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 Diabetic retinopathy, a leading cause of vision loss inworking-age population, is often associatedwith inflammation

and apoptosis.We have previously reported that sitagliptin, a DPP-IV inhibitor, exerts beneficial effects in the retina
of type 2 diabetic animals. The present study aimed to evaluatewhether sitagliptin can exert protective effects in the
retina of type 1 diabetic animals by a mechanism independent of insulin secretion and glycemia normalization.
Streptozotocin-induced diabetic rats were treated orally with sitagliptin (5 mg/kg/day) for the last twoweeks of
4 weeks of diabetes. Sitagliptin treatment did not change the weight and glucose, HbA1c or insulin levels. How-
ever, it prevented the diabetes-induced increase in DPP-IV/CD26 activity and levels in serum and retina.
Sitagliptin also prevented the increase in blood–retinal barrier (BRB) permeability and inhibited the changes in
immunoreactivity and endothelial subcellular distribution of occludin, claudin-5 and ZO-1 proteins induced by
diabetes. Furthermore, sitagliptin decreased the retinal inflammatory state and neuronal apoptosis.
Sitagliptin inhibited the BRB breakdown in a type 1 diabetic animal model, by a mechanism independent of nor-
malization of glycemia, by preventing changes in TJ organization. Sitagliptin also exerted protective effects
against inflammation and pro-apoptotic state in the retina of diabetic rats. Altogether, these results suggest
that sitagliptin might be envisaged to be used to prevent or delay some of the alterations associated with the
development of diabetic retinopathy.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Diabetes is associatedwith the development ofmicrovascular compli-
cations, being the most common diabetic retinopathy. Chronic hypergly-
cemia leads to retinal endothelial cell dysfunction resulting in, among
other effects, pericyte loss, formation of acellular capillaries, increased
vessel permeability and leukocyte adhesion [1]. In streptozotocin-
induced diabetic mice and rats, as well as in diabetic humans, it has
been demonstrated an increase in blood–retinal barrier (BRB) permeabil-
ity, which is the hallmark of the early stages of diabetic retinopathy
progression [2–4]. Diabetes-induced vascular permeability seems to be
64
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., Dipeptidyl peptidase-IV inh
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correlatedwith the disruption of tight junctions (TJs), which form a com-
plex network structure between the endothelial cells, comprising the
inner BRB [5,6]. It has been described that chronic hyperglycemia induces
changes in the levels and distribution of TJ proteins within the retinal
vascular endothelium, which seem to directly contribute to increased
vascular permeability [3,4,7,8]. Also, inflammatory mediators have been
shown to promote increased vascular permeability, leukocyte adhesion
and retinal cell death [9,10]. In fact, elevated levels of proinflammatory
cytokines have been detected in the vitreous of diabetic patients with
retinopathy [11] and in diabetic rat retinas with increased vascular per-
meability [12,13].

Although good glycemic control can reduce the risk for the develop-
ment of diabetic retinopathy, even in patients with good glycemic con-
trol the disease can progress to more advanced stages. Therefore, it
becomes imperative to implement new and effective therapeutic strat-
egies capable of preventing or attenuating the progression of diabetic
retinopathy, preferably during the earlier stages of the disease.

Sitagliptin, a dipeptidyl peptidase IV (DPP-IV, also known as CD26;
EC 3.4.14.5) inhibitor, has been widely used as a clinical approach for
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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the management of poor glycemic control in type 2 diabetic patients.
The inhibition of DPP-IV stabilizes the glucagon-like peptide (GLP-1),
which stimulates its receptor thus enhancing the insulin production in
response to chronic hyperglycemia. Diabetic patients without decrease
in glucose levels through diet or oral medications have been shown to
improve glycemic control with sitagliptin therapy [14]. Its clinical effec-
tiveness seemed to occur mainly through an increase in the levels of
the incretin hormone GLP-1, mediated by DPP-IV enzyme inhibition,
exerting a number of actions that improve glucose homeostasis, includ-
ing the enhancement of glucose-stimulated insulin secretion, promotion
of beta-cell proliferation and survival, and inhibition of glucagon secre-
tion [15]. DPP-IV is expressed in several cell types, including neuronal
cells and brain capillary endothelial cells [16], being also found in the
plasma and its inhibition increases GLP-1 plasma concentration [17].
Besides the insulinotropic effects of GLP-1 receptor (GLP-1R) activation
in pancreatic cells, this receptor was shown to be expressed in a wide
range of tissues, including the retina [18].

