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OSince its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of

cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous
laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to
include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of
this complexity, there is great need to broaden our understanding of the intricacies governing the biology of
the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and
proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special
Issue entitled: Role of the Nucleolus in Human Disease.

© 2014 Published by Elsevier B.V.
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1. The Ink4a/Arf locus

The human Ink4a/ARF (Cdkn2a) locus encodes for both the cyclin-
dependent kinase inhibitor p16INK4A and the p14ARF tumor suppressor
(p19ARF in the mouse) (Fig. 1). Located on human chromosome 9
(syntenic to mouse chromosome 4), the locus also contains Ink4b
(also known as Cdkn2b), which lies upstream of Arf and Ink4a. Ink4b is
its own genetic entity, while Ink4a and Arf share two of their three
exons [1,2]. It is also worth noting that a non-coding RNA, ANRIL (also
known as Cdkn2b antisense or Cdkn2bas), has recently been discovered
at the Ink4b–Arf–Ink4a locus. It has been proposed that ANRIL regulates
the expression of the locus [3]. Due to splicing events, unique pro-
moters, and unique first exons, the transcription products of Ink4a and
Arf contain distinctive first exons (Ink4a is encoded by exon 1α and
Arf is encoded by exon 1β) but identical second and third exons. The
shared exons result in almost 70% sequence homology at the DNA
level. However, Arf is translated in an alternative reading frame, for
which it is named [1]. This results in ARF and INK4A proteins that are
distinct following translation. Although alternative reading frame
coding is commonly seen in viral genomes for economy of space, the
Ink4a/Arf locus represents the only known instance in a mammalian
genome. Intriguingly, the chicken ARF tumor suppressor gene does
not translate the spliced exon 2 sequence and thus the functional
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RF tumor suppression in the
protein is derived entirely from the unique exon 1β coding sequence,
forming a truncated protein, p7 [4]. Given that the exon 1β sequences
are necessary and sufficient for all of ARF's known functions [5–7],
others have suggested that the evolution of the locus has allowed
for this peculiar arrangement in order to provide splicing and
polyadenylation sites or alternatively, to allow for coordinated tran-
scriptional control over two tumor suppressors operating at the nexus
of the critical p53 and Rb pathways [8,9].

1.1. Regulating the Arf locus

Under normal conditions, it is important to keep Arf (and other
members of the locus) repressed (Fig. 1). Polycomb group (PcG)
proteins accomplish this task. PcG proteins repress the expression of
specific gene sets through extensive chromatin modifications [10]. PcG
silencing occurs through the activity of diversemultiprotein complexes,
Polycomb repressive complex 1 or 2 (PRC1 or PRC2, respectively) [11].
The complexes are extremely diverse in composition, but in general,
PRC2 contains the histone methyltransferase EZH2, which together
with other components is responsible for the trimethylation of histone
H3 on Lys 27 [12]; specific members of PRC1 can then recognize the
H3K27me3 mark with the chromodomain of a particular PcG compo-
nent [10]. One of the main PcG components that repress Arf expression
is B lymphomaMo-MLV insertion region 1 (BMI-1) [13]. As its name im-
plies, BMI-1 is a proto-oncogene that cooperates with Myc to promote
the generation of B- and T-cell lymphomas [14,15]. Bmi-1-null MEFs
undergo premature senescence due to the marked upregulation of
ARF and p16Ink4a; overexpression of BMI-1 drastically decreases the
expression of ARF and p16Ink4a as well [16]. Of note, BMI-1-repression
of the Ink4a/Arf locus is mechanistically responsible for BMI-1's
nucleolus, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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Fig. 1. The Ink4a/Arf locus. The locus contains two unique exon 1s and shared exons 2 and
3. The Arf promoter is repressed by numerous transcription factors and complexes.
Oncoproteins activate Arf transcription. Translation of Arf mRNAs occurs in an alternate
reading frame, resulting in an ARF protein that is completely different from INK4a.
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collaboration with Myc in tumorigenesis [17]. Additionally, CBX7 is
another chromodomain containing PcGprotein that reduces the expres-
sion of Ink4a/Arf, through a manner independent of BMI-1 [18]. CBX8,
another chromodomain-PcG protein that acts in PRC1, decreases the
expression of the Ink4a/Arf locus [19]. Moreover, PcG-mediated gene
silencing is the molecular mechanism through which p53 can repress
Arf expression. Zeng et al. suggest that p53 can bind Arf's promoter
and recruit histone deacetylase complexes (HDAC) and PcG proteins
[20]. The loss of HDAC and PcG-mediated repression is the reason why
ARF protein levels increase in the absence of Trp53 [20]. However, it
should be noted that in the face of oncogenic stimuli ARF levels rapidly
increase, arguing for the necessity of the PcG regulatory factors that re-
pressArf expression. Indeed, the histone demethylase JMJD3 can oppose
the activity of EZH2-containing PRC2 complexes, resulting in derepres-
sion of Ink4a/Arf expression in wild type MEFs [21]. Similarly, the chro-
matin remodeling SWI/SNF complex family member, SNF5, contributes
to the activation of ARF in response to RasV12 in murine muscle tissues
[22].

