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The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-
ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The
plant-derived CTS such as digoxin are valuable drugs for themanagement of cardiac diseases, whereas ouabain
andmarinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have
demonstrated that the endogenous CTS are important regulators of renal Na+ excretion and blood pressure.
The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like
effect of CTS on intracellular protein kinases and Ca2+ signaling. Significantly, these CTS-provoked signaling
events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and baso-
lateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an
important role in regulation of tubular Na+ excretion under physiological conditions; conversely, a defect
at either the receptor level (Na/K-ATPase) or receptor–effector coupling would reduce the ability of renal
proximal tubular cells to excrete Na+, thus culminating/resulting in salt-sensitive hypertension.
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Renal adaptation to high dietary salt intake involves a graded de-
crease in proximal tubule (PT) sodium reabsorption. Abnormalities in
such renal adaptation may contribute to the etiology of salt-sensitive
hypertension. The topics of the Na/K-ATPase, CTS, blood pressure and
sodiumhomeostasis have been extensively reviewed [1–5]. As an active
ion transporter, the central role of the Na/K-ATPase is to maintain
intracellularNa+andK+balance aswell as to keep an inwardly directed
Na+gradient at the expenseofATP. Early studies indicate that theNa/K-
ATPase is engaged in interaction with other membrane and soluble
proteins such as ankyrin [6]. Recent studies demonstrate that the Na/K-
ATPase also functions as a classical receptor, capable of converting CTS
binding into activation of variousproteinkinase cascades.Moreover, the
CTS-activated Na/K-ATPase signaling depends on the formation of
specific signaling microdomains that couple the receptor Na/K-ATPase
to its down-stream effectors. Functionally, activation of Na/K-ATPase-
mediated signaling by CTS plays an important role in the regulation of
surface expression of basolateral Na/K-ATPase and apical NHE3 in renal
proximal tubular cells and consequently transcellular Na+ transport. In
this review, we will focus on these new findings, addressing the role of
newly appreciated Na/K-ATPase signaling function in regulation of
blood pressure and sodium homeostasis.

1. The Na/K-ATPase

The Na/K-ATPase (EC 3.6.3.9), known as the sodium pump, was
discovered by Skou in 1957 [7]. It belongs to the family of P-type
ATPases and consists of two non-covalently linked and subunits [8–
10]. Several subunits (the “catalytic subunit” containing ATP, CTS, and
other ligand binding sites) and subunits (essential for the assembly
of a functional enzyme) have been identified and functionally char-
acterized. The 1 subunit, along with 1, is the predominant “house-
keeping” enzyme of most cells. The renal proximal tubule exclusively
expresses the 1 subunit on the basolateral membrane. The other sub-
units (2, 3, 4, 2, and 3) are expressed in a tissue-specific manner. A γ
subunit (a member of the FXYD-containing polypeptides, that are
not an integral part of the enzyme and are also expressed in a tissue-
specific manner) may modulate the Na/K-ATPase enzymatic activity
[11]. Based on the crystal structures of SERCA (the calcium ATPase of
skeletal muscle sarcoplasmic reticulum) [12], Sweadner and Donnet
[13] first predicted three distinct functional domains in the Na/K-
ATPase 1 subunit, which has been largely confirmed by the crystal
structure of the Na/K-ATPase [14]. These domains contains different
functional binding motifs that are involved in the interaction with
other membrane and structural proteins, receptors, and signaling
molecules including Src, PLC-γ, PI3K, IP3R, ankyrin, adducin, and
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caveolin-1 [3,6,15–20]. Binding to these proteins not only regulates
the distribution and ion pumping function of the Na/K-ATPase, but
also makes it possible for the receptor Na/K-ATPase to convert CTS
binding to the activation of protein kinase cascades and the generation
of second messengers [3,21–23].
2. The Na/K-ATPase/Src receptor complex and CTS-induced
activation of protein kinase cascades