Recent studies have demonstrated beneficial effects of incretin-based
therapies in the vasculature [19,20], kidney [21], heart [22] andbrain [23].
Regarding the retina, it was reported that intravitreal injection of a GLP-1
analog (Exendin-4), could reverse changes in electroretinograms, pre-
vent retinal cell death and maintain normal retinal thickness in diabetic
rats [24]. Recently, we have demonstrated that sitagliptin can exert ben-
eficial and protective effects in the BRB, inhibit apoptosis and inflamma-
tion, and positivelymodulate EPC in a type 2 diabetes animal model [25].
In this work, we showed, for the first time, that the beneficial effects of
DPP IV inhibition on diabetic retina can be explained, at least partially,
by amechanism independent of increased insulin secretion. Our findings
show that sitagliptin has protective effects in the early stages of diabetic
retinopathy in a type 1 diabetic animal model independent of insulin se-
cretion and normalization of glycemia levels, by a mechanism involving
the regulation of TJ proteins and vascular repair. Moreover, its effects on
inflammation and cell death were also addressed.

2. Material and methods

2.1. Animal model

All procedures involving animals were performed according to the
ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research and approved by the Institutional Ethics Committee of the
Faculty of Medicine of University of Coimbra for animal care and use
(Approval ID: 015-CE-2011).

MaleWistar rats (8 weeks old)were housed at approximately 22 °C,
60% relative humidity, and a 12-h light, 12-h dark cyclewasmaintained.
Throughout the study the animals had access to water and standard rat
diet (SAFE A04 Augy, France) ad libitum. Diabetes was induced with a
single intraperitoneal injection of streptozotocin (STZ, Sigma-Aldrich,
St. Louis, MO, USA; 65 mg/kg in 10 mM citrate buffer, pH 4.5). After
48 h, animalswith blood glucose levels above 13.9mMwere considered
diabetic.

After 2 weeks of diabetes induction, the animals were divided into
three groups (number of animals stated in each figure legend): controls,
diabetics and diabetics treated with 5 mg/kg/day (via oral gavage)
sitagliptin (Januvia®, MSD, Portugal) during the following 2 weeks. A
set of animals were also treated with sitagliptin, and the results obtained
for the several measured parameters described in this section were sim-
ilar to those obtainedwith non-treated control animals (data not shown).

2.2. Measurement of serum glucose, insulin and glycosylated hemoglobin
(HbA1c) levels

Ratswere anesthetizedwith an intraperitoneal injection of a cocktail
(2 mg/kg): 2:1 50 mg/mL ketamine solution in 2.5% chlorpromazine,
and blood samples from the jugular vein were collected. Serum glucose
and insulin levels weremeasured using commercial kits (Sigma-Aldrich
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
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andMercodia, Uppsala, Sweden, respectively) andHbA1c levels by using
the DCA 2000+ analyzer (Bayer Diagnostics, Barcelona, Spain), accord-
ing to the instructions of the manufacturer.

2.3. Western blot analysis

Retinal extracts were prepared as previously described [25]. For the
Western blot analysis, 40 μg of protein from the retinal extracts or
100 μg from serum samples were loaded per lane, separated by electro-
phoresis on a SDS 7.5 or 10% polyacrylamide gel and transferred
to polyvinylidene difluoride membranes (Boehringer Mannheim,
Mannheim, Germany). Membranes were probed with rabbit polyclonal
anti-DPP-IV/CD26 (1:4000) from Abcam (Cambridge, UK), rabbit poly-
clonal anti-intercellular adhesion molecule-1 (ICAM-1; 1:200) and
rabbit polyclonal anti-Bax (1:200) from Santa Cruz Biotechnology
(Santa Cruz, CA, USA), goat polyclonal anti-serum albumin (1:5000)
from Bethyl Laboratories, Inc. (Montgomery, TX, USA) and mouse
monoclonal anti-β-actin (1:10,000) antibody from Sigma-Aldrich. After
washing, the membranes were probed with a secondary anti-rabbit or
anti-mouse IgG-HRP-linked antibody (1:10,000; Bio-Rad, Hercules, CA,
USA) for 1 h at room temperature. Immunoreactive bandswere detected
by an enhanced chemiluminescence (ECL) substrate using an imaging
system (VersaDoc 4000 MP, Bio-Rad).

2.4. DPP-IV enzyme assay in serum

To measure the activity of DPP-IV in the serum, a fluorometric assay
was employed, using H-Gly-Pro-AMC.HBr (BACHEM, Bubendorf,
Switzerland). Gly-Pro-AMC is cleaved by DPP-IV to release the fluores-
cent aminomethylcoumarin (AMC). Briefly, 20 μL of serum sample
was mixed with the assay buffer (50 mM glycine, 1 mM EDTA, pH 8.7)
at room temperature. The reaction was initiated by the addition of the
fluorogenic substrate to a final concentration of 200 μM. The final reac-
tion volume for eachwell was 100 μL. Liberation of AMCwasmonitored,
using an excitation wavelength of 360 nm and an emission wavelength
of 460 nm (microplate reader Synergy HT, BioTek, Winooski, VT, USA),
every 5 min for a total of 60 min.

For comparison of DPP-IV activity between samples, data was plot-
ted as Relative Fluorescence Units versus time for each sample. The
time range over which the reaction was linear was determined. A
trend line for these data pointswas obtained and the slopes determined.