Yet, PcG-complexes are not the sole repressors of Arf gene expres-
sion. Disruption of E2F-repressive complexes in MEFs increases the
expression levels of ARF [23]. Moreover, E2F3b is largely responsible
for downregulating Arf expression because loss of E2F3b is sufficient
to de-repress ARF expression and induce p53 and p21 [24]. This study
also indicates that the transcriptional activating complexes, E2F1 and
E2F3a, are recruited to the Arf promoter and displace E2F3b to promote
Arf expression [24]. Other transcriptional repressors that lower Arf
expression include Pokemon, Tbx2 and Tbx3 [25–27], although the
precise molecular mechanism governing their regulation of Arf remains
to be fully elucidated.

1.2. Arf loss in cancer

p16INK4a and ARF have synergistic tumor suppressive functions as
mice containing loss of both are more tumor prone than those with
the loss of only one or the other [28]. Mice disrupted for only exon 1β
develop tumors as early as eight weeks. After one year, 80% of the
mice die from spontaneous tumor development, with a mean survival
latency of 38 weeks. Heterozygous mice also develop tumors, albeit
after a longer latency compared to Arf−/− mice. Upon examination of
Arf+/− mice, tumor formation is accompanied by loss of the remaining
allele. The tumor spectrum in Arf−/− mice includes sarcomas (43%),
lymphoid malignancies (29%), carcinomas (17%), and tumors of the
nervous system (11%) [29]. Additionally, Arf−/− mice are also suscepti-
ble to accelerated tumor formation caused by 7,12-dimethylbenz-α-
anthracene (DMBA) [29,30]. Mouse embryonic fibroblasts taken from
Arf−/−mice are immortal and transformed upon the ectopic expression
Please cite this article as: L.B. Maggi, et al., ARF tumor suppression in the
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of oncogenic RasV12 [30]. This last observation is of great importance
because it suggests that loss of Arf can substitute for Myc in classical
Myc- and Ras-transformation assays [31]. Loss of Arf synergizes with
other genetic alterations to exacerbate the severity of tumorigenesis.
Arf loss enhances the aggressiveness observed in Bcr-Abl induced
acute lymphoblastic leukemia [32]. Also, loss of Arf in thymocyte de-
rived Notched1-induced T-cell acute lymphoblastic leukemia generates
amarked increase in disease onset and penetrance [33]. Similarfindings
have also been reported in RasV12-driven skin papillomas and carcino-
mas [34]. Most strikingly, Arf−/−mice expressing the Eμ-Myc transgene,
succumb to their B-cell lymphomas within eleven weeks of life [35].
Taken together, these data clearly demonstrate the significance for
ARF's physiological role as a robust tumor suppressor.

In human cancers, one of themost frequent cytogenetic events is the
homozygous loss of the Ink4b–Arf–Ink4a locus [31,36–38]. In fact, the
frequency of mutation at this locus is second only to the p53 locus
[39,40]. In most cases of human cancer, all three proteins of the
INK4b–Arf–INK4a locus are lost, making it difficult to determine their
individual roles in human tumor suppression. In these situations, it is
impossible to appreciate the relative contribution of ARF's specific
tumor suppression against the incipient tumorigenesis. Additionally,
we cannot surmise whether the selective pressure to inactivate the
locus is in response to a single member of the locus or to the combina-
torial tumor suppressive functions of Ink4b, Arf, or Ink4a. Mutations
within exon 2 that affect both ARF and p16Ink4a are found in cancers
[41–45]. However, there are specific examples inwhich only Arf appears
to be affected in human cancer, and these cases appear to bemost com-
mon in melanoma patients. Gene deletions in families with melanoma-
neural system tumor syndrome occur specifically in exon 1β [46].
Deletion of exon 1β happens in members of a family predisposed to
melanoma [47]. Splice mutations arise in exon 1β that facilitate Arf
haploinsufficiency in a family with melanoma and breast cancer [48].
In addition to melanoma cases, nine of fifty glioblastoma patients have
a specific deletion of Arf [49]. Aside from deletions, mutations of exon
1β that impair ARF function are seen in a case of melanoma [50]. Fur-
thermore, the Arf promoter contains a CpG island, and ARF expression
is consequently downregulated by promoter methylation [51–57].
Saporita et al. [31] describe the vast nature of ARF-specific alterations
in a wide spectrum of human cancers, including: anaplastic meningio-
ma [58], angiosarcomas [59], Barrett's adenocarcinoma [60], bladder
cancer [61], breast cancer [62–65], chronic myeloid leukemia [66],
colorectal carcinoma [67,68], ependymoma [69], epithelial ovarian
cancer [70], gastric cancer [71], osteosarcoma [72], salivary gland carci-
noma [73], T-cell acute lymphoblastic leukemia [41], andWilm's Tumor
[74]. Taken together, this collective wealth of evidence clearly demon-
strates the importance of ARF tumor suppression in human cancers.

