encodes
the second microtubule-binding repeat, such that inclusion of exon 10
in the mRNA results in translation of 4R-Tau, whereas exclusion of
exon 10 results in a transcript encoding 3R-Tau [6,7]. Optional
inclusion of exon 2, or exons 2 and 3, gives rise to N-terminal
insertions of 29 (“1N’) or 58 (‘2N’) amino acids respectively [8]. The six
resulting CNS isoforms are shown in Fig. 2. Additional isoforms
generated by incorporation of exon 4A (‘large Tau’) are expressed in
the peripheral nervous system [9].

2.2. Functions of Tau

Association of Tau with tubulin promotes microtubule formation
[1,2], and association of Tau with microtubules is thought to enhance
their stability [10]. 4R-Tau binds to microtubules with greater avidity
than 3R-Tau isoforms [4,11,12] (this is attributable to sequences in the
first inter-repeat segment that are unique to 4R proteins, rather than
to the additional copy of the microtubule-binding tandem repeat
[13]), suggesting that expression of 4R-Tau may favor microtubule
formation and stability. In healthy adult brain tissue, the 4R-/3R-Tau
ratio is approximately 1, and disruption of this balance in the human
brain may have serious consequences (see below) [14]. However,
there are situations in which the 4R-/3R-Tau ratio may be altered
physiologically. For example, during embryogenesis, Tau is exclusive-
ly expressed in the brain as the 3R/ON isoform [8]. It has been argued
that this might promote plasticity of neuronal processes during
development by reducing microtubule stability. Recent work has
suggested that Tau interacts with motor proteins involved in axonal
transport, provoking different functional consequences for distinct
types of motor molecules [15]. Kinesin, which transports cargo
towards the distal end of the axon, tended to detach from the
microtubule on encountering Tau, whereas the proximally-directed
motor Dynein showed more directional reversal than detachment.
These effects were apparent in the presence of 3R/ON Tau, and suggest
that association of Tau with microtubules may modulate axonal
transport in addition to promoting microtubule stability.

2.3. Tau phosphorylation

Tau undergoes post-translational changes, including physiological
serine-threonine phosphorylation [16] and O-glycosylation [17], in
addition to tyrosine phosphorylation [18], SUMOylation [19] and
pathological nitration [20]. Of these changes, phosphorylation has

Disease Typical clinical presentations

Typical Tau pathology

Tau filaments Tau species Etiology

Alzheimer's disease (AD) Memory disorder, dysphasia, frontal
lobe cognitive-behavioral disorder,
dementia

Falls, rigidity, oculomotor disorder,

cognitive-executive disorder

Progressive supranuclear palsy (PSP)

Corticobasal degeneration (CBD) Dystonia, myoclonus, apraxia,

cortical sensory loss, dementia

plaques
Pick's disease (PiD) Frontal lobe cognitive-behavioral Pick bodies
disorder, dementia
Fronto-temporal dementia and Variable Parkinsonian motor Variable

disorder and/or frontal lobe
dementia

parkinsonism linked to
chromosome 17 (FTDP17)

Flame-shaped
neurofibrillary tangles

Globose neurofibrillary
tangles, tufted
astrocytes

Ballooned neurons,
pre-tangles, astrocytic

Paired helical 4R- and 3R-Tau
filaments, straight
filaments [123]

Straight filaments

[124]

Mostly unkown, few cases
caused by mutations in APP, PS1
or PS2 genes

Unknown, linked to H1
haplotype at MAPT locus

Predominantly
4R-Tau
Twisted ribbon

Predominantly Unknown, linked to H1

filaments [125] 4R-Tau haplotype at MAPT locus

Helical filaments; Predominantly Unknown

straight filaments 3R-Tau

[126]

Variable Variable Mutations in MAPT gene
(see text) encoding Tau
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domain domain binding domain domain
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3R/ON | |R1|R3 | R4 | 352 36.8 a3

Fig. 2. Isoforms of the microtubule-associated protein Tau. The schematic depicts the six Tau isoforms expressed in the adult human brain, labeled to the left of each protein. Positions
of major protein domains are shown above the longest isoform. The N-terminal insertions encoded by exons 2 and 3, and the four tandem repeats (R1-4) in the microtubule-binding
domains are indicated. Sites of known phosphorylation are shown above the longest isoform. The table to the right of the figure shows the number of amino acids, predicted

molecular mass and electrophoretic mobility of each protein isoform.

been most extensively studied, since pathological hyperphosphorylation
is associated with Tauopathy [21]. Approximately 45 phosphorylation
sites have been identified, which cluster in the proline rich C-terminal
domains of the protein [22]. Phosphorylation of Tau, in particular at S262
and S356 within the microtubule-binding domain, promotes its
detachment from microtubules, suggesting a potential mechanism in
regulating microtubule stability and axonal transport [23,24]. In addition
to microtubule-binding affinity, phosphorylation may have other effects,
such as modulating binding to the chaperone Pin1 [25] and possibly in
regulating putative signal transduction functions of Tau through
phosphorylation of SH3 domains [26].