2.5. Immunohistochemistry in retinal sections

Retinal sections (10 μm) were fixed in cold acetone for 10 min. The
sections were then washed with PBS, permeabilized for 30 min with
0.25% Tx-100 in PBS with 0.02% BSA (PBS/BSA) and blocked with 10%
normal goat serum or 5% BSA before incubation overnight at 4 °C with
primary antibodies: goat polyclonal anti-IL-1β (1:100; R&D Systems,
Minneapolis, MN, USA), rabbit polyclonal anti-DPP-IV/CD26 (1:200,
Abcam) and rabbit polyclonal anti-Bax (1:50, Santa Cruz Biotechnology).
Sections were then rinsed with PBS and incubated with DAPI for nuclear
staining and the secondary fluorescent antibodies for 1 h at room
temperature.

Anti-DPP-IV/CD26 immunostaining samples were imaged using a
confocal microscope (LSM 710, Carl Zeiss, Gottingen, Germany). Anti-
IL-1β and anti-Bax immunostaining samples were imaged using a
fluorescence microscope (Leica DFC350 FX, Leica Microsystems, Ban-
nockburn, IL, USA). Fluorescence intensity of 5 fields per retinal section
from four animals of each group was quantified by two independent
observers in a masked fashion.

2.6. Measurement of BRB permeability

Blood–retinal barrier permeability was quantified using the Evans
blue dye, which binds irreversibly to serum albumin, according to the
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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t1:1Table 1
t1:2Bodyweight, blood glucose, glycated hemoglobin and insulin levels in control and diabetic
t1:3Wistar rats nontreated or treated with 5 mg/kg/day sitagliptin for 2 weeks.

Control Diabetic Diabetic + Sita t1:4

Body weight (g) 319.00 ± 7.26 229.30 ± 5.37a 230.70 ± 5.65 t1:5

Glucose (mM) 9.24 ± 0.60 40.22 ± 3.07a 41.02 ± 3.32 t1:6

HbA1c (%) 3.83 ± 0.06 9.68 ± 0.09a 9.16 ± 0.25 t1:7

Insulin (pM) 584.64 ± 76.56 19.14 ± 3.48a 22.62 ± 6.96 t1:8

t1:9Data are expressed as mean ± SEM of 10–12 animals per group.
t1:10a P b 0.001 vs. control rats. ANOVA followed by Bonferroni's post hoc test.
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procedure previously described by our group [4]. Briefly, under anes-
thesia, the rats were administered with Evans blue (100 mg/kg;
Sigma-Aldrich) via tail vein. After 2 h, the animals were perfused with
citrate-buffered (0.05 M, pH 4.2) 1% paraformaldehyde (PFA) for
2 min. The eyes were enucleated and the retinas isolated andweighted.
The Evans blue dye was extracted from the retinas with formamide for
18 h at 70 °C. The extract was then centrifuged at 70,000 g for 45min at
4 °C. The absorbance of the supernatant was measured at 620 nm
(maximum absorbance) and 720 nm (minimum absorbance). The
concentration of the dye in the extracts was calculated from a stan-
dard curve of Evans blue in formamide and normalized to the retina
weight.

2.7. Visualization of retinal vessel leakage

Evans blue dye was also used to qualitatively assess the retinal vas-
cular leakage. The Evans blue (100 mg/kg in PBS) was administered via
tail vein to the anesthetized rats. After 30min, the eyeswere enucleated
and immediately immersed in 2% PFA for 2 h. The retinas were isolated
and flat-mounted with the vitreous side up for visualization under a
fluorescence microscope (Leica DFC350 FX, Leica Microsystems). All of
the images were acquired in a masked fashion.

2.8. Whole-mount staining

Retina whole-mounts were prepared according to the procedure
previously described by our group [3]. The retina whole-mounts were
immunostained with mouse monoclonal anti-occludin (1:100), rabbit
polyclonal anti-claudin-5 (1:100), and rabbit polyclonal anti-zonula oc-
cludens 1 (ZO-1; 1:100) from Zymed Laboratories (San Francisco, CA,
USA). After washing, the retinas were incubated with the secondary
antibody Alexa Fluor 488-conjugated goat anti-rabbit IgG or Alexa
Fluor 568-conjugated goat anti-mouse IgG (Life Technologies, Pais-
ley, UK) and then mounted with the vitreous side up for visualiza-
tion under a confocal microscope (LSM 510, Carl Zeiss). From each
retina, 10 images were used to analyze occludin, claudin-5 and ZO-
immunoreactivity. The fluorescence intensity for the three tight
junction proteins was measured in 30–40 retinal vessels of each ex-
perimental group.

2.9. Elisa

Retinal tissue was homogenized in 20 mM imidazole HCl (pH 6.8),
100 mM KCl 1 mM MgCl2, 1% Triton X-100, 1 mM EGTA, 1 mM EDTA,
supplementedwith 10mMNaF, 1mMNa3VO4 and 1×protease inhibitor
cocktail (Roche, Indianapolis, IN, USA). The samples were centrifuged at
4 °C for 5 min at 10,000 g, and IL-1β was assayed in the supernatant
using an ELISA kit (Peprotech, Rocky Hill, NJ, USA), according to theman-
ufacturer's instructions.