The concept that the Na/K-ATPase functions as a signal transducer
in response to CTS stimulation was first demonstrated in cultured
cardiacmyocytes and renal epithelial cells [24–30]. Up to date, the Na/
K-ATPase has been identified as an ion transporter, a signal transduc-
ing receptor for both endogenous and exogenous CTS, and an impor-
tant scaffolding protein, capable of organizing cell-specific signaling
microdomains by interacting with different partners [3,8,9,17,26–29,
31–45]. For example, stimuli other thanCTS (e.g., reactiveoxygen species
(ROS) and those activating G-protein-coupled receptors (GPCRs)), are
able to increase the interaction between the Na/K-ATPase and sig-
naling proteins such as PI3K, PKC and arrestins, which leads to a cell-
specific endo/exocytosis of the Na/K-ATPase and a change in Na/K-
ATPase activity [18,46–48]. On the other hand, we have reported that
binding of CTS to the Na/K-ATPase activates Na/K-ATPase-associated
Src. Subsequently, the activated Src trans-activates receptor tyrosine
kinases (RTKs) such as the EGF receptor (EGFR), which ultimately
converts CTS binding to the activation of serine/threonine kinases,
lipid kinases, and lipases. Several important structural bases of this
signalingmechanism have been recently revealed [17,22,39,41,42,49].
These actions of CTS can occur in the absence of changes in intra-
cellular ion concentrations [28,50]. Like other receptors, activation of
Na/K-ATPase signaling by CTS induces the endocytosis of the Na/K-
ATPase, thus terminating or propagating the signaling or targeting it to
specific intracellular compartments [50–52]. Moreover, accumulated
data have revealed the complexity and diversity of CTS-activated Na/
K-ATPase signaling, its regulatory mechanisms, and its significance in
humanhealth anddiseases (e.g., Refs. [15,32,34–36,53–64]). For exam-
ple, ouabain can stimulate protein kinase cascades and regulate cell
growth in cardiac myocytes, renal epithelial cells, vascular smooth
and endothelial cells, as well as skeletal muscle cells [32,35,54–56,65].
Both “signaling” and “ion pumping” functions of the Na/K-ATPase
could work in concert in regulation of cellular functions, and the over-
all effect may be dependent on cell type, expression of different α
subunit, and interaction with other receptors.

2.1. Src and CTS-induced protein tyrosine phosphorylation

The status of protein tyrosine phosphorylation depends on the
overall balance of protein tyrosine kinases and tyrosine phosphatases.
Like cytokine receptors and GPCRs [66,67], the Na/K-ATPase has no
intrinsic tyrosine kinase activity, thus requiring non-receptor tyrosine
kinases to render the Na/K-ATPase capability of protein tyrosine phos-
phorylation. In CTS-activated Na/K-ATPase signaling, the most proxi-
mal step is the activation of non-receptor tyrosine kinase Src. Src
family kinases (e.g., Src, Hck and Lck) are 52–62 kDa membrane-
associated non-receptor tyrosine kinases [68–71]. They are impor-
tant regulators of various signal transduction pathways. Src contains
several functional domains. The acetylated N-terminus mediates the
association of the kinase with the membrane. It also consists of a SH3
domain, a SH2 domain, a linker region that can bind the Src SH3
domain, a kinase domain and a C-terminal regulatory domain. Two
important and highly conserved tyrosine residues are a key to the
regulation of Src kinase activity. Phosphorylation of Y529 leads to
an intramolecular interaction between the SH2 domain and pY529,
which facilitates binding of the SH3 domain to the linker region poly-
proline type II helix. This SH3-mediated interaction, in turn, inhibits
formation of a salt bridge in the N lobe of the kinase domain involving
E310 andK295, and thus keeping Src in an inactive state. In accordance
with the above model, Src can be activated when the interaction
between the SH2 domain and pY529 is disrupted due to the com-
petitive binding of the SH2 domain to the phosphotyrosine in other
proteins such as EGFR. In addition, binding of Src SH3 to a protein
ligand could also keep Src in an open conformation, leading to the
formation of the salt bridge and activation of Src. Finally, autopho-
sphorylation of Y418 further stabilizes the Src in the open conforma-
tion and this stimulates Src activity.

Ouabain stimulates dose- and time-dependent tyrosine phosphor-
ylation of multiple proteins in a Src-dependent manner. Ouabain-
stimulated Src activation was initially observed in cardiac myocytes,
LLC-PK1 and A7r5 cells. In these cells, ouabain not only stimulated Src
kinase activity, but also increased tyrosine phosphorylation of EGFR,
resulting in formation of the Na/K-ATPase/Src/EGFR signaling
complex [26,27]. Moreover, ouabain increased phosphorylation of
Src at Y418, but had no effect on Y529 phosphorylation. Pretreatment
with Src or Src family kinase inhibitors (PP2 and herbimycin A)
abolished ouabain-induced Src activation and formation of the active
Na/K-ATPase/Src/EGFR complex. Moreover, ouabain-stimulated ty-
rosine phosphorylation of EGFR was observed in the SYF+c-Src cells,
but not in SYF cells (The SYF cells are derived from mouse embryos
harboring functional null mutations in both alleles of the Src family
kinases Src, Yes, and Fyn. The SYF+c-Src cells are the SYF cells that
are rescued by c-Src) [26,27].

