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The interferon-regulatory factor (IRF) family comprises nine members in mammals. Although this transcription
factor family was originally thought to function primarily in the immune system, contributing to both the innate
immune response and the development of immune cells, recent advances have revealed that IRFs plays critical
roles in other biological processes, such as metabolism. Accordingly, abnormalities in the expression and/or func-
tion of IRFs have increasingly been linked to disease. Herein, we provide an update on the recent progress regard-
ing the regulation of immune responses and immune cell development associated with IRFs. Additionally, we

i;szswords. discuss the relationships between IRFs and immunity, metabolism, and disease, with a particular focus on the
Immunity role of IRFs as stress sensors. This article is part of a Special Issue entitled: From Genome to Function.
Metabolism © 2014 Elsevier B.V. All rights reserved.
Disease

Stress sensor

1. Introduction

The mammalian interferon regulatory factor (IRF) family of tran-
scription factors comprises nine members: IRF1, IRF2, IRF3, IRF4/PIP/
LSIRF/ICSAT, IRF5, IRF6, IRF7, IRF8/ICSBP, and IRF9/ISGF3+y [1,2]. All IRF
proteins possess a conserved amino (N)-terminal DNA-binding domain
(DBD) of ~120 amino acids that is characterized by a series of five well-
conserved tryptophan-rich repeats [1]. The DBD forms a helix-turn-
helix domain and recognizes DNA that is similar in sequence to the
IFN-stimulated response element (ISRE, A/GNGAAANNGAAACT). The
carboxy-terminal regions of IRFs exhibit greater diversity and partici-
pate in interactions with other members of the IRF family, other tran-
scription factors, and co-factors. Thus, the carboxy-terminal region
confers specificity to each IRF [1,3,4]. Two types of association modules
have been identified in the carboxy-terminal regions of IRFs: IRF-
associated domains 1 and 2 (IAD1 and IAD2). IAD1 is conserved in all
IRFs except IRF1 and IRF2 and has a structure similar to that of the
Mad-homology 2 (MH2) domains of the Smad family of transcription
factors, whereas IAD2 is present only in IRF1 and IRF2.

Although IRFs were first identified as transcriptional regulators of
type I IFNs and IFN-inducible genes, this family is now recognized to
play a crucial role in the regulation of immune responses and immune
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cell development [1,5]. In addition to their contributions to immunity,
accumulating evidence indicates that IRFs also have critical functions in
the regulation of oncogenesis [6] and metabolism [7,8]; therefore, they
are involved in the pathogenesis of the associated diseases [9-24]. IRFs
were initially considered to be specifically expressed in immune cells;
however, some IRFs, such as IRF4 and IRF8, have been detected in
other tissues, such as the heart, kidney, brain, and liver. Here, we provide
an update on the recent progress regarding the regulation of immune
responses and immune cell development by IRFs and discuss the rela-
tionships between IRFs and immunity, metabolism, and related diseases.

2. Regulation of innate immune responses by IRFs

The initial sensing of infection is mediated by innate pattern recog-
nition receptors (PRRs), which include Toll-like receptors (TLRs),
C-type lectin receptors (CLRs), RIG-I-like receptors (RLRs), and NOD-
like receptors (NLRs) [25]. These receptors recognize various pathogen-
associated molecular patterns (PAMPs) and danger-associated molecu-
lar patterns (DAMPs). In response to diverse PAMPs and/or DAMPs, the
intracellular signaling cascades differentially triggered by these PRRs
induce the transcription of type I IFNs, pro-inflammatory cytokines,
and chemokines that coordinate the elimination of pathogens and infect-
ed cells. IRFs are essential mediators that transmit PRR signals to chroma-
tin for immune cell activation [26].

The innate immune system utilizes different PRRs to detect patho-
gens depending on their modes of infection. These PRRs can be classi-
fied based on their locations: TLRs and CLRs are present on the cell
membrane, whereas RLRs and NLRs are found in the cytoplasm [27].
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Here, we introduce the IRFs that function downstream of each of these
PRRs.

2.1. IRFs involved in cell surface PRR signaling

2.1.1. IRFs involved in TLR signaling

TLRs are the most well characterized signal-generating receptors
among the PRRs; they initiate key inflammatory responses in addition
to shaping the adaptive immune response [28]. All TLRs, approximately
11 of which are known in mammals, are type I integral membrane
glycoproteins comprising an extracellular domain with leucine-rich
repeats (LRRs), which is responsible for ligand recognition, and a cyto-
plasmic Toll/IL-1R homology (TIR) domain, which is required for the
initiation of signaling. These receptors are either expressed on the cell
surface or associated with intracellular vesicles. TLR1, TLR2, TLR4,
TLR5, and TLR6 are localized on the cell surface and are largely respon-
sible for recognizing microbial membrane components, whereas TLR3,
TLR7, TLR8, and TLR9 are expressed within intracellular vesicles and
recognize nucleic acids. TLRs initiate shared and distinct signaling
pathways by recruiting different combinations of four TIR domain-
containing adaptor molecules: MyD88, TIRAP (MAL), TRIF (TICAM1),
and TRAM [29].

Signaling through TLRs can be broadly categorized into two
pathways: the MyD88-dependent pathway and the TRIF-dependent
(or MyD88-independent) pathway. All TLRs, with the exception of
TLR3, activate the MyD88-dependent pathway. In contrast, TLR3 and
TLR4 activate the TRIF-dependent pathway. Moreover, TLR4 requires
the additional adaptors TIRAP and TRAM for the recruitment of MyD88
and TRIF, respectively. To transmit signals, most TLRs directly associate
with either MyD88 or TRIF.

2.1.1.1. IRFs involved in the TRIF-dependent pathway. TLR4 and TLR3 both
use the TRIF adaptor protein to activate IRF3 and induce type I IFNs
(Fig. 1A). TLR4 recognizes lipopolysaccharide (LPS) from gram-negative
bacteria in addition to a variety of other PAMPs or DAMPs, and is the
only TLR that recruits four adaptor proteins and activates two distinct
signaling pathways: the MyD88-dependent and TRIF-dependent path-
ways [29].

TLR4 initially recruits TIRAP and MyD88. MyD88 then recruits IRAKS,
TRAF6, and the TAK1 complex, leading to the early-phase activation of
NF-B and MAP kinases [29]. TLR4 is then endocytosed and delivered
to intracellular vesicles to form a complex with TRAM and TRIF. This
complex then recruits TRAF3 and the protein kinase TBK1, which cata-
lyze the phosphorylation of IRF3, leading to the expression of type I
IFN. TRAM-TRIF also recruits TRAF6 and TAK1 to mediate the late-
phase activation of NF-xB and MAP kinases [28]. In Irf3~/~ dendritic
cells (DCs), IFNB induction is not responsive to LPS, whereas this induc-
tion is approximately normal in Irf7~/~ cells. Consistent with these
findings, mice lacking Irf3 exhibit resistance to LPS-induced endotoxic
shock, in which IFNpR plays a central role. Thus, TLR4-induced IFN-p
production is primarily mediated by IRF3 through TBK1 [1].

TLR3 is expressed within intracellular vesicles and recognizes
dsRNA, including the synthetic dsRNA analog poly(rl:rC) and viral
dsRNA derived from either dsRNA or single-stranded RNA (ssRNA)
viruses. TLR3 is also required for the recognition of some DNA viruses,
such as herpes simplex virus (HSV) and murine cytomegalovirus, and
parasites, such as Leishmania donovani and Schistosoma mansoni [26].
Similar to TLR4 activation, TLR3 activation also induces the expression
of type I [FN via a TRIF-, TBK1-, and IRF3-dependent pathway.

2.1.1.2. IRFs involved in the MyD88-dependent pathway. TLR7 recognizes
the genomic ssRNA of ssRNA viruses, whereas TLR9 recognizes
hypomethylated CpG DNA motifs present in bacteria and DNA viruses
[26]. In contrast to TLR3- or TLR4-mediated type I IFN gene induction,
which is dependent on TRIF, TLR7 and TLR9 exclusively use MyD88 as
a signaling adaptor (Fig. 1B).

IRF7 is essential for the induction of the IFNp gene via the MyD88-
dependent pathway in plasmacytoid dendritic cells (pDCs), which are
characterized by their high level of type I IFN. The induction of IFNf
mRNA upon viral infection is impaired in purified pDCs from Irf7 ~/~
mice but is normal in Irf3~/~ pDCs [30]. IRF7 directly interacts with
the death domain of MyD88 to form a complex that also involves
IRAK1, IRAK4, and the E3 ubiquitin ligase TRAF6. Furthermore, IKKc as-
sociates with and phosphorylates IRF7. The IRAK4-IRAK1-IKK« kinase
cascade functions as a signal transducer between MyD88 and TRAF6
and is required for the phosphorylation of IRF7 as well as the activation
of IFN-dependent promoters [26].