2.10. Apoptosis assay

Apoptotic cell death was detected by TUNEL using the DeadEnd
Fluorometric TUNEL System (Promega, Madison, WI, USA) and
degenerating neurons were assessed by Fluoro-Jade B staining
(Chemicon, Temecula, CA, USA), according to the instructions of the
manufacturers. Slides were then analyzed under a confocal microscope
(LSM 710, Carl Zeiss).

2.11. Statistical analysis

Data are expressed as mean ± SEM. Significance was determined
using ANOVA followed by Bonferroni's post hoc test (GraphPad Prism
5.0 software, La Jolla, CA, USA), as indicated in figure legends. Values
of P b 0.05 were considered statistically significant.
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
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3. Results

3.1. Sitagliptin has no effect on body weight, and blood glucose, HbA1c or
insulin levels in diabetic animals

Diabetic animals presented impaired gain weight throughout the
study, with 29% (P b 0.001) less bodyweight than age-matched control
animals at 12 weeks of age (Table 1).

The average blood glucose levels of diabetic animals (40.22 ±
3.07 mM; P b 0.001) were significantly higher than those of control an-
imals (9.24 ± 0.60 mM). Accordingly, diabetic animals also presented
increased levels of HbA1c (9.68 ± 0.09%; P b 0.001) when compared
to controls (3.83 ± 0.06%) (Table 1).

As expected, STZ-induced diabetes reduced significantly the insulin
levels in serum when compared to control animals (19.14 ± 3.48 pM
and 584.64 ± 76.56 pM, respectively; P b 0.001) (Table 1).

Treatment with sitagliptin during the last 2 weeks of diabetes did
not affect significantly bodyweight (230.70± 5.65 g), and blood glu-
cose (41.02 ± 3.32 mM), HbA1c (9.16 ± 0.25%) or insulin levels
(22.62 ± 6.96 pM) when compared to untreated diabetic animals
(Table 1).

3.2. Sitagliptin decreases the activity and protein levels of DPP-IV in diabetic
animals

To investigate the effect of sitagliptin on DPP-IV, its activity and pro-
tein levels were evaluated in the serum, and in the retina, the protein
levels and distributionwere assessed byWestern blotting and immuno-
histochemistry, respectively.

The activity of soluble DPP-IV was significantly increased in the
serumof diabetic animals (129.9± 4.3% of control; P b 0.001). In diabetic
animals, sitagliptin decreased the activity of DPP-IV to 39.3 ± 4.521% of
control (P b 0.001), corresponding to a 70% decrease when compared to
untreated diabetic animals (Fig. 1A).

The protein levels of soluble DPP-IV were assessed in the serum by
Western blottingusing a specific antibody against DPP-IV/CD26. Diabet-
ic animals presented increased DPP-IV levels (182.9± 24.7% of control;
P b 0.01) (Fig. 1B). Sitagliptin significantly reduced DPP-IV protein
levels in the serum of diabetic animals (101.7 ± 14.5% of control;
P b 0.01), compared to untreated animals (Fig. 1B).

DPP-IV protein levels were also assessed in the retina byWestern
blotting. Diabetes led to increased DPP-IV levels in total retinal ex-
tracts (128.7 ± 10.5% of control; P b 0.05) (Fig. 1C). The administra-
tion of sitagliptin to diabetic rats prevented the increase in DPP-IV
protein levels in the retina, compared to diabetic animals without
treatment (98.8 ± 8.5% of control; P b 0.05) (Fig. 1C). Since the in-
crease in CD26 immunostaining could be due to increased leakage
into the retinal parenchyma of diabetic animals, a Western blot to
detect serum albumin was performed, with no staining detected
(Fig. 1C). Immunohistochemistry experiments performed in retinal
frozen sections confirmed these results (Fig. 1D, E). Diabetes promoted
a significant increase in DPP-IV immunoreactivity (119.6 ± 2.2% of
control; P b 0.001), particularly in the ganglion cell layer. Treatment
with sitagliptin markedly decreased the immunoreactivity for DPP-IV
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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Fig. 1. Sitagliptin prevents the upregulation of DPP-IV activity and content induced by diabetes. (A) DPP-IV activity was determined in the serum using the fluorogenic substrate Gly-Pro-
AMC. The protein levels of DPP-IV/CD26 (110–120 kDa) and serum albumin (65 kDa) were assessed byWestern blotting in serum samples (B) and retinal lysates (C). TheWestern blots
presented are representative of each group of animals. Data are presented as percentage of control and represent themean± SEM of 7–8 animals. (D) Representative confocal images for
each group of animals, showing DPP-IV/CD26 immunoreactivity (green) and nuclear staining with DAPI (blue) in retinal sections. Magnification 400×. Bar: 20 μm. (E) Quantification of
fluorescence intensity for DPP-IV/CD26 immunoreactivity in retinal frozen sections (10 μm). Data are presented as percentage of control and represent the mean ± SEM of 5 fields per
section from 4 animals; ***P b 0.001, **P b 0.01, *P b 0.05 vs. control rat; #P b 0.05, ##P b 0.01, ###P b 0.001 vs. diabetic rats. ANOVA followed by Bonferroni's post hoc test. Legend:
GCL — ganglion cell layer; IPL — inner plexiform layer; INL — inner nuclear layer; ONL — outer nuclear layer; PRL — photoreceptor layer.
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in the retinas of diabetic rats (107.8 ± 2.2% of control; P b 0.001)
(Fig. 1D, E).