2.2. The formation of the Na/K-ATPase/Src complex

By association with JAK and/or Src kinases, cytokine receptors and
GPCRs are capable of stimulating tyrosine phosphorylation of other
proteins. Similarly, besides providing the binding site for the ligand
(CTS), we found that the Na/K-ATPase-associated Src functions as a
signal transducer, amplifying and converting the binding signal to
protein tyrosine phosphorylation [22]. Specifically, the Na/K-ATPase 1
subunit directly interacts with Src to form a functional receptor com-
plex within the caveolar microdomain [17,41,42,72]. The formation
of this receptor complex was demonstrated by immunofluorescence
imaging analysis showing co-localization of these two proteins in the
plasma membrane, co-immunoprecipitation showing the formation
of a signaling protein complex, fluorescence resonance energy transfer
(FRET) analysis indicating the close proximity, as well as in vitro GST
pull-down assay indicating direct interactions between theα1 subunit
of the Na/K-ATPase and Src. Multiple domains of both proteins are
involved in this direct interaction. In a resting state, the Src SH2
domain binds to the A domain of 1 subunit (i.e., the second cytosolic
loop (CD2) connecting transmembrane helices 2 and 3), whereas the
Src kinase domain binds to the N domain (nucleotide binding domain)
of 1 subunit. Moreover, the association of the Src kinase domain to
the N domain keeps Src in an inactive state. Interestingly, while the
binding of the Src SH2 domain to the 1 CD2 exists in a “constitutive”
manner, the interaction between the Src kinase domain and the 1 N
domain is regulated by ouabain. Specifically, binding of ouabain to the
Na/K-ATPase/Src complex releases the Src kinase domain from the 1N
domain, and consequently activates the Na/K-ATPase-associated Src.
It is important to point out that thismode of regulation and signaling is
unique to the Na/K-ATPase/Src complex [22].

The formation of a functional Na/K-ATPase receptor complex de-
pends on the integrity of caveolae. Caveolae were first identified as
flask-shaped vesicular invaginations of plasmamembrane enriched in
cholesterol, glycosphingolipids, and sphingomyelin. Caveolins are 21–
24 kDa membrane-associated scaffolding proteins that serve as a pro-
teinmarker of caveolae [73]. Three caveolin genes have been identified
and the expression of the different isoforms is tissue-specific. Caveo-
lins directly interact with many signaling proteins via the scaffolding
domain's binding to CBM (caveolin-binding motif) of target proteins.
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The mammalian Na/K-ATPase α1 subunit contains two potential
CBMs [41]: one locates in the cytosolic N-terminal domain near the
first transmembrane helix (M1) and the other resides at the
extracellular side of M10. The appearance of the N-terminal CBM
correlates well with the occurrence of the domain for ouabain binding
[3]. TheNa/K-ATPasewas co-localizedwith caveolin and concentrated
in caveolae inmany different cells including cardiacmyocytes, smooth
muscle and renal epithelial cells [41,72,74]. Functionally, ouabain
regulated this interaction and stimulated the formation of the Na/K-
ATPase/Src/caveolin signaling complex. Disruption of caveolar struc-
ture by depletion of either cholesterol by methyl -cyclodextrin
(MβCD) or caveolin-1 by siRNA redistributed the Na/K-ATPase and
Src from the caveolae to other compartments, resulting in the
inhibition of CTS-induced activation of protein kinases [41].