IRF5 generally functions downstream of the TLR-MyD88 signaling
pathway to induce the gene expression of proinflammatory cytokines,
such as interleukin-6 (IL-6), IL-12, and tumor necrosis factor-o
(TNF-at). IRF5 interacts with and is activated by MyD88 and TRAFG. In
contrast with IRF7, IRF5 interacts with the central region (i.e., the inter-
mediary domain and part of the TIR domain) of MyD88. Additionally,
TRAF6-mediated K-63-linked ubiquitination is important for IRF5
nuclear translocation and target gene regulation [31]. Following TLR9 ac-
tivation, the phosphorylation of serine/threonine residues in the carboxy-
terminal autoinhibitory region of IRF5 triggers conformational rearrange-
ments that convert the C-terminal segment from an autoinhibitory
domain to a dimerization domain, thus facilitating the interaction of
IRF5 with CBP/p300 in the nucleus [32].

IRF1, which is induced by IFN-y, also interacts with and is activated
by MyD88 upon TLR activation [33]. MyD88-associated IRF1 migrates
into the nucleus more efficiently than non-MyD88-associated IRF1 to
mediate the efficient induction of I[FNP, iNOS, and IL-12p35 expression.
Thus, IRF1 activation via the TLR-MyD88 pathway links IFN-y and TLR
signaling events.

IRF4 and IRF5 bind to the same region of MyD88, which is distinct
from the region that is bound by IRF7. Upon TLR activation, induced
IRF4 competes with IRF5 and inhibits its sustained activity. The
TLR-dependent induction of proinflammatory cytokines is markedly en-
hanced in peritoneal macrophages from mice lacking IRF4, whereas this
induction is inhibited by the ectopic expression of IRF4 in a macrophage
cell line. Mice lacking IRF4 also exhibit hypersensitivity to DNA-induced
shock, as evidenced by elevated serum proinflammatory cytokine levels
[34]. Therefore, IRF4 negatively regulates TLR signaling and inhibits the
production of proinflammatory cytokines in response to TLR stimulation.

IRF8 has the greatest homology with IRF4 and is involved in the
unmethylated CpG DNA-induced TLR9 signaling pathway. DCs from
mice lacking IRF8 are unresponsive to CpG and fail to induce TNF-a
and IL-6, while these cytokines are robustly induced in IRF8~/~ DCs in
response to LPS, which signals through TLR4. This effect is due to the se-
lective inability of IRF8~/~ DCs to activate IxB kinases o and 3, which
are required for NF-B activation in response to CpG, suggesting that
IRF8 acts upstream of NF-kB. Although IRF8 does not bind to MyD88,
it interacts with TRAF6, which is an ubiquitin ligase that is essential
for the activation of NF-xB and MAP kinases downstream of the TLR
signaling pathway. IRF8 can also function as a transcription factor to
promote the induction of 1112b gene expression in macrophages and
DCs by directly binding to the 1112b promoter with IRF1 and NFAT.
Additionally, IRF8 promotes type I interferon induction by prolonging
the recruitment of the basal transcription machinery to IFN promoters
in DCs, a role that is not shared by IRF7 or IRF3 [26].

2.1.2. IRFs involved in CLR signaling

Similar to TLRs, CLRs are also localized to the plasma membrane. Re-
cent studies have identified the CLRs as an important family of PRRs that
are involved in the induction of pathogen-specific gene expression
profiles either by modulating TLR signaling or by directly inducing
gene expression [35]. CLR ligands include carbohydrate, protein, and
lipid components that are specific to both pathogens and self-antigens;
these ligands can trigger endocytic, phagocytic, proinflammatory, and
anti-inflammatory reactions [36]. Most cell types, including myeloid
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Fig. 1. IRFs involved in TLR signaling. (A) TLR4 initially recruits TIRAP and MyD88 for the early-phase activation of NF-<B. TLR4 is then transported into phagosomes, where it recruits TRAM
and TRIF and activates TRAF3, TBK1, IRF3 as well as late-phase NF-kB activation for the induction of type I [FN. TLR3 also recruits TRIF and activates TBK1, IRF3 to induce the expression of
type I IFN. Upon activated by TBK1, IRF3 is phosphorylated and translocated to the nucleus. (B) TLR7 and TLR9 are located in the endosomal compartment, where they engage with their
ligands. After activation, IRF7 binds to MyD88 to form a complex that involves IRAK1, IRAK4, and TRAF6 and is activated by IRAK4-IRAK1-IKKo kinase cascade. IRF1 and IRF5 also interact
with MyD88. IRF4 and IRF5 bind to the same region of MyD88, thus blocking the interaction of IRF5 with MyD88.

cells such as macrophages and DCs, express CLRs. CLR-induced signal
transduction appears to primarily activate or modulate NF-kB functions;
however, the regulation of other transcription factors by CLRs has
received little attention to date.

A recent study described a pathway for IFN{ production by DCs that
depends on the activation of Dectin-1 and Dectin-2, which are CLRs that
recognize the complex [3-glucan cell wall of C. albicans [37]. Moreover,
Dectin-1-induced IFN(B production is dependent on Syk- and Card9-
driven signaling as well as IRF5 but is independent of IRF3 and IRF7.
IRF5 was found to be strongly required for Dectin-1-mediated IFN(3 pro-
duction, as demonstrated using bone marrow-derived DCs (BMDCs)

from Irf5~/~ mice. Together, the production of type I IFN by renal-
infiltrating DCs, mediated by Dectin-Syk-IRF5 signaling, plays a crucial
role in defense against C. albicans infection [37]. The question of wheth-
er there are other relationships between CLRs and IRFs requires further
study.

2.2. IRFs involved in cytosolic PRR signaling
In addition to membrane-bound PRRs, PAMPs and DAMPs can also

be recognized by cytosolic PRRs, including RLRs, cytosolic DNA sensors,
and NLRs [25]. RLRs, such as RIG-I1 and MDA5, as well as cytosolic DNA
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sensors are primarily involved in cytosolic RNA and DNA detection,
respectively (Fig. 2). In contrast, NLRs are primarily involved in recog-
nizing the peptidoglycans of intracellular bacteria.

2.2.1. IRFs involved in RLR signaling

Viruses such as the Newcastle disease virus (NDV) and Sendai virus
(SV), which enter the cytoplasm of cells directly, as well as dsRNA that is
synthesized during active viral replication cannot be detected by
membrane-bound PRRs. Members of the RLR family, which comprises
RIG-I and melanoma differentiation-associated gene 5 (MDA5), are
intracellular sensors that have evolved to detect such viruses. RLRs are
RNA sensors that are composed of two N-terminal caspase recruitment
domains (CARDs), a central DEAD box helicase/ATPase domain, and a
C-terminal regulatory domain. RIG-I and MDAS5 show both selectivity
and redundancy in their ability to detect virus infection, and they recog-
nize different RNA viruses by detecting short dsRNAs (up to 1 kb) with
5’ triphosphate ends and long dsRNAs (more than 2 kb), respectively.
Moreover, mouse embryonic fibroblasts (MEFs) derived from RIG-1~/~
MDA5 /™ mice fail to produce type I IFNs in the presence of any of
the RNA viruses tested, indicating that RIG-I and MDAS5 are essential
and sufficient for evoking type I IFN production in response to RNA
viruses [25].

The CARDs of RIG-I and MDA5 are responsible for triggering signal-
ing cascades by interacting with the N-terminal CARD-containing adap-
tor IFNB-promoter stimulator 1 (IPS-1) [38](also known as MAVS,
CARDIF, and VISA). IPS-1, which is localized on the mitochondrial mem-
brane, then relays signals to TBK1 and IKKe, which phosphorylate IRF3
and IRF7.

IRF3 and IRF7 share the greatest structural homology and have
essential roles in the RIG-I/MDA5-mediated type I IFN gene induction
pathway. IRF3 is constitutively expressed and is initially restricted to
the cytoplasm in a latent form in unstimulated cells due to its carboxy-
terminal auto-inhibitory domain. Upon viral infection, RIG-I- or MDA5-
activated TBK1 phosphorylates IRF3 at Ser396, 398, 402, 404, and 405
in site 2 of the carboxy (C)-terminal regulatory region, which alleviates
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auto-inhibition and causes IRF3 nuclear translocation. Once in the nucle-
us, IRF3 interacts with the coactivator CBP, which facilitates phosphory-
lation of IRF3 at site 1 (Ser385 or Ser386). Phosphorylation at site 1 is, in
turn, required for IRF3 dimerization. IRF3 dimerizes with itself or with
IRF7 to form a holocomplex that also contains coactivators such as CBP
and p300 [2]. This holocomplex binds to the promoters of type I IFN
genes and other target genes to facilitate their expression.