Hyperphosphorylation of Tau is a characteristic feature in Tauopathy
specimens. No single phosphorylation site is specific for Tauopathy.
Although some phospho-epitopes may be more readily detected in
pathological specimens compared with non-Tauopathy material, most of
the known phosphorylation sites have been demonstrated in normal
biopsy material [16]. Hyperphosphorylation is a quantitative rather than
qualitative phenomenon, defined by the degree to which Tau is
phosphorylated at multiple sites. Phosphorylation is a dynamic process
and Tau is rapidly de-phosphorylated post mortem, accounting for the lack
of detectable phospho-epitopes in control autopsy specimens. It is unclear
whether a functional abnormality of phosphatase activity is present in
Tauopathy samples, or whether the failure of de-phosphorylation in
Tauopathy autopsy material is attributable to changes in the properties of
the hyperphosphorylated molecule as a phosphatase substrate. During
normal development, Tau is present in a highly phosphorylated state
[27,28], suggesting that the balance of Tau phosphorylation and de-
phosphorylation can change physiologically, without necessarily provok-
ing neurodegeneration.

2.4. Tau kinases

Several cellular kinases are able to phosphorylate Tau in vitro or in
cell culture (Table 2; reviewed in [22]). Many of these phosphorylate
multiple residues of Tau, and individual residues can be phosphor-
ylated by multiple different kinases, suggesting that Tau is a
promiscuous kinase substrate. Consequently, it is difficult to be
certain which kinase(s) are responsible for physiological or patho-
logical phosphorylation of Tau in vivo. Kinases that have emerged as
strong in vivo candidates include glycogen synthase kinase-3p
(GSK3p) [29-33] and cyclin-dependent protein kinase-5 (cdk5)
[34,35]; both are expressed abundantly in neurons and associate
with microtubules (cdk5 is anchored to microtubules by Tau [36]).
However, it is likely that more than one kinase participates in the
events leading to hyperphosphorylation, since no single kinase

phosphorylates all of the residues found in Tauopathy specimens.
Furthermore, there are examples in vitro of cooperation between
kinases; for example, cdk5-mediated phosphorylation of Tau pro-
motes further phosphorylation by GSK3p [37,38]. Consequently, it is
thought that the transition from normal to hyperphosphorylated Tau
may be a hierarchical or sequential process dependent on phosphor-
ylation by multiple different kinases. Several different protein
phosphatases dephosphorylate Tau in vitro, including PP1, PP2A,
PP2B and PP2C. Their specificities are overlapping and their roles in
vivo are incompletely understood. PP2A has emerged as a strong
candidate, since it appears to be the major brain-derived phosphatase
activity directed towards Tau in the rat brain [39] and is localized to
microtubules (both through an association with Tau and also directly,
which may regulate its activity in vitro [40]).

2.5. Tau deposits in sporadic neurodegenerative diseases

Tauopathies are characterized pathologically by the presence of
fibrillar deposits of hyperphosphorylated Tau. The histological
appearance and distribution of Tau deposits differs between diseases,
as does the ultrastructural appearance of Tau filaments that compose
neurofibrillary tangles, Pick bodies and other inclusions (Table 1).
Formation of neurofibrillary tangles (NFTs) likely occurs through
oligomeric intermediates, and there is some evidence that these are
the primary pathogenic species, rather than mature NFTs (see
below).

The predominant Tau isoforms deposited in neurons differ between
diseases. In Alzheimer's disease, SDS-PAGE analysis showed three major

Table 2
Phylogenetic conservation of kinases implicated in tau physophorylation.
Tau Kinase Protein accession numbers % %
Human Zebrafish identity consensus
Glycogen synthase kinase ~ NP_001139628 NP_571456 94.5 974
3p (GSK3p)
Cyclin-dependent kinase AAP35326 AAH85381 96.2 98.6
5 (cdk5)
Mitogen activated protein ~ NP_620407 BAB11813  90.8 93.5
kinase 1 (MAPK1, ERK1)
Microtubule Affinity CAH72462 AAI55560 79.3 85.5
Regulating Kinase 1
(MARKT)
Casein kinase 1o (CK1at) ~ NP_001883 NP_694483 99.3 99.3
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Tau immunoreactive bands of 68, 64 and 60 kDa present in detergent-
extracted material containing paired helical filaments [41]. After de-
phosphorylation of the same material, all six Tau isoforms were resolved
by electrophoresis, showing that hyperphosphorylation of Tau was
responsible for the alteration in its electrophoretic mobility, and that AD
filaments are composed of all six Tau isoforms. Similar analyses of
specimens derived from other types of Tauopathy have revealed
different results. In progressive supranuclear palsy and cortico-basal
degeneration, two major Tau bands of 68- and 64 kDa are derived from
hyperphosphorylation of 4R-Tau species [42,43]. Conversely, material
derived from Pick's disease brain shows two bands of 64- and 60-kDa,
dephosphorylation of which reveals the presence of 3R-Tau species
[43,44]. Interestingly, genetic data shows association between an
extended haplotype of markers across the MAPT locus, and PSP/CBD
[45]; recent data shows that this haplotype favors the splicing of exon
10" transcripts encoding 4R-Tau [46], suggesting that genetically-
determined relative over-production of 4R-Tau might be one factor
in the pathogenesis of these sporadic diseases.