1.3. Arf transcription and translation

Oncogenic signals are persistent and obligate attributes of cancer
cells that evolve due to the selective mitogenic advantage they bestow
onto the incipient tumor cell. However, an intrinsic tumor suppressive
mechanism that could thwart the tumorigenic potential of these stimuli
would be at the forefront of the cell's barriers against tumor formation.
In fact, it is at this interface where ARF exerts its robust tumor suppres-
sive function in the cell (Fig. 2). Arf transcription is upregulated in
response to a host of oncogenic signals including c-Myc, Ras, E2F-1,
E1A, and v-Abl [38].

In vivo support of ARF's induction in response to oncogenic signals
was derived utilizing an Arf reporter mouse. Here, green fluorescent
protein (GFP) is knocked into the endogenous Arf locus, and is therefore
subject to the transcriptional regulation that would induce Arf expres-
sion [75,76]. Of note, MEFs isolated from Arf +/GFP and Arf GFP/GFP mice
recapitulate the findings that Arf is responsive to oncogenic RasV12

in vitro. Importantly, spontaneous tumors, as well as X-ray induced
tumors, develop in Arf GFP/GFP mice within the observed kinetics of
nucleolus, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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Fig. 2. The many functions of the ARF tumor suppressor. In response to oncogenic stress,
ARF can bind to proteins that positively regulate cell cycle progression. Through this
mechanism, ARF restrains cell proliferation and triggers apoptosis. During development,
basal ARF regulates testes maturation and regression of the hyaloid vasculature. A major
p53-independent function of ARF is to monitor and regulate ribosome output. This is
accomplished through numerous nucleolar ARF interactions that prevent rRNA transcrip-
tion, rRNA processing, and nuclear export of ribosomes. ARF also prevents angiogenesis by
limiting the translation of existing VEGFA mRNAs.
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Arf −/− mice, which is expected since these mice lack a functional ARF
protein [75,76]. GFP expression and fluorescence are routinely detected
within the lymphomas and sarcomas that developed in these mice
[75,76].

This led to a search of the Arf promoter for known binding sites of
transcription factors. The ARF tumor suppressor contains a canonical
DMP1 binding site, 5′-CCCGGATGC-3′, within its promoter [77]. The
DMP1 transcription factor is a likely candidate for Arf regulation given
that it is known to arrest mouse fibroblasts upon overexpression, and
human Dmp1 is frequently deleted in myeloid leukemia [78,79]. DMP1
binds and activates the Arf promoter. Moreover, infection of wild type
MEFs with DMP1 induces ARF expression and cell cycle arrest. Impor-
tantly, in the absence of Arf, DMP1 overexpression has no effect on the
cell cycle, indicating that DMP-1-induced arrest is dependent upon
ARF [77]. DMP1 is also a key mediator of Ras-induced ARF expres-
sion [80]. However, Ras-induced ARF protein expression is only mildly
attenuated in the absence of Dmp1 [81,82]. By signaling through the
Ras/PI3K/TSC/mTOR pathway, ARF induction in Dmp1-null cells occurs
in the absence of enhanced Arf transcription [83]. We now know that
ARF is upregulated both transcriptionally and translationally in
response to oncogenic Ras to induce cell cycle arrest.