In contrast with IRF3, IRF7 is initially expressed at a low level prior to
virus infection but is strongly induced by ISGF3 (a heterotrimeric com-
plex consisting of Stat1, Stat2, and IRF9) through the Jak-STAT signaling
pathway via IFN receptor activation in an autocrine manner. Similar to
IRF3, IRF7 exists in a latent form in the cytoplasm of resting cells, and
upon stimulation, the TBK1-induced phosphorylation of serine residues
in its carboxy-terminal region causes it to translocate into the nucleus,
enabling the induction of type I IFN gene expression. IRF7 forms a het-
erodimer with IRF3 to induce the production of [IFNa4 and IFNp in the
early phase of the response. The initially induced type I IFN then, in
turn, activates the expression of IRF7, which participates in the induc-
tion of most IFNa subtypes, thus functioning as a key mediator of the
type I IFN amplification loop in the later phase of the response. IRF7 is
expressed constitutively in certain cells, including pDCs and macro-
phages, readying them for rapid IFN« production. Thus, the positive
feedback regulation of IRF7 allows for the full induction of type I IFN
genes [2,4].

In addition to IRF3 and IRF7, IRF5 can also contribute to the RLR
signaling pathway after viral infection. Mice lacking IRF5 are highly sen-
sitive to viral (VSV or NDV) infection and possess lower levels of type |
IFN in the serum. IFN production is also impaired in infected macro-
phages, whereas no decrease is observed in Irf5~/~ MEFs, suggesting
that the function of IRF5 may be cell-type-specific. It has recently been
demonstrated that the IPS-1-dependent induction of ISGs can occur
through an IRF5-dependent, yet IRF3- and IRF7-independent, pathway
during West Nile virus (WNV) infection, which suggests a signaling
link between the RLR pathway and IRF5 [39]. However, the precise
mechanism by which IRF5 is activated by RIG-I, including how IRF5
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Fig. 2. IRFs involved in cytosolic nucleic acid mediated signaling. Cytosolic dsRNA are recognized by RIG-1 or MDAS5 and triggers their interaction with the adaptor protein IPS-1, which
leads to the activation of TBK1. Cytosolic dsDNA are recognized by DDX41, MRE11, IFI16, and cGAS to induce STING-dependent pathway and then activate TBK1/IKKe, which phosphorylate
IRF3, IRF5, and IRF7. Independent of STING, 3-catenin is activated by LRRFIP1 then interacts with IRF3. Activated IRFs translocate to the nucleus to induce the expression of type I [FNs and

pro-inflammatory cytokines.
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dimerizes with IRF3 or IRF7 and contributes to the transcriptional regu-
lation of type I IFN and proinflammatory genes, requires further
investigation.

2.2.2. IRFs involved in cytosolic DNA-mediated signaling

In addition to RNA-mediated signaling pathways, cytosolic signaling
pathways that sense microbial and host DNA in the cytoplasm have
recently been discovered [40,41]. During infection or in response to
stress signals, aberrantly localized DNA, such as that in the cytoplasm
and endosomes, can induce type I IFN and proinflammatory cytokine
expression. As discussed above, the endosomal-based DNA sensor
TLR9 is responsible for recognizing unmethylated CpG DNA; however,
several cytosolic sensors involved in the recognition of both foreign
and host DNA have also been identified [40,41].

Cytosolic DNA can induce a caspase-1- and stimulator of interferon
genes (STING)-dependent pathway in which IRF3 is activated down-
stream of STING via TBK1. STING (also known as MITA, ERIS, and
TMEM173) is an adaptor protein localized in the endoplasmic reticulum
(ER), where it relays signals from cytosolic DNA sensors [42]. In re-
sponse to cytosolic dsDNA, the C-terminal tail (CTT) of the carboxy-
terminal domain (CTD) of STING functions as a scaffold for the assembly
of IRF3 in close proximity to TBK1, thus promoting the TBK1-dependent
phosphorylation of IRF3 [43]. Therefore, STING directs TBK1 to activate
IRF3 for DNA-sensing pathways. Although STING is not a direct sensor
of DNA, it directly recognizes bacterial second messenger molecules
termed cyclic dinucleotides (CDNs), such as cyclic di-GMP (c-di-GMP),
which are produced by cGAMP synthetase (cGAS) in response to cyto-
solic DNA [44-47].

Upstream of STING, direct DNA sensors such as I[FN-y-inducible 16
(IFI16) [48-50] and DEAD-box-polypeptide 41 (DDX41) [51,52] bind
to DNA motifs and subsequently associate with STING to induce type I
IFN gene expression. Additionally, one study demonstrated that LRRFIP1
binds exogenous nucleic acids and increases the dsRNA- and dsDNA-
induced expression of IFNP. LRRFIP1 interacts with 3-catenin and pro-
motes its activation. In turn, activated 3-catenin increases IFNP expres-
sion by binding to the C-terminal domain of IRF3 and recruiting the
acetyltransferase p300 to the IFNPR enhanceosome via IRF3 [53]. Another
report showed that meiotic recombination 11 homolog A (MRE11),
initially identified as a factor functioning in DNA damage responses,
also serves as a cytosolic sensor for dsDNA. In association with its
binding protein RAD50, MRE11 physically interacts with dsDNA in the
cytoplasm and is required for the activation of STING and IRF3 [54].

2.2.3. IRFs involved in NLR signaling

Similar to RLRs, NLRs are cytoplasmic pathogen sensors that are
composed of a central nucleotide-binding domain and C-terminal
leucine-rich repeats [55]. The NLR family consists of three distinct
subfamilies: the NODs (NOD1-2, NOD3/NLRC3, NOD4/NLRC5, NOD5/
NLRX1, and CIITA), the NLRPs (NLRP1-14, also referred to as NALPs),
and the IPAF subfamily, among which IRF3 and IRF5 are reported to be
involved in NOD2-mediated IFN induction [56,57].

After recognizing the ssSRNA genome of respiratory syncytial virus
(RSV), Nod2 has been reported to use the adaptor protein IPS-1 to acti-
vate IRF3. Nod2-deficient mice fail to produce IFN efficiently and show
enhanced susceptibility to virus-induced pathogenesis [56]. Another
study reported that Nod2 is a significant activator of IRF5 via receptor-
interacting protein 2 (RIP2) [57]. However, it is not clear whether
other IRFs are involved in NLR signaling. Of note, a major function of
one subfamily of NLR proteins is the activation of inflammasomes,
which are molecular platforms that trigger the maturation of IL-1p to
activate components of the innate immune system. However, the ques-
tion of whether IRFs are involved in regulating the inflammasome
system requires further study.

As we have described above, in innate immune responses, IRFs can
be activated by various PRRs; a single IRF can be involved in several
signaling pathways downstream of different PRRs, and a single PRR

can activate several IRFs. These complex interactions are possible be-
cause IRFs can interact with common adaptors or kinases in diverse sig-
naling pathways, such as MyD88 and TBK1 in the TLR and RLR signaling
pathways, respectively. Active IRFs then induce shared but distinct sets
of target genes, which eventually determine the specific immune re-
sponse directed at clearing the pathogen. This phenomenon indicates
the possibility of cross-talk between these pathways, and the question
of how the pathways might interact with each other is currently
under investigation [26,58]. Furthermore, the specificity and level of
IRF binding to the genome are controlled based on the cooperation of
IRFs with other transcription factors, such as PU.1 and BATF (also see
below). Thus, the integration of signaling pathways and the interaction
of transcription factors with chromatin remodeling complexes consti-
tute a regulatory network that appropriately shapes the immune
response.

3. Regulation of immune cell development and functions by IRFs

As discussed above, IRFs function as important mediators that
respond to a variety of upstream PRRs, and they translate stress signals,
such as those induced by infection or injury, into downstream transcrip-
tional outputs, such as the expression of type I IFN and proinflammatory
cytokines. In addition to the signal transduction functions of IRFs in
innate immune responses, multiple IRFs (IRF1, IRF2, IRF4, and IRF8)
also play essential roles in the development of immune cells, including
dendritic, myeloid, natural killer (NK), B, and T cells.

3.1. IRFs in the development and function of DCs

DCs are essential for antigen presentation and the initiation of
protective T-cell responses; thus, they bridge the innate and adaptive im-
mune systems. DCs recognize pathogens using PRRs, as described above,
and subsequently present pathogen-derived antigens to antigen-specific
T cells. Activated DCs up-regulate co-stimulatory molecules and major
histocompatibility complex (MHC) II for antigen presentation and pro-
duce cytokines that activate various types of immune cells.