2.6. Hereditary fronto-temporal dementia and Parkinsonism linked to
chromosome 17

Definitive evidence that the development of Tau pathology may be
mechanistically important in common sporadic Tauopathies comes
from the study of rare families, in which mutations within the MAPT
gene are sufficient to cause a neurodegenerative disease with
prominent Tauopathy [14,47]. FTDP17 is inherited as an autosomal
dominant trait and can manifest as a Parkinsonian movement
disorder or as a cognitive-behavioral disorder, resembling other
forms of fronto-temporal dementia (reviewed in [48]). To date, 39
different pathogenic MAPT mutations have been identified in FTDP17
families. Mutations clustered around the 5’ boundary of intron 10
alter the regulation of splicing, most frequently resulting in relative
over-production of exon 107 transcripts and deposition of hyperpho-
sphorylated 4R-Tau isoforms. Missense mutations within exon 10 also
provoke a 4R-Tauopathy, by changing the biophysical properties of
4R-Tau without altering the ratio of splice isoforms; these mutations
also result in 4R-Tau deposition. Finally, mutations outside exon 10
are expressed in both 3R- and 4R-Tau, but may provoke selective
deposition of 3R- or 4R-, or both isoforms of Tau. A variety of
mechanisms has been proposed to account for the pathogenicity of
MAPT missense mutants, including promotion of Tau fibril formation,
impairment of microtubule-binding and introduction or removal of
key phosphorylation sites [49]. Many of the mutants show multiple
functional abnormalities, such as alterations in 4R-/3R-splice ratio and
reduced propensity to promote the stabilization of microtubules.

Although FTDP17 is an uncommon disease, the discovery of
pathogenic MAPT mutations has provided important confirmation
that primary abnormalities of Tau, including alterations in the relative
abundance of 3R- and 4R-isoforms, can result in neurodegeneration
and Tauopathy. Given the close similarity between FTDP17 and
sporadic Tauopathies in some cases, it is reasonable to conclude that
abnormalities of cellular Tau metabolism may be central to neurode-
generation in common sporadic Tauopathies. Consequently, study of
model systems in which Tauopathy is induced by molecular
manipulations that mimic the genetic mechanisms of FTDP17 might
yield important insights into pathophysiology and identify potential
treatment targets for common sporadic Tauopathies.

3. Transgenic mouse models of Tauopathy

A variety of different transgenic lines, over-expressing wild-type
or FTDP17 mutant human Tau, have been described (reviewed in
[50,51]). Several important themes that have emerged from studies of
these animals are briefly considered here.

First, dissociation between NFT formation and neuronal dysfunc-
tion or death was demonstrated in some of these models, suggesting
that Tau hyper-phosphorylation, relocalization or oligomerization
may be more critical for the emergence of phenotypic abnormalities in
these models than formation of NFTs. Abnormalities of hippocampal
synaptic protein expression and physiology preceded the formation of
NFTs in mice expressing P301S mutant Tau [52]. Studies using a
different model in which P301L Tau was expressed under an inducible
promoter showed that suppression of transgene expression after the
onset of phenotypic abnormalities prevented neuronal loss and
behavioral abnormalities but did not affect neurofibrillary tangle
formation [53], and there was regional dissociation between NFT
formation and cell loss [54]. In addition, immunization of Tau/APp
transgenic mice reduced soluble Tau in the brain but did not affect NFT
formation — the animals showed phenotypic improvement, suggest-
ing that neurobehavioral abnormalities were attributable to a soluble
Tau species rather than NFT [55].

Second, Tau transgenic mice have provided a powerful means to
test the interactions between different biochemical pathways impli-
cated in neurodegeneration. For example, evidence of an in vivo
interaction between Tau and AP in the pathogenesis of Alzheimer's
disease was demonstrated by intracerebral inoculation of the
Alzheimer's disease-associated amyloid peptide AB1-42, which
enhanced the formation of NFTs in a mouse P301L Tau-expressing
model [56]. Furthermore, P301L Tau/APP double transgenic animals
showed exacerbation of NFT pathology in the presence of the APP
transgene, whereas AP plaque formation was unaffected by the over-
expression of mutant Tau, suggesting that B-amyloid formation or
another function of APP might be upstream of Tauopathy in this
model [57].