2.3. Signaling through protein kinase cascades

Recent studies from many laboratories have revealed that CTS,
at concentrations that do not cause significant inhibition of cellular
pumping function, are capable of activating the Na/K-ATPase/Src
receptor complex. Functionally, activation of this receptor complex by
CTS results in stimulation of the protein kinase cascades and gener-
ation of second messengers. For example, binding of ouabain to this
receptor complex recruits and trans-activates the EGFR in a Src-de-
pendent manner by phosphorylating EGFR at sites other than the
major autophosphorylation site Y1173 [26,27,35]. The trans-activated
EGFR further recruits adaptor protein Shc to the complex, resulting in
activation of the Ras/Raf/MEK/ERK1/2 cascade [27,35]. On the other
hand, Src activation also stimulates the PLC-γ/PKC cascade through
tyrosine phosphorylation of PLC-γ at Y783, which increases the pro-
duction of DAG (1,2-diacylglycerol) and IP3 from hydrolysis of PIP2,
resulting in the activation of PKCε and an increase in Ca2+ release
from the ER [39]. It is important to recognize that these ouabain-
induced signaling events occur in a cell-specific manner. For example,
ouabain simulates the Src-dependent activation and translocation of
several PKC isoforms in cardiac myocytes, a step that is required for
ouabain-induced ERK1/2 activation by cross-talking to the Ras/Raf/
ERK1/2 cascade [75]. Moreover, ouabain is also able to induce phos-
phorylation of Akt (protein kinase B) by activation of Src and PI3K in
cardiac myocytes [76]. The concerted effects of Akt, ERK1/2 and cal-
cium signaling ultimately produce hypertrophic growth in cardiac
myocytes, stimulate proliferation in renal epithelial cells [25,76,77],
but cause growth inhibition in some cancer cells [78]. This type of
signal transduction, in general, has now been confirmed in different
types of cultured cells and in intact animals [26,35,38,40,55,72,79].
Clearly, identification of this new cellular signaling mechanism has
provided new insight into the molecular action of CTS. It has also
established a new target for developing novel agonists and antago-
nists of this receptor complex. To this end, recent studies have shown
that some derivatives of ouabain, such as rostafuroxin, can antago-
nize the effect of ouabain on Src, but have less effect on Na/K-ATPase
activity [38]. Moreover, we have recently developed a peptide Src in-
hibitor (pNaKtide) from the mapping studies of the interaction be-
tween the Na/K-ATPase and Src. As expected, pNaKtide functions as a
specific ouabain antagonist in cultured cardiac myocytes [49].

2.4. The α1 subunit knock-down and Src activation

Further probing of the functionality of the Na/K-ATPase/Src
receptor complex is achieved by characterization of several 1 knock-
down cell lines (e.g., LLC-PK1-derived PY-17 and TCN23-19 cells) [42].
We found that a graded 1 knock-down with a vector carrying α1-
specific siRNA increases the basal Src activity in these cells.
Consequently, α1 knock-down stimulates the activities of known
Src effectors such as FAK and ERK1/2 in these cells. More importantly,
it also abolishes ouabain-induced activation of Src and ERK1/2. When
PY17 or TCN23-19 cells, expressing less than 10% ofα1, are rescued by
rat 1, the expression of rat 1 is able to restore basal Src activity. In
addition, ouabain regains the ability to stimulate Src and ERK1/2 in
the rescued cells at a much higher concentration, which is consistent
with the established differences in ouabain sensitivity between pig
and rat 1. Moreover, when Src activity was analyzed in heterozygous 1
knockout (α1+/−) mice, a 30% decrease in 1 expression resulted in
more than a 2-fold increase in cellular basal Src activity in the liver
[80]. Furthermore, expression of a pumping-null rat α1 mutant
(which can interact with Src directly) in the knock-down cells is also
able to restore 1-knock-down induced changes in Src and FAK activity
[42], suggesting that the basal Src activity could be regulated by the
expression level (or availability) of the α1 subunit independent of the
pumping function of the Na/K-ATPase.

In short, the newly indentified Na/K-ATPase/Src interaction plays
an important signaling role. First, it keeps Src in an inactive state
through which it regulates the cellular protein kinase cascades. Sec-
ond, formation of the Na/K-ATPase/Src complex provides a functional
receptor for CTS to stimulate protein kinase cascades and generate
second messengers. Clearly, the physiological significance of these
modes of regulation remains to be tested in vivo.
3. The Na/K-ATPase and intracellular Ca2+ signaling

As a secondary messenger, intracellular Ca2+ has a broad and
versatile effect in regulating cellular functions such as contraction,
secretion, proliferation and apoptosis. Many mechanisms have been
identified in regulation of intracellular Ca2+ signaling. Recent studies
have demonstrated a role of the Na/K-ATPase in formation of cell-
specific Ca2+-signaling microdomains.