DCs are a heterogeneous group of cells that have been divided into dif-
ferent subsets. The four major categories of DCs are conventional DCs,
Langerhans cells, plasmacytoid DCs (pDCs), and monocyte-derived DCs
[59]. Conventional DCs can be further grouped into two main classes: mi-
gratory DCs (consisting of CD11b + DCs and CD103 4 DCs) and lymphoid
tissue-resident DCs (consisting of CD4 + DCs, CD8c+ DCs, and CD4-
CD8a — DCs [typically referred to as double-negative DCs]). Functionally,
CD103 + DCs correspond to lymphoid tissue-resident CD8 + DCs,
whereas CD11b 4+ DCs correspond to lymphoid tissue-resident CD4 +
DCs [59].

DC development is controlled by a group of transcription factors, in-
cluding IRFs, which specify and direct the differentiation of the different
subsets of DCs. The development of a DC subset is primarily determined
by IRF4 and IRF8. These IRFs have overlapping activity and stimulate a
common process of DC development; nonetheless, each IRF also pos-
sesses the ability to stimulate subset-specific gene expression, leading
to the generation of functionally divergent DCs. For example, IRF4 is
required for the generation of CD4 + DCs, whereas IRF8 is essential for
CD8a + DCs. Both IRF4 and IRF8 support the development of CD4-
CD8at— DCs. IRF8 and, to a lesser degree, IRF4 contribute to pDC devel-
opment. Consistent with these roles, IRF4, but not IRF8, is expressed in
CD4 + DCs, whereas only IRFS8 is expressed in CD8c + DCs. Both CD4-
CD8at— DCs and pDCs express IRF4 and IRF8 [5].

Moreover, a recent finding indicates that IRF4 promotes cutaneous
DC migration to lymph nodes but is dispensable for DC development
[60]. CD11b+ dermal DCs in IRF4~/~ mice do not express the chemo-
kine receptor CCR7 and fail to migrate to cutaneous lymph nodes.
Thus, IRF4 is not only involved in the differentiation of DCs but is also
important for their proper functioning during homeostasis and inflam-
mation. Recently, two reports [61,62] have shown that IRF4 is required
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for the development of intestinal CD103 + CD11b+ DCs, which repre-
sent the major migratory DC population within the small intestinal lam-
ina propria (SI-LP). Furthermore, these cells secrete the cytokines IL-6
and IL-23 to induce Th17 cell differentiation. Similarly, the development
of a dermal DC subset (CD301b + ) that appears to be specialized for the
regulation of Th2 cell responses is also dependent on IRF4 [63,64]. The
targeted deletion of Irf4 specifically in CD11c-expressing cells leads to
the absence of CD301b + (CD8c—) migratory DCs in skin-draining
lymph nodes. Thus, the lack of certain populations of CD11b+
CD8a — DCs from the lamina propria, the lung, and tissue-draining
lymph nodes in DC-Irf4-deficient mice indicates the importance of
IRF4 in specifying the CD4+-/CD11b+ DC subsets [61,62,64].

Consistent with the role of IRF8 in the development of pDCs, granu-
locyte macrophage colony-stimulating factor (GM-CSF) suppresses the
differentiation of pDCs by employing STAT5 to inhibit IRF8 and the
pDC transcriptional network [65]. Although CD8c+ DCs and pDCs
both require IRF8 for development, the mechanisms underlying the
development of these DC subsets are different. A point mutation in the
Irf8 gene that changes arginine (R) to cysteine (C) at position 294
(IRF8R294C) results in the failure of IRF8 to interact with its partner
transcription factors, including IRF2, PU.1, and SpiB, and abolishes the
development of CD8at+ DCs without impairing pDC development
[66]. In addition to its involvement in the later stages of CD8a + DC
and pDC development, IRF8 also regulates common DC progenitor
(CDP) development and the initial commitment to the DC lineage
through the suppression of neutrophil potential in both myeloid and
lymphoid progenitors [67]. Irf8-deficient DC progenitors show reduced
expression of several important transcription factors, including Id2,
Bach2, KIf4, and Bcl, all of which are required for the development of dif-
ferent DC subsets. Importantly, a clinical study has also revealed that the
K108E and T80A mutations impair the transcriptional activity of IRF8 by
disrupting its interaction with DNA, leading to defects in DC and mono-
cyte development in addition to severe opportunistic infections [68].

Similar to IRF8, the AP1 family member Batf3 is required for the
development of CD8a + classical dendritic cells (cDCs) and related
CD103 + DCs [69]. However, a recent study identified a BATF3-
independent pathway for CD8c + ¢DC development that results from
molecular compensation for BATF3 by BATF and BATF2 [70]. BATF
(basic leucine zipper transcription factor ATF-like), BATF2 and BATF3
comprise the BATF family, which is a subgroup of basic leucine zipper
transcription factors. Functional compensation for Batf3 provided by
Batf and Batf2 is based on the shared specificity defined by the BATF
basic leucine zipper domain to interact with IRF4 and IRF8 to mediate
cooperative gene activation. Several studies have reported chromatin
innunoprecipitation-coupled with massively parallel sequencing
(ChIP-Seq) analyses of IRF4 and BATF in Th17 cells and demonstrated
the presence of AP1 and IRF composite elements (AICEs) in several
important genes in Th17 cells. The AICE motif directs the assembly of
IRF4 or IRF8 with BATF heterodimer, and is also found in B cells and
Th2 cells (see sections on B and T cells) [71].

In addition to IRF4 and IRF8, IRF1 and IRF2 are also involved in DC sub-
set development. IRF1-deficient mice (IRF1~/~) exhibit a predominance
of pDCs and a selective reduction of conventional DCs, particularly the
CD8a + subset [72]. Accordingly, IRF1~/~ DCs are unable to fully mature,
and they retain plasmacytoid and tolerogenic characteristics following
virus infection ex vivo and in vivo. In contrast, IRF2 is essential for the de-
velopment of splenic and epidermal CD4 + DCs by negatively regulating
IFN-au/B signals. IRF2~/~ mice exhibit a selective, cell-autonomous defi-
ciency in the CD4 + DC subset, and this deficiency is rescued by introduc-
ing an additional null mutation in the IFN receptor complex [73,74].

3.2. IRFs in the development and function of myeloid cells
In the bone marrow, hematopoietic stem cells (HSCs) give rise to

the common myeloid progenitors (CMPs), granulocyte/macrophage
progenitors (GMPs), and macrophage/DC progenitors (MDPs), with

successive restriction of the developmental potential of these progenitor
cells. These successive specifications and commitments of progenitor
cells along the differentiation pathway are determined by lineage-
specific transcription factors.

IRF8 is expressed in CMPs and GMPs as well as in macrophages [75].
IRF8-deficient mice show decreased numbers of macrophages and
decreased M-CSF-dependent colony formation, whereas the numbers
of myeloid progenitors, granulocytes, and osteoclasts are increased
[76]. IRF8-deficient mice develop a disease involving the marked expan-
sion of undifferentiated cells, which frequently progresses to a fatal
blast crisis, thus resembling human chronic myelogenous leukemia
(CML). These progenitor cells are hyper-responsive to both GM-CSF
and G-CSF but are hypo-responsive to M-CSF in vitro. Even in the pres-
ence of M-CSF, most Irf8™/~ CMPs differentiate into granulocytes.
Accordingly, the restored expression of IRF8 in myeloid progenitors
from IRF8-deficient mice induces macrophage differentiation but in-
hibits granulocyte differentiation. Thus, these results indicate a role for
IRF8 in the promotion of M-CSF-dependent macrophage development
and the inhibition of granulocytic differentiation during the divergence
of granulocytes and monocytes [76].

Mechanistically, IRF8 regulates important genes involved in the dif-
ferentiation, cell growth, and apoptosis of myeloid cells in combination
with partner proteins such as PU.1 and IRF1. Indeed, IRF8 has been
shown to activate Blimp-1, METS/PE1, CDKN2B (INK4B), NF1, and PML
and repress Bcl-XL, Bcl2, Dab2, and GAS2 [5]. Microarray gene expres-
sion analysis has also been used to identify genes altered by IRF8 during
macrophage differentiation, and some lysosomal/endosomal enzyme-
related genes have been found to be direct targets of IRF8 [77]. Interest-
ingly, IRF8 protein can be posttranslationally modified by small
ubiquitin-like modifier (SUMO) 2/3 [78]. IRF8 is SUMOylated in resting
macrophages, and SUMO conjugation abrogates the transcriptional
activity of IRF8. During macrophage activation, the deSUMOylating
enzyme SENP1 removes SUMO3 from IRF8 and enhances the expression
of IRF8 target genes such as IL12p40 [78]. With the combined use
of chromatin immunoprecipitation coupled with DNA microarrays
(ChIP-chip), ChIP-Seq, and gene expression profiling technology, IRF8
binding sites were identified throughout the genome of differentiation-
arrested monocytic cell lines, pathogen-infected mouse lungs tissues,
and monocytic cells during differentiation [79,80]. These sites were
located in both promoter-proximal and promoter-distal regions. Addi-
tionally, functional target genes of IRF8, such as OAS1, IRF9, KLF4, and
members involved in the antigen presentation pathway, were also
identified. Importantly, many of the promoter-distal IRF8 binding sites
coincide with histone H3 lysine 4 monomethylation, a signature for en-
hancers, indicating that functionally significant binding occurs at these
sites [79].