Interestingly, Ras-induced ARF-mediate cell cycle arrest is not
immediate.Wild-typeMEFs transducedwith oncogenic RasV12 accumu-
late ARF protein over time and do not succumb to ARF-mediated cell
cycle arrest for approximately 5 days [84]. While increases in both ARF
transcription and translation can be quickly detected upon RasV12 over-
expression in wild-type MEFs, this data suggests that a threshold level
of ARF proteinmust accumulate before cell cycle arrest can be achieved.
Given the potent nature of ARF-mediated cell cycle arrest [30,76,84],
this makes sense as it allows the cell to achieve growth and proliferate
before immediately blocking it with cell cycle arrest.While proliferation
is necessary, ARF can accumulate over a prolonged growth cycle to
prevent unchecked cellular growth.
Please cite this article as: L.B. Maggi, et al., ARF tumor suppression in the
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1.4. ARF's structure, cellular location, and stabilization

The structure of ARF is important to consider when studying the
protein's localization, stabilization, and binding partners. Mouse ARF
(p19ARF) contains 169 amino acids, while human ARF (p14ARF) contains
132. Of this relatively small protein, nearly 20% of the residues are
arginines, making ARF a highly basic protein. The basic nature of ARF
renders it highly insoluble and is likely the reason for its lack of
structure [85]. Moreover, this property also renders ARF a very “sticky”
protein, which makes it difficult to discern which of its proposed bind-
ing partners is physiologically relevant. It is likely that ARF requires con-
stant binding with another protein to bring its charge to a more neutral
pH in order to function in vivo [1,86,87]. In fact, owing to a nucleolar
localization signal, ARF is typically found within nucleoli bound in
highmolecular weight complexes with other proteins [88]. In consider-
ation of ubiquitination on lysine residues, mouse ARF contains only one
lysine (Lys26) while human ARF has none. ARF has a half-life of about
6 h and is ultimately destroyed by ubiquitin-mediated proteasomal
degradation. However, the ubiquitin moiety is not added to the sole
lysine inmouse ARF as removal of that lysine still results in ARF's degra-
dation. Instead, both mouse and human ARF undergo N-terminal
ubiquitination, which signals them for destruction [89].

2. p53-dependent ARF tumor suppression

p53 has been labeled the “guardian of the genome”. TP53 is mutated
in approximately half of all human cancers [90]. The genetic alterations
in TP53 are frequently missense mutations that disrupt p53's ability to
act as a transcriptional activator [91]. The p53 tumor suppressor is a
key sensory molecule that regulates a plethora of downstream targets
capable of triggering cell cycle arrest, apoptosis, senescence, DNA repair,
and autophagy in response to robust oncogenic stimulation, DNA
damage, and other cellular stressors [92]. Given the potent effects of
p53 induction on cell proliferation and viability, it is essential to keep
TP53 expression under tight modulation.

One crucial level of regulation involves the RING-finger containing
E3 ligase termedMouse Double Minute 2 (MDM2 or HDM2 in humans)
whose direct interaction with p53 blocks p53-mediated transactivation
[93] and targets the p53 protein for proteosomal degradation [93–95].
MDM2 also disrupts p53 function as a transcription factor by binding
to p53's transactivation domain and interfering with the recruitment
of basal transcription machinery [96]. This protein interaction plays an
important role in keeping the basal cellular levels and activity of p53
low enough to avoid interference with cell cycle progression and cell
survival. Furthermore, a negative feedback loop exists whereby p53
binds specifically to theMdm2 promoter and stimulates its transcription
[97]. This is critical to terminate the p53-mediated signaling response.
The importance of the MDM2–p53 interaction is underscored by work
demonstrating that Mdm2−/− mice are embryonic lethal but are
rescued by concomitant deletion of p53 [98]. Negative regulators of
p53 function, such as MDM2, are classified as proto-oncogenes and
lead to constitutive inhibition of p53 thereby promoting cancer without
a need to alter the p53 gene itself [99]. Thus, it is important that
additional tumor suppressors are present to ensure that the negative
regulators of p53 are inhibited.

ARF's classical role as a tumor suppressor involves p53 activation
(Fig. 2).When promptedby oncogenic signals, ARF's N-terminal domain
(amino acids 1–14) associates with the central region of MDM2, a
region separate from MDM2's p53 binding domain, its nuclear import
or export domains, and its E3 ligase domain [6,100,101]. This interaction
sequesters MDM2 in the granular region of the nucleolus, a membrane-
less dynamic subnuclear organelle where ARF typically resides [102].
This subcellular re-localization event is dependent on both ARF's nucle-
olar localization signal (NoLS) as well as a cryptic NoLS within MDM2
that is exposed when these two proteins are bound to one another
[103]. The sequestration of MDM2 by ARF prevents the binding of
nucleolus, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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MDM2 to p53 and the ability of MDM2 to shuttle between the nucleus
and cytoplasm, thereby impeding its ability to transport p53 to the cyto-
plasm for degradation [104]. Keeping in mind that Arf transcription is
negatively regulated by p53 as highlighted earlier, yet another negative
feedback loop exists to limit p53 activation.