3.3. Sitagliptin prevents the increase in BRB permeability induced
by diabetes

The breakdown of the BRB induced by diabetes was assessed by
Evans blue extravasation from retinal vessels. As a first approach, the
retinal blood vessel integrity was analyzed in flat mount retinas. Evans
blue was shown to be confined to the retinal blood vessels, without
any leakage occurring, in control rats (Fig. 2A). After 1 month of diabe-
tes, the dye was shown to leak from the capillaries and larger vessels to
the surrounding tissue. The administration of sitagliptin to diabetic an-
imals was able to prevent this effect (Fig. 2A). The quantitative measure
of Evans blue dye, from the retinal tissue, confirmed the data obtained
by fluorescence microscopy. Diabetes increased the BRB permeability
in diabetic rats (15.8 ± 1.4 μg Evans blue per g wet weight retina;
P b 0.01) when compared to control rats (7.2 ± 1.0 μg Evans blue
per g wet weight retina) (Fig. 2B). Treatment with sitagliptin signifi-
cantly prevented BRB breakdown in diabetic rats (9.7 ± 1.7 μg Evans
blue per g wet weight retina; P b 0.05) when compared to untreated
diabetic animals (Fig. 2B).
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
neuronal cell death in the retina of..., Biochim. Biophys. Acta (2014), http:
3.4. Sitagliptin prevents the alterations in the distribution of TJ proteins in
retinal vessels induced by diabetes

In order to establish a correlation between the effects observed on
the BRB permeability and TJ organization, whole retinas were immuno-
stained for the three main constituents of these junctions, zonula
occludens (ZO)-1, occludin and claudin-5. In control animals, the
immunoreactivity for all three proteins was preferentially localized at
the plasma membrane of retinal endothelial cells. In some retinal
vessels of diabetic animals, there were pronounced alterations in
the subcellular distribution of the three TJ proteins. A quantitative
analysis revealed that there was a significant decrease in ZO-1
(58.8 ± 10.7% of control; P b 0.05) and claudin-5 (45.4 ± 3.6% of
control; P b 0.001) immunoreactivity at endothelial cell borders, as
well as intracellular accumulation of occludin in retinal vascular
endothelial cells when compared to control animals (Fig. 2C, D).
Treatment with sitagliptin was able to significantly prevent the de-
crease in claudin-5 (91.8 ± 4.3% of control; P b 0.001) and occludin
(106.9 ± 11.2% of control; P b 0.05) immunoreactivity at the cell
membranes, as well as the redistribution and intracellular accumula-
tion of occludin in the endothelial retinal cells. Although a recovery
of ZO-1 staining at the cell borders was noticed in the retinas of
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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diabetic animals treated with sitagliptin, no significant difference
was reached when comparing to ZO-1 staining in the retinas of diabetic
animals (Fig. 2C, D).

3.5. Sitagliptin is able to decrease inflammation in the retina of diabetic
animals

Inflammation has been implicated in the pathogenesis of diabetic
retinopathy, and IL-1β, a proinflammatory cytokine, has been correlated
with BRB breakdown [13,26]. As expected, the results obtained by
immunohistochemistry revealed that the retinas of diabetic animals
presented an overall increase in IL-1β (191.8 ± 7.1% of control;
P b 0.001) (Fig. 3A, B) immunoreactivity. Treatment with sitagliptin sig-
nificantly decreased the immunoreactivity for IL-1β (117.4 ± 3.4% of
control; P b 0.001) in the retinas of diabetic animals, particularly in the
ganglion cell layer and inner plexiform layer (Fig. 3A, B). As shown in
Fig. 3C, IL-1β levels in the retina of diabetic animals were higher (2550
± 80.66 pg/mL) compared to control (1849± 151.2 pg/mL), as assessed
by ELISA. Treatment with sitagliptin was able to prevent this increase
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
neuronal cell death in the retina of..., Biochim. Biophys. Acta (2014), http:
(1981 ± 138.2 pg/mL; P b 0.05), when compared to untreated animals
(Fig. 3C).

As the inflammatory process develops, the increase of local cytokine
levels will promote the leukocyte adhesion to retinal vessels mediated
by ICAM-1, which is expressed by endothelial cells [27]. ICAM-1 protein
levels were significantly increased in the diabetic retinas (138.2 ± 9.6%
of control; P b 0.05) (Fig. 3D). Sitagliptin treatment prevented the in-
crease of this adhesion molecule induced by diabetes (102.4 ± 6.8% of
control; P b 0.01) (Fig. 3D).