Finally, murine models have provided powerful means to test
hypotheses concerning experimental treatment approaches, and
biochemical interventions aimed at understanding disease pathogen-
esis in vivo (reviewed in [58]). For example, administration of Li*, an
inhibitor of GSK3, reduced hyperphosphorylation of Tau in vivo and
ameliorated some phenotypic abnormalities [31], and another kinase
inhibitor targeting cdk5, GSK3 and MAPK1 delayed the onset of a
motor deficit in Tau transgenic animals [59]. Other studies have
deployed pharmacological interventions in order to clarify the
potential therapeutic utility of interventions directed at restoring
loss of Tau microtubule-stabilizing function [60], enhancing clearance
of pathological Tau species from neurons by inhibiting refolding
functions of the HSP90 complex to promote Tau degradation [61], and
curtailing a potentially pathogenic neuroinflammatory response by
targeting microglial activation using immunosuppressive drugs [52].

Together, these observations show that experimental genetic
manipulations, which mimic the mechanisms underlying FTDP17 in
humans, provoke phenotypic changes relevant to human Tauopathy
in transgenic animals. These models have been valuable for
hypothesis-driven experiments aiming to elucidate the pathogenesis
of Tauopathy and for testing putative therapeutic approaches.

4. Why would a zebrafish Tauopathy model be useful?

The zebrafish is a small freshwater fish that has been used
extensively in laboratory studies of vertebrate development. Fish
embryos develop externally allowing direct observation of embryo-
genesis. Many morphological and molecular parallels are shared
between fish and other vertebrates allowing insights gained in the
zebrafish model to be applied to other systems. Stemming from the
use of zebrafish in developmental studies, an extensive array of
experimental methodologies has been developed. Straightforward
techniques are available for over-expression [62,63] or targeted
knockdown of genes of interest [64], allowing the consequences of
altered gene function to be determined readily in vivo. The
deployment of fluorescent reporters [65] allows direct observation
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of morphology or physiology of individual cells in vivo [66-68]. The
ability of zebrafish to breed regularly and produce sizeable clutches of
embryos, and the practicable housing of significant numbers of
animals, has allowed development of techniques for large-scale
genetic [69-72] and chemical modifier [73-75] screens. These have
provided numerous novel molecular insights into development,
through unbiased phenotype-driven approaches. More recently, it
has been demonstrated that intact zebrafish larvae provide an in vivo
neurobehavioral platform suitable for screens to find chemical
modifiers of vertebrate behavior [76].

It is possible that applying these types of analysis to zebrafish
models of neurodegenerative diseases would provide novel molecular
insights into disease pathogenesis, and allow identification of
potentially therapeutic compounds. In particular, screening studies
carried out in the intact vertebrate CNS in vivo might uncover drug
targets that are not present in cell culture models commonly used for
discovery-driven approaches, such as pathogenic mechanisms that
are not cell-autonomous, or which are only expressed in end-
differentiated neurons. Consequently, there has been significant
recent interest in the development of zebrafish models of Tauopathy.

5. Is the zebrafish a suitable organism in which to study Tauopathy?

The proposed use of a small aquatic creature to study complex
human neurobehavioral diseases naturally raises questions about
relevance — will it be possible to generate a truly representative
model, with potential to yield important insights into the human
disorder? A variety of considerations suggest that the zebrafish may
be a good model system in which to study human neurological
diseases. With respect to the human CNS, the zebrafish shows
conservation of basic brain organization [77] and many key
neuroanatomical [78,79] and neurochemical [80,81] pathways of
relevance to human disease; the zebrafish CNS contains microglia
[68], cells with astrocytic properties [82,83], oligodendrocytes and
myelin [84-87], and a blood-brain barrier [88], all of which have been
implicated in the pathogenesis of neurological disease. These
observations imply that the tissue environment in the zebrafish CNS
may present appropriate conditions in which to recapitulate patho-
logical changes representative of the human disorders. In addition,
there is a striking degree of phylogenetic conservation of genes
implicated in the pathogenesis of neurodegenerative diseases, and a
variety of other CNS functions [89-96]. This suggests that it will be
possible to provoke neurodegeneration in zebrafish through con-
served biochemical pathways that are sufficiently close to those
underlying human disorders that findings in the zebrafish model will
yield relevant insights into diseases mechanisms. It is noteworthy that
the zebrafish genome contains highly conserved orthologues of each
of the kinases implicated in Tau phosphorylation (Table 2 and Fig. 3),
which may be of particular relevance to Tauopathy in view of the
proposed central role of hyperphosphorylation in pathogenesis.
Similar considerations apply to other conserved pathways, and it
seems likely that findings in zebrafish models will be representative of
the mechanisms underlying the pathogenesis of human Tauopathies
and will therefore be relevant to their understanding.