IRFs also play important roles during the functional specialization of
macrophages. A recent study has shown that IRF5 directs the proinflam-
matory polarization of human macrophages [81]. IRF5 expression is in-
duced in response to inflammatory stimuli and directly activates the
transcription of IL-12 and IL-23 while actively repressing IL-10. A global
gene expression analysis revealed that IRF5 reciprocally regulates the
M1 and M2 genes by activating proinflammatory genes and repressing
the expression of M2 markers [81]. Additionally, IRF4 has been shown
to regulate M2 macrophage polarization and host responses against
helminth infection. The expression of IRF4 is under the control of
Jmjd3, a histone H3K27 demethylase [82].

In addition to macrophages, IRF8 is reportedly involved in regulating
the development of eosinophils. IRF8 deficiency in mice leads to a re-
duction in the number of eosinophils in different tissues [83]. Addition-
ally, IRF2 plays an inhibitory role in basophil generation, and naive mice
lacking IRF2 show basophil expansion, leading to excessive IL-4 produc-
tion and a Th1/Th2 imbalance [84]. IRF1 also plays a pivotal role in the
early phases of myelopoiesis, and bone marrow cells of IRF1-deficient
mice show an increased number of immature granulocytic progenitors,
which is suggestive of a defective maturation process [85].
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3.3. IRFs in the development and function of NK cells

NK cells are part of the innate lymphoid cell (ILC) family and repre-
sent the main cytotoxic cell population. IRF1 [86] and IRF2 [87] are
required for the development of NK cells. Mice lacking IRF1 have
been shown to exhibit a severe deficiency in NK, NKT, and intestinal
intraepithelial T cells [88]. A subsequent study demonstrated that the
lack of IRF1 affected the radiation-resistant cells that constitute the mi-
croenvironment required for NK-cell development but not the NK-cell
progenitors themselves. IRF1 transcriptionally regulates IL-15, which
is essential for the development of NK cells in bone marrow stromal
cells [89]. IRF2 is also required for the development of NK cells, as
mice lacking IRF2 exhibit NK-cell deficiency [87]. IRF2-deficient NK
cells undergo accelerated apoptosis, leading to compromised matura-
tion [90].

3.4. IRFs in the development and function of B cells

B cells develop from hematopoietic precursor cells in an ordered
maturation and selection process that includes the DNA rearrangement
of immunoglobulin genes, somatic hypermutation (SHM), class-switch
recombination (CSR), and the generation of plasma cells. IRF8 and
IRF4 are involved in the regulation of B-cell development at multiple
stages.

There are significantly fewer pre-pro-B cells in the bone marrow of
IRF8 ™/~ mice compared with that of wild-type (WT) controls, which
indicates that IRF8 drives common lymphoid progenitors (CLPs) to the
B-cell lineage [91]. Mechanistically, IRF8 activates Pax5, Tcf3 (E2A),
and Ebf1 and represses Sfpil (PU.1) in common lymphoid progenitors
and pre-pro-B cells [91]. IRF8 and IRF4 function redundantly to regulate
the pre-B-to-B transition, as an even more severe defect in pre-B-cell
development is observed in mice lacking both IRF8 and IRF4. Indeed,
these mice exhibit a complete blockade of small pre-B-cell differentia-
tion [92], and either IRF4 or IRF8 is capable of rescuing this blockade
[93]. IRF8 and IRF4 suppress surrogate light chain expression and
down-regulate the pre-B cell receptor (pre-BCR) by inducing the
expression of Ikaros and Aiolos in pre-B cells [92,93]. IRF8 and IRF4 tar-
get the IgK 3’ and Ig\ enhancers, and a k allele is positioned away from
pericentromeric heterochromatin to induce the expression of the con-
ventional immunoglobulin (Ig) light chain gene [94]. Furthermore,
IRF4 also induces the expression of the chemokine receptor Cxcr4 and
promotes the migration of pre-B cells in response to its ligand CXCL12,
which is expressed by a distinct set of bone marrow stromal cells that
are spatially separated from IL7-expressing stromal cells. Therefore,
this migration of pre-B cells results in the attenuation of IL7 signaling
and leads to the activation of the intronic enhancer of Igk [94].

IRF8 and IRF4 are also required in the later regulation of germinal
center (GC) B cell differentiation. In GC centroblasts, the expression
level of IRF8 is high, whereas IRF4 is absent [95]. However, as centrocytes
mature into plasma cells, IRF8 expression decreases and IRF4 is re-
expressed in a stepwise manner [95,96]. IRF8 activates the expression
of AICDA (encoding an activation-induced cytidine deaminase), BCL6,
and Mdmz2, all of which are important in GC programming, as well as
genes involved in innate and adaptive immunity, which have been iden-
tified via ChIP-chip analyses and transcriptional profiling [97,98]. How-
ever, the B-cell lineage-specific deficiency of IRF8 is associated with
increased production of marginal zone (MZ) and follicular (FO) B cells
but has little effect on B-cell function, which may result from an IRF8
partner that can compensate for the functions of IRF8 in its absence [99].

IRF4 is essential for the function and homeostasis of B cells, as IRF4-
deficient mice show a profound reduction in serum immunoglobulin
concentrations and do not mount detectable antibody responses despite
the presence of normal numbers of mature B cells in secondary lym-
phoid organs. Upon antigen recognition, activated B cells can directly
differentiate into IgM-secreting plasma cells or undergo CSR/SHM
(in GCs) prior to differentiating into high-affinity antibody-secreting

plasma cells (PCs). Interestingly, differing IRF4 concentrations underlie
the generation of these alternative cell states [96,100]. IRF4 regulates
CSR and plasma cell differentiation by up-regulating AID (encoded by
Aicda) and Blimp1 (encoded by Prdm1) expression, respectively. More-
over, IRF4 is also required for the initiation and termination of the GC re-
action by controlling the expression of Bcl6 [101]. Although transient
IRF4 expression in vivo induces GC B cells, sustained high expression
of IRF4 drives the generation of plasma cells while antagonizing the
GC fate. The concentration-dependent actions of IRF4 in regulating the
GC and PC programs of gene expression are proposed to result from
differences in the affinity of IRF4 for various motifs [100]. When
bound to PU.1 or BATF, IRF4 has a higher affinity for the Ets or AP-1 com-
posite motifs, which are associated with the GC program, whereas it has
alower affinity for interferon sequence response motifs, which are asso-
ciated with the PC program. Taken together, these results support a
model of “kinetic control” in which the dynamics of IRF4 accumulation
in activated B cells determine their cell fate [102].

In the spleen, bone marrow-derived B cells can develop into FO B
cells or MZ B cells, and IRF4 has recently been reported to play a role
in preventing B-cell retention in the MZ [103]. The inducible deletion
of Irf4 specifically in B cells in vivo leads to the aberrant accumulation
of Irf4-deleted follicular B cells in the MZ. This accumulation is associat-
ed with elevated protein expression and activation of NOTCH2, which is
required for the development of MZ versus FO B cells [103].

3.5. IRFs in the development and function of T cells

T cells can differentiate into multiple types of effector and memory T
cells, including CD8 + T cells and CD4 + T cells. Mice lacking IRF1 have
reduced numbers of mature CD8 + cells within the thymus and periph-
eral lymphatic organs. The absence of IRF1 results in the decreased
expression of LMP2, TAP1, and MHC class I in thymic stromal cells.
Despite decreased MHC class I expression on IRF1~/~ thymic stromal
cells, the defect in CD8 + T-cell development is not observed in the thy-
mic environment. Instead, IRF1~/~ thymocytes show an intrinsic sig-
naling defect and are hyporesponsive to negative selection. Thus, in
developing thymocytes, IRF1 regulates the gene expression program
that is required for lineage commitment and the selection of CD8 + thy-
mocytes. In contrast, mice lacking IRF2 spontaneously develop an in-
flammatory skin disease due to the hyper-responsiveness of CD8 + T
cells to antigen stimulation, which is accompanied by a notable up-
regulation of IFNo/p-induced genes [1,5].