The elegant “supra p53” mouse model study addresses the impor-
tance of ARF in p53's tumor suppressive role in response to oncogenic
cues [105]. Mice carrying an extra copy of p53 are completely protected
from oncogenic stress-induced tumorigenesis. However, this protection
is completely abrogated in Arf-deficient “supra p53” mice. This study
also highlights the fact that ARF tumor suppression is activated in
response to oncogenic stress and not DNA damage.

3. p53-independent functions of ARF

DoARF and p53 act in a linear pathway? Somewhat surprisingly,Arf/
p53 double-knockout (DKO) and Arf/p53/Mdm2 triple-knockout (TKO)
mice present multiple tumors of distinct origins, namely the simulta-
neous formation of carcinomas and lymphomaswithin the same animal
that are not observed in either Arf-null or p53-null animals [7]. If ARF
only exerts its tumor suppressive functions through p53, we would ex-
pect DKO and TKOmice to display the same types of tumors as p53-null
mice. Furthermore, an Arf mutant lacking amino acids 1–14, which are
necessary for ARF's ability to bind MDM2, cannot arrest TKO cells [7].
Thus, the amino terminal 14 amino acids of ARF are necessary and suf-
ficient for both its p53-dependent and -independent tumor suppressive
functions.

3.1. Sumoylation and ribosomal RNA processing

The nucleolus has longbeen appreciated as the site of ribosomal RNA
(rRNA) transcription and assembly into mature ribosomal subunits
[106–109]. Given the nucleolar localization of ARF, it may function as
an inhibitor of ribosomal biogenesis. Overexpression of ARF dramatical-
ly interferes with ribosomal RNA processing (Fig. 2 and [31]). This effect
is independent of p53 as p53/Arf double-null cells transduced with p53
fail to alter ribosome biogenesis [110]. ARF might function in the
nucleolus by binding to and inhibiting an rRNA biogenesis factor.

Recent data [88,111,112] indicates that this may be the case. Using a
variety of affinity-purification approaches followed bymass spectrome-
try to identify co-precipitating proteins, several labs including our own
identified nucleophosmin (NPM), an abundant 37-kDa nucleolar
phosphoprotein as a binding partner for ARF. NPM has been shown to
be required for proper rRNA processing in vitro [113,114]. However,
while in vivo evidence of a direct role for NPM in rRNA processing is
lacking, its role in ribosome biogenesis has been demonstrated [115]
and reviewed in [116]. NPM is reported to be a potent oncogene [117]
and a transcriptional target ofMYC [118,119], aswell as having amyriad
of other nucleic-acid binding activities [120]. As a nucleocytoplasmic
shuttling protein, NPM is also thought to function as a chaperone for
other protein complexes that are exported from the nucleus [120–123].

Using an ARF-inducible cell line, upregulation of ARF led to the
sumoylation of MDM2 and NPM [124]. Whereas the ARF–MDM2 com-
plex clearly exists only in a p53-dependent setting, ARF can interact
with NPM in both p53-dependent and p53-independent contexts
[112,124]. Concomitant with a rise in ARF expression, nucleolar SUMO
(small ubiquitin-like modifier)-reactive species accumulates. ARF
mutants lacking the MDM2 and NPM binding region or the nucleolar
localization signal fail to induce the sumoylation of MDM2 and NPM
[124].

In a second study, utilizing the same ARF-inducible cell culture
system, ARF induction hinders ribosomal RNA (rRNA) processing, spe-
cifically impairing the processing of the 47/45S and 32S precursors,
which is evidenced by the accumulation of improperly processed
rRNA intermediates [110]. Importantly, overexpression of p53 fails to
inhibit rRNAprocessing, pointing to a specific role for ARF in this process
Please cite this article as: L.B. Maggi, et al., ARF tumor suppression in the
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[110]. Finally, ARF's ability to impair rRNA processing is strictly depen-
dent upon its evolutionarily conserved N-terminal 14 amino acids
(residues 1–14) [110], the region required for ARF's p53-dependent
and p53-independent pathways of growth arrest [7].