3.6. Sitagliptin prevents neuronal cell death induced by diabetes

The death of pericytes and acellular capillary formation are common
features of the early stages of diabetic retinopathy and impaired angio-
genic response to increased vascular permeability, may contribute to
the breakdown of BRB [28]. Moreover, it has been shown that transloca-
tion of Bax, a pro-apoptotic protein, into the mitochondria triggers a
caspase-dependent apoptosis in retinal cells exposed to chronic hyper-
glycemia [29].
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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Fig. 3. Sitagliptin inhibits the increase in IL-1β and ICAM-1 levels in the retina of diabetic animals. Representative fluorescence images for each group of animals, showing IL-1β
(A) immunoreactivity (green) and nuclear stainingwith DAPI (blue) in retinal sections (10 μm).Magnification 200×. Bar: 40 μm. Legend: GCL— ganglion cell layer; IPL— inner plexiform
layer; INL — inner nuclear layer; OPL— outer plexiform layer; ONL — outer nuclear layer; PRL — photoreceptor layer; RPE — retinal pigment epithelium. Quantification of fluorescence
intensity for IL-1β (B) immunoreactivity in retinal sections. Data are presented as percentage of control and represent the mean ± SEM of 5 fields per section from 4 animals per
group. The levels of IL-1β were quantified in the supernatant of total retina homogenates, by ELISA (C). Data are presented as pg/mL of IL-1β and represent the mean ± SEM of 5–6
animals. The protein levels of ICAM-1 (110 kDa) were assessed by Western blotting in total retinal extracts (D). The Western blot presented is representative of each group of animals.
Data are presented as percentage of control and represent the mean ± SEM of 7–8 animals. ***P b 0.001, **P b 0.01, *P b 0.05 vs. control rats; ###P b 0.001, ##P b 0.01, #P b 0.05 vs.
diabetic rats. ANOVA followed by Bonferroni's post hoc test.

6 A. Gonçalves et al. / Biochimica et Biophysica Acta xxx (2014) xxx–xxx
U
N
C
O

R
R
E

A significant increase (123.6 ± 5.9% of control; P b 0.05) in Bax
protein levels was detected in the retinas of diabetic rats, when com-
pared to the control animals (Fig. 4A). The administration of sitagliptin
significantly decreased the pro-apoptotic state (90.4 ± 5.8% of control;
P b 0.01) induced by diabetes (Fig. 4A). These observations were
confirmed by immunohistochemistry experiments. Diabetes induced
an increase in Bax immunoreactivity in the retina (137.1 ± 7.2% of
control; P b 0.001), especially at the plexiform and photoreceptor
layers, indicating a pro-apoptotic state. Oral treatment with sitagliptin
for 2 weeks was able to prevent the increase in Bax immunoreactivity
in the diabetic retinas (114.8 ± 5.2% of control; P b 0.05) comparing
to untreated animals (Fig. 4B, C). These results were confirmed by
TUNEL assay. The number of TUNEL-positive cells (cells undergoing ap-
optosis) was increased in the diabetic retinas (2.3± 0.4 TUNEL-positive
cells per 100 μm horizontal length; P b 0.001), when compared to con-
trol animals (0.3 ± 0.1 TUNEL-positive cells per 100 μm horizontal
length). Besides the TUNEL-positive cells at the outer nuclear layer,
we also observed TUNEL-positive staining at the ganglion cell layer
in some of the retinal sections analyzed (Fig. 4D). Treatment with
sitagliptin significantly decreased the number of TUNEL-positive cells
in the diabetic retinas (1.2 ± 0.2 TUNEL-positive cells per 100 μm hori-
zontal length; P b 0.05) (Fig. 4D, E).

To further investigate the potential protective effects of sitagliptin
against retinal cell death, retinal sections were stained with Fluoro-
Jade B, which is a well-established marker of degenerating neurons in
the brain and retina [30,31]. In control retinas, we could not detect
any staining indicative of cell death (Fig. 4F). In diabetic retinas,
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
neuronal cell death in the retina of..., Biochim. Biophys. Acta (2014), http:
degenerating cell bodies were observed mainly in the ganglion cell
and inner nuclear layers (arrows). Furthermore, some astroglial pro-
cesses were also stained, extending from the ganglion cell layer to the
inner plexiform layer (Fig. 4F). In the retinas of diabetic animals treated
with sitagliptin, no specific staining of cell bodies indicative of cell death
was found (Fig. 4F).

4. Discusssion

The present study is the first providing evidence that DPP-IV inhi-
bition with sitagliptin has protective effects in the retina of diabetic
animals by a mechanism independent of enhanced insulin secretion.
Most research on sitagliptin has been focused on type 2 diabetes
with normalization of blood glucose [17,25,32,33]. In this work,
we show that sitagliptin was able to prevent several alterations oc-
curring in the retina in a type 1 diabetes animal model, during the
early stages of the disease. Sitagliptin prevented BRB breakdown, TJ
complexes disassembly/disorganization, inflammation, retinal cell
apoptosis, and the impairedmobilization and adhesion ability of circulat-
ing cells with vasculogenic potential, despite continued hyperglycemia
and hypoinsulinemia. These results indicate that sitagliptin has direct ef-
fects on the retina that are independent of its antihyperglycemic effects.