Recently, three studies have indicated that, although it is dispensable
for early CD8 + T-cell activation, IRF4 is crucial for the sustained expan-
sion and effector function of cytotoxic CD8 + T lymphocytes [104-106].
CD8 + T cells with a conditional IRF4 deletion proliferate less, are more
prone to apoptosis, and produce fewer of the effector molecules that are
crucial for viral clearance, such as granzyme B and IFNy. Mechanistical-
ly, IRF4 promotes the expression and function of Blimp1, T-bet, and
HIF1a, which are crucial transcription factors for CD8 + T-cell effector
differentiation. IRF4 simultaneously represses genes that mediate cell
cycle arrest and apoptosis and regulates the expression of key molecules
that are required for the aerobic glycolysis of effector T cells. Interesting-
ly, the expression of IRF4 critically depends on the strength of the T-cell
receptor (TCR)-ligand interaction and on the activity of mammalian tar-
get of rapamycin (mTOR) [104]. Thus, IRF4 functions as a molecular
“rheostat” that “translates” TCR affinity into the appropriate transcrip-
tional programs that link metabolic function to the clonal selection
and effector differentiation of T cells [106].

Additionally, IRF4 has been shown to be required for the develop-
ment of IL17-producing CD8 + T (Tc17) cells, which exert effector func-
tions that are less cytotoxic than those of canonical CTLs [107]. IRF4
regulates Tc17 differentiation by increasing the amounts of transcrip-
tion factors that are crucial for type 17 helper cell differentiation
(RORYyt and ROR«t) and by decreasing transcription factors that regulate
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alternative fates, such as regulatory T (Treg) cell-specific Foxp3 and
cytotoxic T lymphocyte (CTL)-specific eomesodermin (Eomes) [107].

IRF1 is also required for the T helper type 1 (Th1) cell differentiation
of CD4+ T cells. Indeed, T cells from mice lacking IRF-1 fail to mount
Th1 responses and instead exclusively undergo Th2 differentiation
[1,5]. Both the defective production of IL-12 by APCs and the intrinsic
defect of CD4+ T cells in response to IL-12 signaling contribute to this
Th1/Th2 imbalance caused by IRF1 deficiency, as IL-12 is a major Th1-
promoting cytokine. IRF1 is critical for the expression of both I112p35
and I112p40, which encode the IL-12 p35 and p40 subunits, respectively,
in macrophages and DCs. Moreover, IRF1, which can be induced by
IL-12, also directly activates 1112131, which encodes the IL-12 receptor
1 subunit (IL-12RP1) in CD4 + T cells [108]. Additionally, the lack of
NK cells in Irf1 ~/~mice impairs the production of IL-12, as NK cells pro-
duce IFNvy to stimulate macrophages to secrete IL-12 [89].

Similarly to mice lacking IRF1, mice lacking IRF2 also exhibit a defect
in Th1 differentiation due to the impaired production of IL-12 in macro-
phages; together with IRF1 and other transcription factors, IRF2 con-
tributes to the optimal expression of IL-12 p40 [87]. The defective
development of NK cells in mice lacking IRF2 may also contribute to
impaired Th1 differentiation [87].

Similar to IRF2, IRF8 promotes Th1 differentiation by maintaining
the proper function of macrophages and DCs [1,5]. Mice lacking IRF8
have problems mounting a Th1 response; however, when transplanted
into Rag2 /'~ mice, IRF8 '~ T cells are able to promote the elimination
of intracellular infection. Thus, the Th1 defect is not T-cell intrinsic.
Mechanistically, IRF8 activates the expression of IL-12 in macrophages
and supports the development of CD8 + DCs, which also produce IL-12.

In contrast to IRF8, IRF4 plays a critical role in the differentiation of
Th2 cells [1,5]. Mice lacking IRF4 have a defective Th2 response and
reduced responsiveness to IL-4, which is a Th2-promoting cytokine.
IRF4 synergizes with NFATc2 and NFATc1 to enhance the activation of
the IL-4 promoter and endogenous IL-4 production. Following IL-4
treatment, Irf4~/~CD4+ T cells show defects in proliferation, and
their ability to induce GATA3 and Gfi-1 is impaired. Because, both
GATA3 and Gli-1 are involved in Th2 development, this result suggests
that IRF4 affects Th2 cell differentiation in a T-cell-intrinsic manner.
However, a late study using Th2-biased BALB/c mice showed that IRF4
differentially regulates the production of Th2 cytokines in naive vs.
effector/memory CD4 + T cells. IRF4 inhibits IL-4 production in naive
CD4 + T cells, whereas it promotes IL-4 production in effector/memory
CD4+ T cells [109].

In addition to Th2 differentiation, IRF4 is also critical for the genera-
tion of IL-1-producing T helper cells (Th17 cells) [110]. Irf4-deficient
mice lack Th17 cells and are completely resistant to experimental auto-
immune encephalomyelitis (EAE). Consistent with its role in EAE sus-
ceptibility, IRF4 is required for the induction of RORYt, a transcription
factor that is important for the differentiation of Th17 cells upon expo-
sure to Th17-polarizing cytokines [110]. RhoA-associated kinase 2
(ROCK2) is activated under Th17-skewing conditions and phosphory-
lates IRF4, which directly binds to the IL-17A and IL-21 promoters and
induces their transcriptional activation [111]. In accordance with the
role of IRF4 in Th17 promotion, Prostaglandin E2 (PGE2) inhibits IRF4
and represses the production of IL-17, suppressing antifungal immunity,
while T-bet, the master regulator of Th1 lineage commitment, negative-
ly regulates Th17 differentiation via the direct repression of IRF4 [112].
Consistent with the interaction of IRF4 and IRF8 with BATF as discussed
above, recent genome-wide ChIP-Seq analyses reveals that IRF4 or IRF8
target sequences enriched for AP-1-IRF4 composite elements (AICEs)
that are co-bound by BATF in Th17 cells. Importantly, IRF4 and BATF
binding is interdependent which indicates a functional cooperation
between these factors. Upon binding, chromatin modifications are trig-
gered, which allow the Th17-cell-specific transcription factor RORyt to
access its DNA binding sites [113-115].

In contrast to the role of IRF4 in Th2 cell differentiation, IRF4 expres-
sion endows regulatory T cells (Tregs) with the ability to suppress Th2

responses [116]. IRF4 is directly activated by Foxp3, which acts as a mas-
ter regulator for Tregs. IRF4 also directly regulates Blimp1 expression in
Tregs and is indispensable for the generation of all effector Tregs [116].
Moreover, IRF4 is crucial for the development and function of an IL-9-
producing CD4 + T-cell subset designated Th9 [117]. IRF4 directly
binds to the 119 promoter in Th9 cells and regulates IL-9 expression in
cooperation with Smad2/3 [118]. IRF4 is also reportedly involved in T
follicular helper (Tfh) cell differentiation. Based on these findings and
the role of IRF4 in GC formation (discussed above), IRF4 plays an essen-
tial role in antibody production [119].

This overview of the roles of IRFs in immune cell development and
function reveals a complex picture. It appears that IRFs, such as IRF4,
can play different and even opposing roles according to their level of ex-
pression and the differentiation stage of the cell. Of note, the maturation
of a specific immune cell is orchestrated by its intrinsic transcriptional
programs and the surrounding microenvironment, the latter of which
is shaped by other cells. Thus, the specific contributions of each IRF
must be clarified in a lineage-specific manner and at different develop-
mental stages.

4. IRFs in disease

IRFs are critical regulators of immune responses and immune cell
development, and abnormalities in IRF expression and/or function
have increasingly been linked to numerous diseases. The pathogenesis
of many autoimmune disorders, such as systemic lupus erythematosus
(SLE), is due to the inappropriate regulation of immune cell activation
and differentiation. As expected, IRFs have been reported to be associat-
ed with the development of these diseases. Immunity against pathogens
and tumor suppression are two aspects of host defense, and accumulat-
ing evidence indicates that IRFs have a critical function in the regulation
of cellular responses linked to oncogenesis [6]. Thus, IRFs connect the
mechanisms governing immunity and cancer [1].

Interestingly, we and others have found that IRFs are also involved in
the pathogenesis of metabolic, cardiovascular, and neurological
diseases, such as hepatic steatosis, diabetes, cardiac hypertrophy,
atherosclerosis, and stroke [9-24]. It is not surprising that a regulator
originally considered to be involved in the immune system has been
subsequently shown to play a role in metabolism, as numerous studies
have reported that the immune and metabolic systems are intrinsically
interconnected [120]. Additionally, the progression of some cardiovas-
cular diseases has been attributed to low-grade inflammation [121].
Different subsets of lymphocytes and their cytokines are involved in
vascular remodeling in hypertension and heart disease. In the case of
neurological disease, there is mounting evidence linking the inappropri-
ate or chronic production of type I IFN in the central nervous system
(CNS) to the development of several severe neuroinflammatory disor-
ders [122]. These findings lead us to question whether the involvement
of IRFs in the progression of specific diseases is solely dependent on
their roles in the immune response (e.g., their roles in type I IFN produc-
tion and inflammation ). New discoveries have shown that IRFs can also
function independent of their immune-related effects, as discussed in
additional detail below.