5.1. Zebrafish paralogues of MAPT

Recent work has identified two paralogues of MAPT in zebrafish,
annotated mapta and maptb [97]. Analysis of homology between
zebrafish and mammalian MAP-encoding genes, and examination of
synteny between zebrafish mapt and mammalian MAPT loci, strongly
suggest that the two zebrafish genes arose from duplication of an
ancestral mapt locus. A genome duplication event is thought to have
taken place during the evolution of teleosts [98]; consequently, there
are dual zebrafish paralogues of many mammalian genes [92,99]. It is
possible that divergent evolution of the two mapt genes has given rise

to functional sub-specialization, suggesting that the zebrafish may be
a powerful tool in which to dissect multiple cellular roles of Tau. The
two proteins encoded by the zebrafish genes have not yet been
detected, but both mapta and maptb mRNAs were expressed in the
developing CNS [97]. A complex pattern of alternative splicing of the
mapta and maptb transcripts suggests that, like human Tau, zebrafish
Tau isoforms with different numbers of microtubule-binding repeats
are expressed in the CNS, and larger forms of Tau are expressed in the
peripheral nervous system. Interestingly, mapta gives rise to tran-
scripts encoding 4-6 microtubule-binding repeats, whereas maptb is
predominantly expressed as a 3-repeat isoform, raising the fascinat-
ing possibility that conserved functions of mammalian 3R- and 4R-Tau
are distributed between the two zebrafish genes [97].

6. Tools for the generation and analysis of zebrafish Tau models

Generation of transgenic Tau zebrafish requires availability of
appropriate methods for introducing exogenous DNA into the germ-
line, and resources to direct MAPT transgene expression in the desired
temporal and spatial pattern.

6.1. Techniques for establishment of transgenic lines

Transgenic zebrafish can be generated by micro-injecting linearized
plasmid DNA into the cytoplasm of one-cell stage embryos [100], but
this gives rise to inefficient genomic integration and significant
mosaicism. Two technical advances, meganucleases and transposons,
have substantially improved the efficiency by which foreign DNA can be
introduced into the zebrafish genome. (i) The meganuclease I-scel is an
intron-encoded endonuclease from Saccharomyces cerevisiae [101],
which cleaves DNA at an 18 bp sequence-specific recognition site not
found within the zebrafish genome. In meganuclease-mediated
transgenesis, the transgene plasmid is designed so that the expression
cassette is flanked by I-sce1 sites, and is injected into zebrafish embryos
with I-scel enzyme. Integration of a low transgene copy number usually
occurs at a single site, with substantially enhanced efficiency, and
reduced mosaicism, compared with naked DNA injection. This improves
the rate of transmission of the transgene from the FO to the F1
generation [102] and results in simple Mendelian transmission of
transgenes in subsequent crosses [103]. (ii) Type 2 transposons are
mobile DNA elements encoding a transposase, which mediates excision
of the transposon from the genome and its re-insertion at another
location. The Tol2 transposon, found in the genome of medaka [104], has
been engineered by deletion of the transposase gene to form a non-
autonomous mobile element, which can insert into the genome in the
presence of transposase supplied in trans [105]. In this approach to
transgenesis, the transgene expression cassette is flanked by transposon
elements, and injected into zebrafish embryos with mRNA encoding
transposase, resulting in highly efficient, usually multiple, single-copy
integration events. The technique has been used increasingly since its
introduction and subsequent refinement [62], because it is necessary to
inject and screen a relatively small number of embryos in order to
identify stable transgenic lines.

6.2. Promoter resources for generation of neurodegeneration models

Most transgenic zebrafish lines have been constructed by expressing
a c¢DNA under control of a characterized heterologous promoter
fragment; cis-acting regulatory regions derived from zebrafish genes
are usually employed for this purpose, because they may be associated
with more reliable transgene expression [ 106,107]. For the generation of
a Tauopathy model, desirable attributes for the promoter would include
pan-neuronal activity and sufficient expression to provoke pathology.
Three zebrafish promoter elements that drive transgene expression
widely in CNS neurons have been described. (i) A neuronal enhancer
derived from the gata2 promoter was expressed at high levels in the
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A. Glycogen synthase kinase 3p
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Fig. 3. Phylogenetic conservation of kinases implicated in Tau phosphorylation. The sequence figure shows the striking degree of amino acid conservation between human and
zebrafish (A) GSK3[ and (B) cdk5. Each panel shows the Human (upper) and zebrafish (lower) protein sequences, aligned using the ClustalW algorithm. Amino acids are shaded to
show identical, conserved and non-similar residues. The catalytic domain of each kinase is indicated by underlining, and important functional sites labeled as indicated.

developing CNS [108]. (ii) The zebrafish huc gene encodes an RNA
binding protein, HuC/D, commonly used as an early neuronal marker
[109] — a 2.8 kb fragment of the proximal 5’ flanking region was
sufficient to drive pan-neuronal expression in embryos [110]. (iii) The
eno2 gene, encoding the neuron-specific y-enolase isoenzyme, is
expressed at low levels until 60-72 h post-fertilization, after which
high level expression persists into adulthood. The eno2 regulatory
region is complex, containing an untranslated first exon, and an intronic
CpG island that appears important for promoter activity. A 12 kb
fragment of the promoter, including the first intron, was active in
driving reporter gene expression in neurons, including many popula-
tions of relevance to disease, throughout the brain and spinal cord from
36-48 h post-fertilization through adulthood [111], and in the retina
and visual pathways [103] (Fig. 4). The optimal promoter for
construction of Tauopathy models is unclear, and each of these
promoters has been deployed in studies of transgenic Tau zebrafish
(see below). It is likely that further development of promoter resources
and other approaches to generation of transgenic animals will yield
other useful reagents for this application.