3.1. The Na/K-ATPase interacts with NCX

Digitalis drugs regulate intracellular Ca2+ in a cell-specific manner.
In cardiac and smooth muscle myocytes, this regulation appears to
depend on the coupling between the Na/K-ATPase and NCX [81–84].
Blaustein et al. [19,85] have recently demonstrated that the N-termini
of the Na/K-ATPase 2 and 3 subunits interacts with NCX to form a
specific Ca2+-signaling microdomain that makes it possible for low
concentrations of ouabain to provoke calcium signaling in smooth
muscle cells and astrocytes. The amino acids Leu-27 and Ala-35 of the
2/3 N-termini are essential for targeting/tethering 2/3 to the plasma
membranemicrodomainwhere the SR/endoplasmic reticulum (ER) is
present in a “junctional” subplasmalemmal space (plasmERosome). A
local increase of Na+ concentration near or within the Ca2+-signaling
microdomain by the Na/K-ATPase inhibition stimulates a local in-
crease of Ca2+ concentration,which could result in a greater amount of
Ca2+ release from SR/ER [86–90]. Structurally, ankyrin-B is important
for formation of this signaling microdomain because it can link the ER
IP3R to the plasma membrane Na/K-ATPase and NCX [91]. Interest-
ingly, recent studies also indicate that the 1 isoform is equally capable
of interacting with NCX to regulate intracellular calcium in cardiac
myocytes [92].

3.2. The Na/K-ATPase interacts with IP3R

Recent studies have identified another important calcium-signal-
ing microdomain involving the interaction between the Na/K-ATPase
and ER IP3R in renal epithelial cells. IP3R is a family of Ca2+ release
channels predominately localized in the ER membrane, and mainly
regulated by IP3 generation and changes in cytoplasmic Ca2+. The IP3R
can interact and regulate ion channels, protein kinase/phosphatases,
and structural proteins. Activation of GPCRs or RTKs can activate/
recruit PLC-β or PLC-γ to the plasma membrane, resulting in an
increase in IP3 production and the opening of IP3R [93,94].
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Cellular Ca2+ signaling can be categorized into calcium oscillations
with different frequency (in a temporal aspect) and calcium transients
at specific microdomains (in a spatial aspect) [95]. Aperia's laboratory
first reported direct interaction of the Na/K-ATPase 1 subunit with
IP3R in the ER membrane [34]. This interaction, which requires intra-
cellular scaffolding protein ankyrin-B [96], is essential for ouabain-
induced low-frequency calcium oscillations in renal epithelial cells.
The IP3R C-terminus contains a binding site for binding of ankyrin,
and ankyrin has been shown to bind the residues 142–166 of the α1
subunit A domain [97]. This interactionmay play a role in stabilization
of the plasma membrane pool of the Na/K-ATPase [98]. Moreover,
ankyrin modulates IP3R-dependent Ca2+ release by recruiting IP3R to
lipid rafts [99,100]. Thus, formation of this Na/K-ATPase/ankyrin/
IP3R signaling complex could provide a cell-specific and robust
receptor for CTS to provoke a calcium-signaling cascade in renal
epithelial cells. Functionally, ouabain-induced calcium oscillations
protect renal epithelial cells from serum starvation-induced apoptosis
through activating the NF-B pathway [34]. Mechanistically, ouabain-
simulated calcium oscillations are independent of intracellular Na+

concentration, PLC activation and IP3 generation in renal epithelial
cells [53], suggesting that ouabain-induced changes in the interaction
between the Na/K-ATPase and IP3R may be sufficient to stimulate
calcium oscillations. This mode of ouabain-induced calcium oscilla-
tions is also observed in hippocampal astrocytes [101]. A three-amino
acid sequence (LKK) at the α1 N-terminus is essential for binding to
IP3R and ouabain-induced calcium oscillations [20]. GST pull-down
assays showed that the 1–604 segment of the IP3RN-terminus binds to
the 1 subunit. Interestingly, the amino acids L and A that flank the LKK
sequence, are important for targeting the 2 and the 3 to the NCX
signaling microdomain in astrocytes [19].