DDX5 is another target through which ARF participates in the regu-
lation of ribosome biogenesis in a p53-independent manner [125].
DDX5 is a member of the DEAD-box family of RNA helicases that is
involved with many cellular functions through its ability to unwind
RNA duplexes and remodel RNP complexes [126]. DDX5 enhances the
synthesis and processing rRNA through a mechanism modulated by
ARF. ARF inhibits the ability of DDX5 to localize within the nucleolus,
where DDX5 executes its pro-growth activity [125]. An intriguing
component of this analysis is the finding that DDX5 activity is required
for the anchorage independent growth in soft agar for RasV12-
transformed Arf−/− MEFs, which highlights the necessity for ribosome
biogenesis in cellular transformation [125]. A similar mechanism is
noted by Lessard et al., who demonstrate that ARF can control ribosome
biogenesis by regulating the subnuclear localization of RNA polymerase
I transcription factor, TTF-1 [127]; ARF inhibits the nucleolar import of
TTF-1 from thenucleoplasm, consequently repressesing rRNA transcrip-
tion. While ARF's role in dampening rRNA processing is executed inde-
pendently of its engagementwithMDM2and the p53 tumor suppressor
pathway, evolution may have utilized ARF to coordinately regulate
proliferation and ribosome biogenesis within the confines of the
nucleolus [110].
E
D
 

3.2. Other ARF binding partners

To date, over 30 ARF-interacting proteins have been reported in the
literature, including viral proteins (e.g., HPV16E7, TBP1), nuclear/
nucleolar proteins (NPM, nucleolin, NIAM), DNA modifying enzymes
(e.g., WRN, Topoisomerase I), posttranslational modifying enzymes
(e.g., Mdm2, ARF-BP1, ATR, ATM, UBC9), transcriptional repressors
(e.g., BCL6, p120E4F) and transcriptional activators (e.g., p53, Myc,
E2F1, DP1, HIF1α) [87]. It may be that not every protein within this
rapidly expanding collection is a true physiological and functional
target of ARF, especially considering ARF's extraordinarily basic charge
and potential for promiscuous binding of proteins when grossly
overexpressed in cells. As detailed below, understanding the basal func-
tions of ARF in the cell in the absence of oncogenic stimulimay provide a
context to help elucidate the purpose of these seemingly disparate ARF
binding partners so far described in the literature.

MYC is an oncogenic transcription factor widely overexpressed in a
variety of cancers and its activity is necessary for proper cell cycle
progression. As such, it serves as an important target for a number of
tumor suppressor pathways; indeed it is already implicated in the
ARF–MDM2–p53 axis as hyperactive MYC is a potent inducer of ARF
expression [128]. Somewhat surprisingly, both human and mouse
ARF directly interact with MYC on chromatin and antagonize its
transactivation activity but not its ability to repress certain loci
[129–131]. This interaction does not interfere with MYC's binding to
its heterodimerization partner, MAX, nor does it affect cell cycle arrest
in cells lacking p53. Published accounts of this interaction differ on
mechanism (ARF-dependent re-localization of MYC to the nucleolus
vs. MYC-dependent re-localization of ARF to the nucleoplasm), which
may be reflective of the relative amounts of overexpressed protein
[129,132].

Like MYC, E2F1 is implicated in promoting ARF transcription
[133,134], as well as having its transactivation activity inhibited by
ARF [135–138]. Furthermore, some E2F isoforms also antagonize Arf
transcription under basal states, ensuring that levels of ARF remain
low enough to prevent inappropriate p53-mediated cell cycle arrest.
Such regulation is abolished (i.e. ARF expression is de-repressed) upon
overexpression of activating E2F (such as E2F1) or inactivation of RB
[23,24,139].
nucleolus, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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ARF inhibits the function of E2F complexes by binding to the E2F
protein [135,136] or its dimerization partner, DP1 [137,138], and
preventing the formation of active complexes. Although inmost reports,
the binding of ARF to either E2F1 or DP1 is accompanied by re-
localization of the proteins from the nucleoplasm to the nucleolus
[136,137], the inhibition of E2F1's transcriptional activity need not
depend on nucleolar sequestration [135]. These processes are p53-
independent in that co-transfection of E2F1 and ARF into p53−/−

MEFs inhibits E2F1's transactivation activity [135]. Furthermore, induc-
tion of ARF in a U2OS cell line engineered to stably express a dominant
negative mutant p53 still causes reduction of mRNA levels of the E2F1
target, cyclin A, prior to S-phase arrest. Knockdown of ARF via targeted
lentiviral shRNA interference in Mdm2−/−p53−/− MEFs leads to accu-
mulation of cyclin A mRNA as well as enhanced promoter occupancy
of DHFR (another E2F1 target) by DP1 as demonstrated by chromatin
immunoprecipitation [138]. Taken together, these data indicate that
ARF antagonizes E2F1 function in a p53-independent manner.