6.3. Special considerations for expression of transgenes that provoke
neurodegeneration in larvae

In order to fully exploit the potential of the zebrafish for high-
throughput screening approaches, it may be necessary to drive Tau
expression at sufficiently high levels that disease pathogenesis occurs
during larval stages of development, when zebrafish can be
accommodated in 96-well plates. However, development of neuro-
degeneration at this early time point could provide strong selection
against establishment of transgenic lines, by compromising repro-

ductive potential or preventing survival to sexual maturity. One
possible solution would be deployment of a conditionally-expressing
system, for example the binary Gal4-UAS system previously
employed in Drosophila genetics. This system has been successfully
used in zebrafish, with recent modifications attempting to address
toxicity issues caused by the viral trans-activation domain usually
fused to Gal4, and inactivation of the UAS tandem repeats [112,113].
Isolation of useful driver lines for generation of neurodegenerative
disease models is ongoing, and the optimal strategy for deployment of
this technology is uncertain. Driver lines could be constructed by
expressing the Gal4-transactivator fusion protein using small pro-
moter fragments similar to the approach for generating cDNA
transgenic animals; this has been used successfully with the huC
promoter in a larval Tau model [114]. In addition, the highly efficient
genomic integration of transgenes using the Tol2 transposon has
allowed the deployment of approaches in which random integration
of a gal4-expressing enhancer trap gives rise to robust stable
expression of Gal4 under the endogenous regulatory elements of
the gene of insertion [115]. Several such lines have been constructed
and are currently being further evaluated.

6.4. Assays for fully exploiting transgenic models

The power of screening paradigms might be enhanced by
deployment of assays that exploit unique properties of the zebrafish
model. First, direct visualization of neuronal populations of interest in
the zebrafish brain might allow non-invasive automated imaging to
ascertain the morphology, integrity or viability of target cells as an
assay end point. For example, the Tauopathies PSP and CBD are
associated with severe depletion of dopaminergic neurons causing a
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eno2:egfp

Fig. 4. The zebrafish eno2 promoter. The micrograph shows a single confocal plane through the head region of a Tg(eno2:egfp) zebrafish larva at 5 days post-fertilization, illustrating
widespread neuronal expression of the eno2 promoter. Rostral is to left, dorsal up. GFP expression appears green; the section was counterstained using a blue nuclear marker to
facilitate identification of anatomical landmarks. Key: Tel, telencephalon; TeO, optic tectum; Ce, cerebellum; MdO, medulla oblongata; SC, spinal cord; L, ocular lens; PRL,
photoreceptor layer of retina; IPL, inner plexiform layer of retina; GCL, ganglion cell layer of retina; TG, trigeminal ganglion; OC, otic capsule; PLLG, posterior lateral line ganglion;

LLN, axons of lateral line nerve.

Parkinsonian movement disorder that characterizes these condi-
tions [116], and it would be of considerable interest to identify
compounds that protect dopaminergic neurons from abnormal forms
of Tau. Genetic labeling of dopamine neurons using fluorescent
reporters is ongoing, and has proved to be complicated. The promoter
regions of dopamine-neuron-specific genes are large and complex,
such that manageable fragments of the th [117,118] or slc6a3 [119]
promoters have not shown dopaminergic neuron-specific activity in
vivo. Alternative approaches are being undertaken, including identi-
fication of conserved enhancers, using large genomic constructs likely
to contain more cis-acting elements, or adopting an enhancer trap
approach to identify genomic integrants that recapitulate endogenous
gene expression patterns. The latter approach has yielded a single
transgenic line in which an integration event in the vmat gene yielded
zebrafish with GFP-expressing catecholaminergic neurons [67]. There
is a large literature on the development of promoter resources
allowing genetic labeling of other specific neuronal populations using
fluorescent reporters, which is outside the scope of the present
review.

Second, neuronal dysfunction presumably precedes cell death in
Tauopathy, and cells in earlier stages of pathological evolution might
present a more tractable therapeutic target than those close to
demise. It would be of considerable value to develop assays that
measure neuronal dysfunction, and which are sensitive to changes in
disease progression earlier in the evolution of pathology. Since genetic
and chemical screening against a zebrafish Tauopathy model would
be carried out in vivo, it might be possible to use automated motor
behavioral assays as a surrogate marker of neuronal function.
Consequently there is much current interest in establishing repro-
ducible and well-characterized behavioral assays for neurodegener-
ative phenotypes. A recent report showed that an automated motor
behavioral test could be used to identify agents with neuropharma-
cological properties in a chemical screen [76]. Assays of motor
function have been previously deployed in order to detect changes in
behavior caused by alterations in neurochemistry and dopamine cell
integrity secondary to Parkinson's disease-associated toxins [81,120].
It may be possible to use a similar approach to investigate changes in
behavior preceding demonstrable cell loss in a zebrafish Tauopathy
model, in order to develop an assay to identify chemical modifiers of
early pathological progression.