We have also reported that the Na/K-ATPase binds directly with
IP3R to form a calcium-regulatorymicrodomain and facilitates ouabain-
activated signal transduction in LLC-PK1 cells [39]. Ouabain can stim-
ulate calcium transients in the absence or presence of extracellular
Ca2+. The Na/K-ATPase/Src receptor complex plays a critical role in
formation and regulation of this calcium-signaling microdomain. In
response to ouabain, the Na/K-ATPase interacts with PLC-γ and IP3R
to form a calcium-regulatory microdomain to generate ouabain-
activated calcium signaling. Binding of ouabain to the Na/K-ATPase/
Src complex stimulates tyrosine phosphorylation of IP3R and the
generation of IP3 and DAG, leading to the opening of IP3R and an
increase in intracellular calcium [39]. Increases in DAG generation also
activate PKCε. Structurally, we found that PLC-γ binds to the third
cytosolic domain of theα1 subunit whereas IP3R interacts with the N-
terminus of theα1 subunit [39], indicating that the 1 subunit contains
two different domains that have the capability of tethering PLC- and its
effector IP3R together to form a signaling complex. Both PLC-γ and
IP3R co-immunoprecipitatedwith the Na/K-ATPase/Src complex, and
ouabain regulates the formation of this signaling microdomain in
a Src-dependent manner. Interestingly, the formation of this Na/K-
ATPase/Src/PLC-γ/IP3R complex is also involved in Ca2+ signaling
induced by stimuli other than CTS in LLC-PK1 [102]. A graded knock-
down of the Na/K-ATPase α1 subunit resulted in parallel attenuation
of ATP-induced ERCa2+ release,which can be restored by knock-in of a
ratα1 subunit. The 1 knock-down also reduced both angiotensin II and
EGF-induced ER Ca2+ release. The effect of α1 expression on ATP-
induced ER Ca2+ release was not because of a defect in P2Y receptor
expression and function, or the ER Ca2+ content. Instead, theα1 knock-
down redistributed the IP3R away from the plasma membrane prox-
imity. Consistently, we found that expression of the N-terminus (Ala1-
Ser160) segment of the rat α1 can function as a dominant negative
mutant, disrupting formationof theNa/K-ATPase/PLC-γ/IP3Rcomplex
and attenuating the ATP-induced ER Ca2+ release.

In short, the Na/K-ATPase plays an important role in the forma-
tion of functional calcium-signaling microdomains in a cell-specific
manner. Functionally, formation of these microdomains allows phys-
iological concentrations of CTS to regulate intracellular calcium signal-
ing. It also enables other stimuli to provoke efficient calcium signaling.
In relation to the topics of this review, it is of interest to note that
calcium signaling plays an important role in regulation of intracellular
trafficking of ion transporters in renal epithelial cells (see discussion in
the next section).
4. Endogenous CTS as natriuretic hormones

CTS include plant-derived digitalis drugs such as digoxin and
ouabain, and vertebrate-derived aglycones such as bufalin and MBG
[31,44]. Both ouabain and MBG have been identified as endogenous
steroids whose production and secretion are regulated by multiple
stimuli including angiotensin II and adrenocorticotropic hormone
(ACTH) [2,4,103]. The concentrations of CTS were markedly increased
under clinical conditions of high salt loading, chronic renal failure, and
congestive heart failure [37,104–110]. Moreover, recent studies have
also revealed many extra-cardiac actions of these chemicals [45,64,
111–114]. In addition, low doses of CTS not only induced hypertension
in rats, but also caused significant cardiovascular remodeling inde-
pendent of their effect on blood pressure [38,40,60,62].

Dahl, Knudsen and Iwai were the first to propose the existence of a
hormonal natriuretic factor that might cause a sustained increase in
blood pressure in salt-sensitive hypertensive rats [115]. Subsequently,
de Wardener and others came to the conclusion that this hormonal
natriuretic factor inhibits the Na/K-ATPase and Blaustein described
how an increase in endogenous Na/K-ATPase inhibitors might cause
vascular contraction and then a rise in blood pressure [116–118]. In
1980, de Wardener and MacGregor summarized the state of research
at the time, proposed an insightful scheme explaining how Na/K-
ATPase inhibitor works as a natriuretic hormone [119]. In essence,
they contended that the Na/K-ATPase inhibitor (endogenous CTS)
will rise in response to either a defect in renal Na+ excretion or high
salt intake. This increase, while returning Na+ balance toward normal
by increasing renal Na+ excretion, might also cause hypertension
through acting on the vascular Na/K-ATPase. Over the last thirty years,
much has been learned, largely due to the effort of Blaustein's labo-
ratory (reviewed in [5]), about how increases in endogenous CTS
change vascular contraction. However, the pathophysiological signif-
icance of endogenous CTS (e.g., as natriuretic hormone) has been a
subject of debate since it was first proposed [2,105,120] until Lingrel's
laboratory reported their gene replacement studies, which unequiv-
ocally demonstrated that endogenous CTS play an important role in
regulation of renal Na+ excretion and blood pressure through the Na/
K-ATPase [121,122]. Specifically, they have generated several lines of
mice in which the endogenous α subunit is replaced by a mutant that
alters the ouabain sensitivity of the Na/K-ATPase. For example, they
generated a line of “humanized” α1S/S mice where the endogenous
ouabain-insensitive α1 is replaced by an ouabain-sensitive (human
like) α1 mutant, and used these mice to explore the role of endo-
genous CTS in regulation of renal function and blood pressure. Should
endogenous CTS be important for these regulations, increased CTS
sensitivity in α1S/S mice would make these mice more sensitive to
conditions that raise circulating CTS. Indeed, when ACTH was admin-
istered to raise endogenous CTS, it caused much severe hypertension
in α1S/S mice in comparison to their control littermates. Moreover,
they demonstrated that expression of the CTS-sensitive α1 mutant
significantly increased renal Na+ excretion, confirming the natriuretic
function of endogenous CTS as proposed by the pioneers of the field
[115–119,123]. Furthermore, while endogenous ouabain levels were
reduced either by administration of anti-ouabain antibody or by active
immunizationwith ouabain–albumin conjugate, a reduction in natriu-
resis was observed, suggesting that endogenous ouabain is a natriu-
retic hormone and has a physiological role in controlling sodium
homeostasis in normal rats [124].
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5. Regulation of renal sodium handling by CTS through the
activation of Na/K-ATPase-mediated signal transduction