In this section, we summarize recent knowledge regarding the role
of IRFs in metabolic, cardiovascular, and neurological diseases. The
contributions of IRFs to immune diseases and cancer have been ex-
tensively discussed in several excellent and comprehensive reviews
[1,6,123,124].

4.1. IRFs in metabolic diseases

The evolutionary need for survival has led to the integration of the
metabolic and immune systems, which resulted in the synergistic
development of the organ and signaling pathways that interconnect
these two processes [120]. Many immune regulators, such as IKKg,
IKKPB, and NF-kB, have been associated with metabolic disorders such
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as obesity and diabetes. However, it is unclear whether IRFs also partic-
ipate in the pathophysiological regulation of metabolic processes and
disease. Nonetheless, as discussed below, the roles of IRFs are beginning
to be elucidated.

IRFs were initially found to be involved in adipogenesis in a study
that used an unbiased approach to identify transcription factors in reg-
ulatory regions surrounding key adipocyte genes [7]. DNase I hypersen-
sitive sites (DHSs) are chromatin regions that are sensitive to cleavage
by DNase I, and these regions are often associated with protein binding,
suggesting the existence of regulatory elements such as enhancers,
promoters, silencers, insulators, and locus control regions. By applying
high-throughput DNase hypersensitivity analysis and computational
motif identification, one top-scoring motif corresponding to a binding
site for IRFs was identified, indicating an important role for the IRF pro-
teins in adipocyte biology. The expression of all nine mammalian IRF
mRNAs is regulated during adipogenesis, and IRF1, IRF3, and IRF4 exhib-
it anti-adipogenic properties in cultured adipocytes. Further study has
shown that IRF4 is indeed a critical determinant of the transcriptional
response to nutrient availability in adipocytes [8]. Mice lacking IRF4
expression in adipocytes exhibit increased adiposity and deficient lipol-
ysis. Mechanistically, IRF4 is required for lipolysis, at least in part due to
its direct effects on the expression of adipocyte triglyceride lipase and
hormone-sensitive lipase. Recently, IRF4 has been shown to be a nega-
tive regulator of inflammation in diet-induced obesity, in part through
the regulation of macrophage polarization [125]. Myeloid cell-specific
IRF4 knockout mice develop significant insulin resistance on a high-fat
diet, whereas Irf4~/~ adipose tissue macrophages (ATMs) express
markers that are suggestive of enhanced M1 polarization.

In addition to IRF4, other members of the IRF family have also been
demonstrated to play important roles in metabolic disorders, including
hepatic steatosis and insulin resistance [9-11]. In high-fat diet (HFD)-
induced obese mice, IRF7 expression increases while the expression of
IRF3 and IRF9 decreases, indicating that these IRFs respond to overnutri-
tion stress. Consistent with this, mice lacking IRF7 show improved
hepatic insulin sensitivity and attenuated hepatic steatosis on an HFD
[9]. These mice also exhibit less macrophage infiltration into multiple
organs and are protected from local and systemic inflammation. In
contrast to IRF7, we have shown that IRF3 and IRF9 play a protective
role in HFD-induced obesity [10,11]. Mice with IRF9 or IRF3 deficiency
show significant increases in chronic HFD-induced hepatic insulin
resistance, steatosis, and inflammation; in contrast, the hepatic overex-
pression of IRF9 or IRF3 preserves glucose and lipid homeostasis and at-
tenuates inflammation. Mechanistically, IRF9 interacts with peroxisome
proliferator-activated receptor alpha (PPAR-a), a master regulator of
fatty acid (FA) oxidation in the liver, to activate PPAR-o target genes,
whereas IRF3 interacts with the kinase domain of IKK in the cytoplasm
and inhibits IKKR/NF-kB downstream signaling. IRF9 is primarily local-
ized in the nucleus, and by promoting PPAR« transactivation, it acceler-
ates lipid catabolism and mitigates hepatic steatosis, suggesting a key
role for IRF9 in metabolic functions that is independent of its role in
immunity [10]. In contrast to IRF9, IRF3 is primarily expressed in the cy-
toplasm and is phosphorylated and translocated into the nucleus upon
recognition of PAMPs, as discussed above. Therefore, in the absence of
pathogen infection, IRF3 interferes with IKKB/NF-B signaling in the cy-
toplasm of hepatocytes, thereby alleviating inflammation and insulin
resistance [11].

Additionally, IRF3 can contribute to early alcoholic liver disease
(ALD) independent of inflammation or type I interferons [12]. Ethanol
induces ER stress and triggers the association of IRF3 with STING,
which is an ER adaptor associated with cytosolic DNA signaling, as
discussed above. This association is followed by the subsequent phos-
phorylation of IRF3. Activated IRF3 associates with the proapoptotic
molecule Bax (B-cell lymphoma 2 [Bcl2]-associated X protein) and con-
tributes to hepatocyte apoptosis [12].

Taken together, these studies indicate that IRFs are involved in the
normal differentiation of adipocytes and the pathogenesis of metabolic

diseases by targeting different aspects of nutrition overload, insulin
resistance, and apoptosis in manners that are dependent on or indepen-
dent of inflammation.

4.2. IRFs in cardiovascular diseases

As with metabolism, it is now recognized that low-grade inflamma-
tion plays a role in cardiovascular disease. The participation of the
immune response in mechanisms that contribute to inflammation in
cardiovascular disease has been reported in patients with atherosclero-
sis and hypertension [121].

IRF8 has been reported to be involved in the pathogenesis of athero-
sclerosis [13]. Apolipoprotein E-deficient mice reconstituted with
IRF8 ~/~or IRF8 /~apolipoprotein E-deficient bone marrow display
exacerbated atherosclerotic lesion formation compared with controls.
Following the demonstration that mice lacking IRF8 spontaneously de-
velop a chronic myelogenous leukemia-like phenotype, the authors
suggested that the expansion of polymorphonuclear neutrophilic leuko-
cytes (PMNLs) contributes to accelerated atherosclerosis [13]. Arginase
1 (Arg1) expression is inversely correlated with atherosclerosis pro-
gression, and IRF8 has also been reported to regulate the expression of
macrophage Argl in cooperation with PU.1 downstream of liver X
receptors (LXRs) [126]. Additionally, SNPs located in the IRF8 gene are
strongly associated with coronary heart disease in SLE [127].

However, we must also determine whether IRFs affect cardiovascu-
lar disease indirectly via infiltrating inflammatory cells and/or directly
in a cell-autonomous fashion [128]. Recently, we showed that IRF8
also plays a crucial role in modulating smooth muscle cell (SMC) pheno-
type switching and neointima formation in response to vascular injury
[19]. Serum response factor (SRF) and its co-activator myocardin affect
the expression of SMC-specific genes by binding to CArG elements,
while IRF8 represses these genes by regulating serum response factor
(SRF) transactivation in a myocardin-dependent manner, revealing a
role for IRF8 that is independent of immunity [19]. In contrast to IRFS,
IRF3 inhibits vascular smooth muscle cell (VSMC) proliferation and neo-
intima formation after vascular injury. IRF3 directly binds to and serves
as a co-activator of PPARY, a negative regulator of SMC proliferation,
resulting in decreased proliferation cell nuclear antigen expression
and suppressed proliferation [20].

Cardiac hypertrophy and pathological remodeling are hallmarks of
cardiomyopathy that are associated with many pathological stressors.
By employing both transgenic and knockout mouse models, we recently
found that IRF3 [14], IRF7 [16], IRF8 [21], and IRF9 [17] protect against
aortic banding (AB)-induced cardiac hypertrophy, whereas IRF4 [15]
and IRF1 [18] promote this condition. Importantly, the expression of
these IRFs changes in accordance with their protective or antagonistic
roles during cardiac hypertrophy, indicating that IRFs can be regulated
in response to a broad spectrum of pathological stressors, perhaps in
an interferon-independent manner. Molecularly, IRF8 directly interacts
with NFATc1, a well-established hypertrophic transcription factor, to
prevent NFATc1 translocation and thus inhibit the hypertrophic re-
sponse [21]. By directly interacting with ERK2 and IKKp, respectively,
IRF3 and IRF7 interfere with the ERK1/2 and NF-kB signaling pathways,
both of which play important roles in the development of pathological
cardiac hypertrophy and heart failure [ 14,16]. Similar to IRF8, IRF9 com-
petes with p300 for binding to the transcription activation domain of
myocardin, thereby suppressing its transcriptional activity [17]. Lastly,
IRF4 and IRF1 bind to the promoters and activate the expression of
cAMP response element-binding protein (CREB) and inducible nitric
oxide synthase (iNOS) at the transcriptional level, respectively [15,18].
Because several IRF members (IRF3, IRF7, IRF8, and IRF9) have inhibito-
ry effects on cardiac hypertrophy, they may be mobilized as part of a
coordinated compensatory response to pathological stresses in the
heart by targeting different but complementary pathways in hyper-
trophy, including those involving extracellular signal-regulated
kinase, NF-xB, and myocardin [128]. Thus, beyond their roles in
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inflammation, IRFs regulate pathological cardiac hypertrophy by
interacting with either related signaling pathway components or tran-
scription factors.