7. Current transgenic zebrafish models of Tauopathy

Three recent publications have described the first proof-of-principle
experiments showing that expression of human MAPT transgenes can
provoke relevant phenotypes in zebrafish.

In the first publication, a 4R-Tau-GFP fusion protein was
transiently over-expressed in zebrafish larvae, using a gata2 promoter

element [121]. In cultured cells, the fusion protein was phosphory-
lated and associated with the cytoskeleton, similar to native Tau; in
vitro studies showed that the fusion protein aggregated, validating its
use in constructing an in vivo model of NFT formation. Zebrafish
embryos microinjected with the gata2:MAPT-egfp construct, showed
mosaic neuronal expression of the fusion protein. Some neurons
showed accumulation of fluorescent fibrillar structures resembling
neurofibrillary tangles, in the cell body and proximal axon. The human
Tau-GFP fusion protein was shown to be phosphorylated in the
zebrafish brain by western blot detection of a phospho-5396/5404
epitope, and expression of glycogen synthase kinase-3 in the zebrafish
embryo and adult brain was demonstrated by western blot. This initial
study validated the use of a GFP fusion protein to monitor evolution of
tangle pathology in vivo, and suggested that human Tau is phosphor-
ylated in the larval zebrafish, confirming the prediction that there is
sufficient phylogenetic conservation of endogenous zebrafish kinases
to modify the human protein. No stable lines were derived in this
study.

Subsequently, stable transgenic zebrafish were constructed
expressing human 4R/ON Tau [111], the most abundant Tau species
deposited in progressive supranuclear palsy [43,44]. The transgene
was expressed under transcriptional control of the eno2 promoter
[111]. The full phenotype of these transgenic fish has not yet been
reported, since the initial paper focused on characterization of the
novel eno2 promoter. Abundant expression of human 4R/ON Tau was
found in the CNS, persisting into adulthood (Fig. 5A). In the adult
brain, refractile Tau accumulations resembling neurofibrillary tangles
were found within neuronal cell bodies and proximal axons in CNS
regions of pathological relevance to PSP, including the optic tectum
(Fig. 5B). Stable expression of the Tau transgene into adulthood in this
model will allow analyses designed to test whether age-related
pathology accumulates in these transgenic lines, similar to the
progressive changes seen in the human disease and recapitulated in
some murine models, a potentially important step in validating the
model system. Furthermore, widespread neuronal expression of the
transgene may allow examination of factors involved in cellular
vulnerability to Tauopathy.

More recently, exploitation of the Gal4-UAS system allowed
generation of a Tauopathy model showing a larval phenotype [114].
This is potentially an important advance, since the development of
phenotypic abnormalities at larval stages of development may allow
high-throughput screening, as discussed above. Human 4R/2N-Tau,
harboring a P301L mutation, was expressed from a novel bidirectional
UAS promoter, allowing simultaneous expression of a red fluorescent
reporter in Tau-expressing cells [114]. The high levels of mutant
P301L Tau expression provoked by the huc:gal4-vp16 driver induced a
transient motor phenotype during embryogenesis, likely caused by
peripheral motor axonal developmental abnormalities. At later time
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Fig. 5. Human Tau expression in Tg(eno2:MAPT) zebrafish neurons. A: A western blot was
made with protein lysate from wild-type zebrafish brain (lane 1), control post-mortem
human cortex (lane 2) and Tg(eno2:MAPT) brain (lane 3). The blot was probed using an
antibody to human Tau (upper panel) followed by an antibody to (3-actin (lower panel).
Abundant expression of human 4R-Tau is seen in transgenic zebrafish compared with the
six isoforms in normal human brain [111]. B: Sections of Tg(eno2:MAPT)zebrafish brain
were labeled using the antibody to human Tau used in the western blot experiment shown
in panel A and a histochemical reaction yielding a red product. The micrograph shows a
brainstem neuron with dense Tau immunoreactivity in the cell body and proximal axon,
resembling neurofibrillary tangles shown in Fig. 1B [111].

points, after recovery of motor function, enhanced cell death was
observed in the spinal cord of transgenic animals. Abnormal Tau
conformers were detected using an antibody, MC1, which recognizes
a discontinuous epitope present in Tauopathy tissue [122], as early as
32 h post-fertilization; by 5 weeks of age, argyophilic material was
detected in the spinal cord, but the animals were otherwise
phenotypically unremarkable at this time point. Subsequent loss of
transgene expression prevented the examination of later pathological
changes. Tau phosphorylation was detected as early as 32 h post-
fertilization. Phospho-Tau specific antibodies labeled cells differen-
tially; some phospho-epitopes, such as phospho-T231/S235 and
phospho-5396/5404 were detected widely in Tau-expressing neurons,
whereas others such as phospho-S422 and phospho-S202/T205 were
initially present in only a small subset of Tau-expressing neurons.
Between 2 and 7 days post-fertilization, however, expression of all of
these epitopes became widespread in Tau-expressing cells, suggesting
that Tau had accumulated multiple phosphorylations in a sequential
progression of biochemical changes. Tau phosphorylation was
reduced by application of novel high-potency GSK3( inhibitors that
were designed to target the human enzyme, confirming that
extensive homology between human and zebrafish kinases allows
small molecules to interact with orthologous targets from either
species. This important study was the first detailed phenotypic
description of a stable zebrafish Tauopathy model and showed proof
of principle that biochemical changes characteristic of human
Tauopathy can be recapitulated in larval zebrafish and modulated
by chemical inhibitors.