Elevated serum DPP-IV activity has been described in both type 2
and type 1 diabetic patients [34,35]. We observed an increased serum
DPP-IV activity after onemonth of diabetes induced by STZ (type 1 dia-
betes). In other study, using the same animal model, DPP-IV activity in
the plasma is increased 1 week after STZ injection and treatment with
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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Fig. 4. Sitagliptin prevents neuronal cell death induced by diabetes in the retina. (A) The protein levels of Bax were assessed byWestern blotting in retinal lysates. TheWestern blots pre-
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sitagliptin for a month promoted a strong inhibition of DPP-IV activity
and concomitantly increased levels of active plasma GLP-1 levels [36].
In our study, 2 weeks of treatment with sitagliptin was able to inhibit
by 70% the activity of DPP-IV in the serumof diabetic animals, compared
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
neuronal cell death in the retina of..., Biochim. Biophys. Acta (2014), http:
to untreated animals. Furthermore, we observed a positive correlation
between serum DPP-IV activity and its serum protein levels in diabetic
animals. The same correlation has also been described for type 2 diabe-
tes and other diseases, like rheumatoid arthritis [32,37], suggesting that
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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increased DPP-IV activity in serum may reflect the increase in DPP-IV
levels. Indeed, we found that the inhibition of DPP-IV activity also pro-
moted a decrease in its serum levels. In the retina, sitagliptin was also
able to prevent the increase in DPP-IV levels induced by diabetes. It re-
mains to be clarified if the positive correlation between activity and
DPP-IV levels is maintained for DPP-IV in the retina.

Increased retinal vascular permeability, which may cause macular
edema, is a well-established consequence of diabetes, and is one of
the first detectable signs of the development of diabetic retinopathy
[2]. In our animalmodel of diabetes, increased BRBpermeabilitywas ob-
served one month after STZ injection. Consistently, it has been shown
that within 1 week after STZ induction of diabetes, diabetic rodents
demonstrate increased BRB permeability to high-molecular weight
molecules [38]. In the present study, sitagliptin effectively inhibited
the increased permeability of retinal vessels induced by diabetes.

It iswell established that diabetes-induced BRB breakdown ismainly
due to TJ complex disassembly [3,4,7,8]. We showed that sitagliptin
protected the barrier function by preventing the downregulation or
subcellular redistribution of the TJ proteins claudin-5, occludin, and
ZO-1. Sitagliptin prevented the decreased ZO-1 and claudin-5 immuno-
staining in retinal endothelial cell plasmamembrane, and the intracellu-
lar accumulation of occludin induced by diabetes. Consistently, we and
others previously observed a reduction in occludin content and a sub-
cellular redistribution, due to translocation from the plasmamembrane
to intracellular compartments of endothelial cells in response to diabe-
tes, with concomitant increased vascular permeability [4,8,25,39]. These
changes appear to be correlated with increased occludin phosphoryla-
tion, which may target this protein to degradation [7] and also alter its
interaction with ZO-1 and ZO-2, compromising the integrity of the TJ
[40]. ZO-1 decreased levels and changes in its localization and phos-
phorylation state also appear to be associatedwith increased endotheli-
al permeability [3,4,7]. Moreover, a decrease in the protein levels of
claudin-5 has also been correlated with increased vascular permeability
induced by diabetes [4].

Several studies have implicated a chronic low-grade inflammation in
the pathogenesis of diabetic retinopathy. Elevated levels of proinflam-
matory cytokines and adhesion molecules have been detected in the
vitreous of diabetic patients with diabetic retinopathy and in diabetic
rat retinas [11,12,25,41]. Moreover, increased levels of both IL-1β and
ICAM-1 have been correlatedwith increased retinal vascular permeabil-
ity [4,10,13]. Our results are consistent with these findings, since we
observed increased IL-1β and ICAM-1 levels in the diabetic retinas,
along with an increase in BRB permeability. Sitagliptin seems to have
an anti-inflammatory effect, because it prevented the increase of both
inflammatory mediators in the retinas of diabetic animals, which
might contribute for the prevention of the BRB breakdown. In fact, we
and others have previously reported that this DPP-IV inhibitor de-
creases IL-1β levels in the serum, pancreas and retina of Zucker diabetic
fatty (ZDF) rats [25,33,42], as well as in the serum of type 2 diabetic
patients [43].