5.1. Coordinated regulation of NHE3 and the Na/K-ATPase

5.1.1. NHE3 regulation
NHE3 (SLC9A3) belongs to a family of electroneutral mammalian

Na+/H+ exchangers (please see reviews [125–127]). In the
renal proximal tubules, NHE3 resides in the apical membrane,
mediating Na+, HCO3

−, and fluid reabsorption [128,129]. Moreover,
vesicular NHE3 activity regulates endosomal pH, and consequently
affects receptor-mediated endocytosis as well as endocytic vesicle
fusion [130,131]. Consistent with its cellular function, up-regulation
of NHE3 activity and expression in the proximal tubule is associated
with the development of hypertension [132–135]. Conversely,
reduction of NHE3 surface expression or NHE3 activity occurs during
pressure natriuresis in rats [136–139]. As expected, NHE3-deficient
mice are hypotensive and develop acidosis [140–142] because of
reduced Na+ reabsorption and increased Na+ excretion in the
proximal tubule. These observations put renal Na+ reabsorption
through NHE3 in a central position in the development and control of
salt-loading- and volume expansion-mediated hypertension. Struc-
turally, NHE3 has a predicted N-terminal hydrophobic ion-translo-
cating domain, and a variable C-terminal hydrophilic domain which
contains regulatory sequences [143]. The NHE3 activity is regulated at
various levels through different mechanisms, mainly via phosphory-
lation, trafficking and transcriptional regulation [126,127,144]. The
surface expression of NHE3 is mainly regulated by changes in
endocytosis/exocytosis, and is considered to be the primary regula-
tory mechanism of NHE3 activity. NHE3 has been found to traffic
between the plasma membrane and early/recycling endosomes (EE/
RE) via a clathrin- and PI3K-dependent pathway [130,145–152]. The
NHE3 activity can be stimulated by exocytosis [152–154] or inhibited
by endocytosis [136,155,156]. Activation of Src, PKA, PKC and increases
in intracellular Ca2+ are involved in the regulation of NHE3 trafficking.

5.1.2. Coordinated Na+ regulation
In the kidney, the proximal tubulemediates over 60% of the filtered

Na+ reabsorption. The Na+ reabsorption in the proximal tubule in-
volves apical Na+ entry via NHE3 (and other co-/counter-transporters)
and basolateral Na+ extrusion primarily occurring through the Na/K-
ATPase. Coordinated regulation of NHE3 and the Na/K-ATPase is crit-
ical in maintaining intracellular Na+ homeostasis and extracellular
fluid volume. It is believed that the apical Na+ entry through NHE3
is the rate limiting step because the functional reserve of the Na/K-
ATPase in the nephron is more than sufficient even under some patho-
logical conditions [157]. Although themechanisms are still being eluci-
dated, accumulating evidence supports the notion that the expression
and activity of the basolateral Na/K-ATPase and apical NHE3 in renal
proximal tubule cells are coordinated and coupled. During pressure
natriuresis, for instance, McDonough's laboratory has shown that the
surface expression and activities of both NHE3 and the Na/K-ATPase
are simultaneously down-regulated [136,138,158]. Similarly, salt load-
ing also activates this regulatory mechanism to remove Na+ from the
body [159]. During the development of hypertension in SHR (spon-
taneous hypertensive rat), the expression and activity of both the Na/
K-ATPase and NHE3 are elevated in comparison to the normoten-
sive control rats [132,160–163]. One of the best studied paradigms of
hormonal natriuresis is the renal dopamine system [164–166]. The
natriuretic properties of dopamine have been recognized for more
than 40 years [167]. Renal dopamine release increases in response to
high salt intake or volume expansion. Activation of apical and baso-
lateral D1-like dopamine receptors stimulates PLC-β and cAMP-PKA
pathways and increases intracellular Ca2+. These pathways work in
concert and produce the coordinated down-regulation of NHE3 and
the Na/K-ATPase, and consequently natriuresis [164–166,168,169].
While Aperia's laboratory first revealed the pathways involved in
dopamine-induced regulation of Na/K-ATPase activity [170–172],
which is related to endocytosis of the Na/K-ATPase [173], Moe and
others have mapped the pathway of regulation of NHE3 phosphory-
lation and trafficking [144,156,174].