8. Conclusions — what have we learned and what next?

Examination of the first publications allows preliminary assessment
of the degree to which transgenic zebrafish models of Tauopathy seem
representative of human disorders. Evidence so far suggests that
processing of over-expressed human Tau in zebrafish CNS neurons
results in similar biochemical and pathological changes to those found in
human Tauopathies. These changes include: aberrant localization of Tau
to the somato-dendritic compartment; phosphorylation, with an
ordered (and possibly sequential) acquisition of phospho-epitopes;
adoption of abnormal conformations associated with Tauopathy; and
deposition as argyrophilic material. The availability of zebrafish lines
that express Tau in the brain through adulthood will allow more
detailed biochemical studies of Tau in the zebrafish CNS to characterize

solubility, fibril morphology and further clarify phosphorylation events.
However, these data are encouraging that relevant pathways are
sufficiently phylogenetically conserved between human and zebrafish
to allow recapitulation of cellular processing events relating to Tau in the
zebrafish model.

The pathophysiological consequences of human Tau transgene
expression in zebrafish CNS neurons are less clear. This is partly
because a detailed phenotype has only been reported for a single
transgenic Tau zebrafish line [114]. The motor axonal developmental
abnormality, motor phenotype and cell death reported in this model
have an uncertain relationship to the neuronal dysfunction and
neurodegeneration that characterizes human Tauopathy, on account
of the onset and subsequent resolution of abnormalities during early
development, and the atypical anatomical distribution in the spinal
cord and motor neurons. One recurrent finding from the murine
transgenic disease model literature is that phenotypes exhibited by
cDNA transgenic animals are critically dependent on the promoter
elements used to drive transgene expression. The temporal and
spatial expression pattern of the huC promoter used in this study
directed the atypical pattern of phenotypic abnormalities. However,
this may be unimportant for the purposes of drug and target discovery
relating to cellular mechanisms of Tau toxicity, provided that the
molecular mechanisms underlying neuronal dysfunction and death
are conserved between the model and the disorder. Further work,
including analysis of other zebrafish Tau lines constructed using
different promoter elements, will be necessary to clarify this point.

While detailed phenotypic analysis of the first cDNA transgenic Tau
models is in progress, it is interesting to consider future directions in the
generation of models and approaches for analysis. Use of models based
on over-expression of cDNA encoding human Tau would limit discovery
of novel molecular interventions to those targeting Tau modifications,
Tau deposition or other abnormal effects exerted by Tau on neuronal
function. However, there may be upstream targets related to transcrip-
tion and splicing that would not be represented in cDNA models. For
example, changes in the cellular 3R-/4R-Tau ratio, caused by alteration
in the regulation of exon 10 splicing, underlie one form of FTDP17 and
may contribute to sporadic Tauopathies, where associated haplotypes
may alter 3R-/4R-Tau ratios [46]. It is not clear whether the human MAPT
locus would be appropriately regulated in transgenic Tau zebrafish,
allowing expression of physiological levels and patterns of alternatively
spliced products. Transgenic zebrafish lines harboring the entire MAPT
gene would therefore be of considerable interest. Furthermore, since
zebrafish evolution may have resulted in the functions of 3R- and
4R-Tau isoforms becoming distributed between two different genes, an
indication of whether alterations in the ratio of these forms can be
pathogenic in zebrafish might be accomplished by morpholino
knockdown experiments.

Initial evidence shows that the zebrafish will most likely be a
predictive platform for the discovery and assessment of Tau kinase
inhibitors, although arguably the greatest potential strength of the
model might be in discovering new therapeutic targets. In order to
gain novel insights from screening approaches, end points that are
independent of presumptions about underlying mechanisms, such
as neurobehavioral analyses or cell death assays, might be deployed.
Furthermore, experimental approaches that can be uniquely applied
in zebrafish larvae owing to their optical transparency, for example
physiological imaging modalities relating to cellular calcium levels,
have the potential to yield important insights from hypothesis-
driven experiments that cannot be carried out using other available
models.

In conclusion, the first reports show that construction of
transgenic zebrafish expressing human Tau in CNS neurons is feasible
and suggest that the resulting models will be relevant and useful.
Consequently, there is cause for cautious optimism that novel
zebrafish Tauopathy models may provide important contributions to
ongoing efforts to address these common and devastating diseases.
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