UBF is the rate-limiting component of the basal transcription factor
for PolI transcription of rDNA, and its regulation is tightly controlled
by phosphorylation by members of the PI3K–Akt–mTOR pathway. ARF
binds to UBF in vitro and in vivo, and suppresses its transcriptional
activity, leading to a decrease in 47S precursor in cells induced to
overexpress ARF. Furthermore, endogenous ARF co-localizes with UBF
in the granular component of the nucleolus away from the site of
rDNA transcription (the dense fibrillar compartments), and also co-
immunoprecipitates with UBF. Induction of ARF results in a decrease
in the amount of phosphorylated UBF, indicating that ARF may either
physically block the interaction of UBF with its upstream kinases or
prevent accession to UBF by kinases that may be restricted to the
rDNA loci, as ARF improperly sequesters UBF in the granular region of
the nucleolus [140]. ARF also associates with topoisomerase I. ARF
stimulates Topo I's relaxation activity of supercoiled DNA both in vitro
and in vivo. ARF and Topo I co-immunoprecipitate in both HeLa and
293 extracts, and overexpression of ARF and Topo I in Saos2 cells
(which have low levels of ARF) results in their co-localization in the
granular component of the nucleolus [141].

Like MYC and E2F, FOXM1b is also a transcription factor necessary
for cell cycle progression, especially in hepatocytes. It is a member of
the forkhead box (Fox) family that shares homology in the winged
helix DNA-binding domain [142]. Transgenic mice overexpressing
Foxm1b exhibit accelerated cell cycle entry in regenerating hepatocytes
[143–145], and mice with a specific deletion of Foxm1b in the liver are
resistant to the onset of hepatocellular carcinoma (HCC) following car-
cinogen exposure [146]. In wild type mice, ARF is robustly expressed in
hepatocytes six weeks after treatment with the carcinogen DEN/PB, but
this expression is lost in adenomas that began developing 23 weeks
after treatment. Considering that Foxm1b−/− hepatocytes are resistant
to the effects of DEN/PB in vivo, ARF might antagonize FOXM1b func-
tion, thereby protecting against carcinogen induced HCC. Consistent
with this idea, ARF co-immunoprecipitates with FOXM1b, thereby
impairing FOXM1b's transactivation activity.Moreover, in normal hepa-
tocytes after exposure to DEN/PB, but not in liver adenomas lacking ARF
expression, Foxm1b immunostaining is observed in the nucleolus,
suggesting that ARF might also act to sequester FOXM1b to inactivate
it, similar to the MDM2, MYC and E2F [146].

Additionally, ARF's implicated role in the regulation of gene expres-
sion extends beyond transcriptional mechanisms. ARF suppresses the
translation of vascular endothelial growth factor A (VEGFA) mRNA in
the absence of p53 [147]. VEGFA is a key mediator of angiogenesis be-
cause VEGFA stimulates the growth of new blood vessels from adjacent
microvessels [148]. Importantly, loss of Arf alters the distribution of
Vegfa transcripts along actively translating polyribosomes without
affecting the transcription of Vegfa mRNA [147]. Similar findings are
seen for Drosha, a RNase III endonuclease involved in the processing
of rRNA and microRNAs [149]. In the absence of Arf, the association of
Drosha mRNA with polysomes is enhanced, causing increased levels of
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Drosha protein expression [149]. Similar to the data observed for the
DDX5, Drosha activity is required for the transformation Arf−/− MEFs
by RasV12 [149].

4. Role of basal nucleolar ARF

The basal expression level of ARF is relatively low in a normal prolif-
erating cell. It is for this reason that some presume that these low
amounts of ARF have no particular cellular function, and that only in
the face of oncogenic stimuli do elevated levels of Arf gene expression
assume a physiological role.While ARF is primarily recognized as a pro-
tein upregulated in the face of oncogenic stress, there is data suggesting
important cellular roles for basal ARF. It is becoming increasingly clearer
that even though ARF is nearly undetectable in many cells, it plays an
integral role based on studies analyzing the effects of its loss.