Taken together, these findings clearly indicate that the IRF family
members are potentially important new players in cardiac gene regula-
tion during the onset of pathological hypertrophy and remodeling
[128]. We infer that other members of the IRF family may also be
involved in these processes, and we are currently investigating their
roles in heart, vascular, and ischemia/reperfusion diseases.

4.3. IRFs in neurological diseases

IRFs have recently been shown to be involved in neurological
diseases, which are disorders of the central and peripheral nervous sys-
tems. Multiple sclerosis (MS) is an inflammatory disease of the CNS that
involves demyelination and neuronal injury [129]. Microglia, which are
CNS-resident APCs, are activated in EAE, a mouse model of MS, and play
arole in disease progression. IRF8 has been reported to play a key role in
microglial activation during EAE by promoting avf38 integrin expres-
sion in APCs and activating TGF-3 signaling, leading to Th17 cell differ-
entiation [23]. IRF8 also stimulates IL-12 p40 and IL-23 production but
inhibits IL-27, which in turn increases the intra-CNS amplification of
Th1 and Th17 cells, finally activating microglia and exacerbating neuro-
inflammation [23]. In agreement with this observation, although mi-
croglia are present in the CNS of Irf8 ™/~ mice, they express reduced
levels of Ibal and other microglial markers and are deficient in
IL-12p40 induction in vitro [130,131]. Moreover, IRF8 is important for
transforming quiescent microglia to a reactive phenotype after periph-
eral nerve injury, such that they produce pro-inflammatory cytokines
[132]. Thus, IRF8 contributes to the pathogenesis of MS by activating
integrin-mediated TGF-( signaling and promoting neuroinflammation.

Stroke is the most severe and devastating neurological disease glob-
ally, and ischemic stroke is the predominant stroke type. We have pre-
viously shown that IRF4 is a mediator of protection against ischemia/
reperfusion (IR)-induced neuronal death [24]. Neuron-specific IRF4
transgenic mice exhibit reduced infarct lesions; however, this effect is
reversed in IRF knockout mice. IRF4 directly activates SRF, which is cru-
cial for salvaging neurons during stroke, and the protective role of SRF
has been further shown by the complete reversal of the SRF deficiency
phenotype in IRF4 transgenic mice. Thus, the IRF4-SRF axis is critical
for neuronal survival in the setting of ischemic stroke [24]. Similar to
IRF4, IRF8 is also strongly protective during ischemic stroke. IRF8 knock-
out mice exhibit aggravated apoptosis, inflammation, and oxidative in-
jury in the ischemic brain, eventually leading to poorer stroke outcomes,
whereas neuron-specific IRF8 transgenic mice show marked inhibition
of apoptosis and improved stroke outcomes [22].

Thus, the roles of IRFs in neuroinflammation appear to be depen-
dent on their effects on immune activation, whereas the contribu-
tions of IRFs to IR-induced injury are dependent on their regulation
in apoptosis.

5. IRFs are stress sensors

As we have described above, IRFs are located at the crossroads
between immunity and metabolism and their related diseases. Verte-
brates have evolved immune systems to face constant challenge by
infective pathogens. Upon recognition of PAMPs, PRRs initiate a series
of signaling programs that execute the first line of host defense
responses. Currently, support is growing for the hypothesis that the
pathogen-sensing pathway and the nutrient-sensing pathway (i.e., im-
munity and metabolism) are deeply integrated and evolutionarily
conserved [120]. Many metabolic diseases, such as obesity and type 2 di-
abetes, are associated with chronic low-grade inflammation. With this
perspective, overnutrition can be regarded as a metabolic stress that
transforms the delicate balance between immune and metabolic re-
sponses into a pathological relationship. Similarly, cardiac hypertrophy

can be an adaptive response of myocytes to exercise or a maladaptive re-
sponse of myocytes to pathophysiological stress, such as hypertension,
while stroke is an acute ischemic stress for neurons. IRFs respond to
these stresses in various ways, including altering their levels of expres-
sion, post-translational modifications, cellular localization, interactions
with protein partners, and DNA binding, all of which can be dependent
on or independent of their effects on immunity. For example, IRF7
expression is strongly induced by type I IFN signaling [1] but is down-
regulated in experimental models of hypertrophy [16]. In RLR signaling,
IRF3 is phosphorylated in the auto-inhibitory region, leading to its di-
merization and nuclear translocation [133]. During B-cell development,
differing concentrations of IRF4 regulate mutually antagonistic GC and
PC programs by binding to different composite DNA motifs with their
respective partners [100]. Thus, in response to diverse stresses, IRFs inte-
grate upstream signaling information and convert it to the activation or
repression of a set of target genes by altering their own state; dysregula-
tion of these programs leads to various diseases. Therefore, similar to the
DNA damage sensor of p53 and the starvation sensor of FoxO [134], we
propose that IRFs are stress sensors, in some cases acting beyond their
originally defined roles in immune cell regulation (Fig. 3).

6. Perspective

IRFs integrate and process stimulus-specific signals to orchestrate
cellular responses during the constant challenge of various stresses. Al-
though critical and versatile roles for the IRF family have been revealed,
itis likely that our understanding of IRF function is currently in its infan-
cy. Many questions remain regarding how the IRF-mediated signaling
pathways interact with each other, how the tissue- and developmental
stage-specific regulation and target gene specificity of IRFs are deter-
mined, and how IRFs themselves are regulated. IRFs are mediators of
different signaling pathways that interconnect in a variety of ways,
and the mechanisms by which IRFs coordinate such crosstalk require
further elucidation [26]. At the chromatin level, it remains unclear
how the specificity of IRF binding throughout the genome is determined
in concert with other transcription factors, chromatin structure regula-
tors, and other cofactors in different cell types, developmental stages,
and disease models. Due to the rapid development of high-throughput
technologies, such as ChIP-Seq, RNA-Seq, and microarrays, we are now
beginning to understand the function of IRFs from a whole-genome per-
spective. It is clear that the regulation of IRF expression levels is one
mechanism of regulating transcriptional responses, as some IRFs can
be induced or repressed in certain pathophysiological conditions. How-
ever, the upstream regulators of IRFs and the mechanisms by which ex-
ternal signals are ultimately transmitted to alter IRF states, such as their
expression levels and cellular localization patterns, remain to be fully
determined. Although it is known that IRFs can be modified by phos-
phorylation [135], SUMOylation [78], ubiquitylation [136], and acetyla-
tion [137], the question of whether other IRF modifications exist and
whether these modifications can influence the function of IRFs (e.g.,
their interactions with other partners or DNA sequences) awaits further
study. Consistent with the essential roles of IRFs in stress responses,
they are involved in several diseases, as mentioned above. IRFs differen-
tially participate in these diseases, and multiple IRFs can contribute to
the progress of a single disease, such as cardiac hypertrophy. Addition-
ally, IRFs exhibit high levels of homology. Thus, it must be determined
whether crosstalk between IRFs exists. Interestingly, a recent study
has shown that a SNP within an IRF4 intron affects skin pigmentation
in humans, thus affecting the risk of cutaneous malignancies [138].
This observation suggests that the functions of IRFs are significantly
broader than previously thought. Thus, it is possible that IRFs are also
involved in the progression of other diseases, such as acute lung injury,
fibrosis, Alzheimer’s disease, and Huntington’s disease; if so, IRFs may
prove to be an attractive therapeutic target for the treatment of these
diseases.
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Fig. 3. IRFs are stress sensors. In response to diverse pathophysiological stresses, such as overnutrition, vascular injury, hypertension and cerebral ischaemia, IRFs integrate upstream
signaling information and convert it to the activation or repression of a set of target genes by changing their own state, including altering their levels of expression, post-translational mod-
ifications, cellular localization, interactions with protein partners, and DNA binding; dysregulation of these programs leads to various diseases, such as cardiac remodeling, ischemic stroke,

hepatic steatosis, vascular neointimal, ischemia-reperfusion Injury, etc.
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