Studies have shown that both hyperglycemia and IL-1β are shown to
activate nuclear factor-κB (NF-κB) leading to the upregulation of cell
surface expression of adhesive proteins, namely ICAM-1, in endothelial
cells [44,45] A recent in vitro study also showed that sitagliptin pro-
motes a dose dependent inhibition of tumor necrosis factor induction
of ICAM-1, through an inhibition of NF-κB expression, and that this ef-
fect was both GLP-1-dependent and independent [46]. Furthermore,
capillary occlusion by inflammatory mediators has been shown to con-
tribute to the formation of acellular capillarieswhich are considered one
of the early markers of diabetic retinopathy, leading to the progression
of cell death and ischemia [47]. Thus, by inhibiting the inflammatory
processes, sitagliptin could have cytoprotective effects and prevent
some of the vascular alterations induced by diabetes.

It has been largely demonstrated that chronic hyperglycemia and in-
flammation can lead to the activation of cell death pathways in vascular
and neuronal cells in diabetic retinopathy [48]. The present results
Please cite this article as: A. Gonçalves, et al., Dipeptidyl peptidase-IV inh
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indicate that diabetes increased DNA fragmentation as visualized by
TUNEL labeling and increased levels of the pro-apoptotic protein Bax.
In the majority of the previous studies, the quantification of TUNEL-
positive cells was performed in retinal whole mounts, and the relative
changes in the number of TUNEL-positive cells between diabetic retinas
and control are about 8–9 fold [49,50]. Similar to those reports, our data
showed an 8 fold-increase in the number of TUNEL-positive cells in the
retinas of diabetic animals when compared to control. The apoptotic
cells were detected in both outer and inner layers, mainly at the outer
nuclear and ganglion cell layers in diabetic retinas. Although apoptotic
cells and reduction of layer thickness have been detected in the outer
nuclear layer [24,51], the majority of the studies claim that the most
prevalent alterations occurring after 1 month of STZ-induced diabetes
affect primarily the ganglion cell layer and inner nuclear layer [49,50].

It has been claimed that neuronal cell death can occur early in the
retinas of diabetic animals, but this is still a controversial issue, namely
regarding how early neuronal death can occur and which cell types can
be mainly affected.

Additionally, we found that diabetic retinas presented an increased
number of degenerative neurons, positively stained for Fluoro-Jade
B. Fluoro-Jade appears to be a more ubiquitous labeling agent than
was originally described. Indeed, a non-specific staining in astroglia
processes was also observed, but only in diabetic retinas, indicating
that Fluoro-Jade can stain reactive glial cells, as already described
by others [31,52]. Nonetheless, reactive astroglia staining appeared
to be decreased in the retinas of diabetic animals treated with
sitagliptin.

We have previously reported, in ZDF rats, that sitagliptin reduced
the pro-apoptotic state and cell death in the retina [25]. Similarly,
in the present study, using a type 1 diabetes animal model, we found
that sitagliptin was able to prevent the upregulation of the pro-
apoptotic protein Bax, the increase in the number of TUNEL-positive
cells and degenerating neuronal cells, suggesting that the inhibition of
DPP-IV induces neuroprotective effects in the diabetic retinas.

Furthermore, it was described that intravitreal injection of exendin-
4 (a GLP-1 analog), in STZ-induced diabetic animals, could prevent the
reduction in retinal thickness and cell loss, especially in the outer nucle-
ar layer [24]. This indicates that the anti-apoptotic effects observed in
our model might be mediated trough the activation of GLP-1R present
in the retina, since sitagliptin stabilizes GLP-1. In fact, it has been
described that activation of incretin receptors in pancreatic β-cells can
promote resistance to apoptosis through the activation of several path-
ways leading to the inhibition of caspase-3, by increasing the expression
of Bcl-2 and decreasing the expression of Bax [53,54]. Moreover, recent
studies in rodents have also provided evidence of neuroprotective
effects of GLP-1 in the brain [55].

Although it remains to be clarifiedwhether it is vascular or neuronal
dysfunction that appears first in the development of diabetic retinopa-
thy, there is no doubt that the neurovascular unit homeostasis is crucial
to the structural and functional integrity of the retina. So, it is desirable
to prevent or slow down both the neuronal and vascular damages, as a
result of prolonged hyperglycemia.

Since the biological activity of a large number of chemokines,
adipokines, neuropeptides, and incretins is altered by DPP-IV, the inhi-
bition of this enzyme might have multiple pleiotrophic effects. Taking
that into account, future studies are required to unravel the molecular
mechanisms behind the protective effects of sitagliptin in the diabetic
retina, and also to establish whether these effects are GLP-1 dependent
or independent.

In the present report, we have found that sitagliptin prevents
BRB breakdown, and TJ disassembly has anti-inflammatory and anti-
apoptotic effects. Thus, for the first time, we provide evidence that
sitagliptin can have protective effects in the diabetic retina by a mecha-
nism independent of increased insulin secretion. Further studies are
warranted in order to better understand the molecular mechanisms
behind the observed beneficial effects, so that sitagliptin could be
ibition prevents blood–retinal barrier breakdown, inflammation and
//dx.doi.org/10.1016/j.bbadis.2014.04.013
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envisaged as a strong candidate for further consideration as a therapeu-
tic drug in reducing the retinal complications of diabetes.
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