4.1. Basal ARF regulates nucleolar structure and function

Given the nucleolar localization of ARF and its interactionwith NPM,
basal ARF might maintain nucleolar structure and limit protein synthe-
sis [150]. Arf loss results in an increase in both the number and size of
silver-stained nucleolar organizing regions (AgNORs) in mouse embry-
onic fibroblasts [150]. AgNORs highlight argyrophilic proteins that
surround nucleoli. An increased AgNOR index is associated with poor
prognoses in cancer [151] and, thus, this data suggests that ARF main-
tains the structure and likely function of proteins within nucleoli. In
situ AgNOR staining on tissues from Arf−/− mice corroborates this
data. Both intestine and liver tissues exhibit an increase in total
AgNOR area in the absence of Arf [150]. In low-passage MEFs, Arf loss
also enhances protein synthesis as assessed by 35S-methionine incorpo-
ration, resulting in an increase in both protein content and cell volume
[150]. Importantly, enhanced protein synthesis in these cells is indepen-
dent of proliferation, as the total cell number does not increase over
seven days. Again, the increases in protein synthesis upon Arf loss are
supported by in vivo results demonstrating that Arf loss in liver tissue
also causes an increase in protein synthesis by 35S-methionine incorpo-
ration [150]. Loss of Arf also results in a significant increase in newly
transcribed 47S transcripts. In accordance with previously published
data, ARF overexpression impedes processing of the 47S rRNA into the
32S rRNA intermediate [110,150]. The final step of ribosome biogenesis
is the export of the ribosomal subunits. By radioactively labeling the
rRNA subunits with 3H-methyl methionine, Arf −/− MEFs export ribo-
somal subunits into the cytoplasm at a faster rate than that observed
in wild-type cells [150]. This result is in accordance with previously
published data showing that ARF interacts with NPM, which is known
to be important for shuttling ribosomes from the nucleus to the
cytoplasm [115,152,153]. Importantly, Arf loss amplifies each of the
three steps in ribosomal biogenesis: transcription, processing, and export.

4.2. The role of ARF in mouse eye development

Initially, Arf−/−mice develop normally despite the fact that their
eyes are slightly smaller compared to the eyes of wild type mice
[29,30,154]. Upon closer examination, McKeller and colleagues noticed
that Arf −/− mice had a funnel-shaped mass of cells in the vitreous of
their eyes just behind the lens. Wild type mice are born with elements
of the hyaloid vascular system (HVS), including endothelial cells,
perivascular cells forming the hyaloid artery, and several other types
of perivascular cells. Normally, the HVS will regress by postnatal day
14 [155]. Although theHVSwas still present in Arf−/− P10mice, the au-
thors did not detect any cellular components of the HVS by postnatal
day 10 in wild type mice [154]. Regression of the HVS is important for
normal eye development; failed regression results in a human eye
disease known as persistent hyperplastic primary vitreous or PHPV
and results in microphthalmia (abnormally small eyes) [156,157].
Beginning at P14, Arf −/− mice display both defects in the neurorentina
nucleolus, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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and the lens, which ultimately results in blindness [154]. Importantly,
these characteristics are not observed in p53−/− mice, indicating that
the role of ARF in hyaloid vascular regression is independent of p53
[154].

4.3. The role of ARF in male germ cell development

In addition to ARF expressionwithin the eye, ARF is highly expressed
in one other normal cell: male spermatogonia [76,158]. In mice,
spermatogenesis occurs within the first month of life. Spermatogonia
are cells that line the basementmembrane of each seminiferous tubule;
these are the cells that express ARF [158]. Arf −/−mice display reduced
sperm number compared to wild type mice due to an increase in
apoptosis during germ cell development [159,160]. Notably, there is
no increase in the proliferation of spermatogonia during germ cell
development upon Arf loss [160]. While the apoptosis of these cells is
dependent upon p53, the functions of ARF that regulate apoptosis are
independent of p53. Cells void of Arf display increased levels of phos-
phorylated histone H2AX [160]. H2AX is normally phosphorylated at
the leptene stage of meiosis, but disappears by early pachytene upon
synapsis of homologous chromosomes [161,162]. Importantly, deletion
of p53 is unable to rescue the defect in H2AX phosphorylation [160].
Taken together, the role of ARF in male germ cell development is
counterintuitive; ARF actually prevents p53 from inducing apoptosis in
primary spermatocytes [160].

5. Conclusions

A variety of oncogenic proteins have co-opted control of translation
and ribosome biogenesis as ameans to further the growth of malignant,
rapidly dividing cells by providing them with an unregulated supply of
ribosomes primed to churn out the necessary proteins to promote
proliferation. However, the cell is not without defense against such
aberrant activities; the ARF tumor suppressor directly interferes with
proliferation through p53 activation and ribosome biogenesis through
its nucleolar interactions. Furthermore, given its nucleolar topology
and sensitivity to hyperproliferative signals, the ARF tumor suppressor
protein is uniquely positioned to inhibit such activity, both through
its ability to induce p53-dependent cell cycle arrest, and its other p53-
independent functions in the nucleolus.
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