5.2. Coordinated regulation of the Na/K-ATPase and NHE3 by CTS

Interestingly, our recent studies have demonstrated that CTS, like
dopamine [156,173,174], are also capable of stimulating a coordinated
down-regulation of apical NHE3 and basolateral Na/K-ATPase in cul-
tured proximal tubular cells [50–52,175,176]. Functionally, this coor-
dinated regulation inhibits active transepithelial Na+ transport (from
apical to basolateral side). Mechanistically, this regulation by ouabain
depends on activation of the receptor function, but not the inhibition
of the Na/K-ATPase because it requires the activation of Src, PI3K and
increases in intracellular Ca2+.Moreover,we have observed thatMBG-
infusion also induced endocytosis of renal tubularNa/K-ATPase in rats,
which could be prevented by antibody-mediated neutralization of
infused MBG [176].

5.2.1. Low concentrations of ouabain inhibit transepithelial 22Na+

transport
In LLC-PK1 monolayers grown on Transwell® membrane support,

exposure to ouabain (10–100 nM) on the basolateral aspect, but not
the apical aspect, caused significant inhibition of active transepithelial
22Na+ flux. Similar findings were observed when LLC-PK1 cells were
treated with the deproteinated extract of serum derived from patients
with chronic renal failure [177]. The inhibitory effect of ouabain in
LLC-PK1 cells is due to ouabain-induced inhibition of both the Na/K-
ATPase and NHE3, leading to decreases in their overall ion exchange
activities (86Rb+ uptake and 22Na+ uptake). Inhibition of c-Src or PI3K
prevents this inhibitory effect on transepithelial flux. Ouabain has no
discernable effects on cell morphology, viability, transepithelial elec-
trical resistance, tight junction integrity, and intracellular [Na+]. The
effects of ouabain are fully reversible (after ouabain wash-out) in
terms of cellular “pumping” activity and transepithelial 22Na+ flux.

5.2.2. Ouabain induces endocytosis of the Na/K-ATPase
Ouabain-induced redistribution of the Na/K-ATPase was first

observed by Cook and Lamb in their early studies [178,179]. In LLC-
PK1 cells, ouabain and MBG cause decreases in membrane-bound Na/
K-ATPase (thus overall ion “pumping” activity) in the absence of a
detectable change in intracellular [Na+]. First, ouabain stimulates
clathrin-dependent endocytosis of the Na/K-ATPase α1 subunit as
evidenced by a decrease in surface biotinylated α1 and a concomi-
tant accumulation of α1 in EE/RE fractions. This regulation requires
caveolin-1 (caveolae and caveolin-1 are present in LLC-PK1 cells and
human proximal tubule [180,181]) and the activation of c-Src and
PI3K. Inhibitionof either c-Src or PI3Kprevents ouabain-induced endo-
cytosis of the Na/K-ATPase. The role of c-Src in this regulation
is further supported by the observation that ouabain can induce
endocytosis of the Na/K-ATPase in SYF+c-Src cells, but not in SYF
cells. Second, the endocytosed [3H]ouabain/Na/K-ATPase/Src/EGFR
complex can be detected in both early and late endosomes. Third,
ouabain enhances protein–protein interactions among the 1 subunit,
clathrin heavy chain, the adaptor protein AP-2 subunit, and PI3K
[51,52] (Fig. 1). In short, ouabain stimulates endocytosis of the Na/K-
ATPase by activating the receptor Na/K-ATPase/Src complex.

5.2.3. Ouabain regulates apical NHE3: a process mediated by ouabain-
activated Na/K-ATPase signaling

Ouabain regulatesNHE3 through twodifferentpathways in LLC-PK1
cells, i.e., transcriptional regulation in the long-term [175] and traf-
ficking regulation in the short-term [50]. In the long-term (over 12 h),
ouabain reduces NHE3 promoter activity as well as NHE3 protein and



Fig. 1. Schematic presentation of ouabain-induced regulation of basolateral Na/K-ATPase and apical NHE3 in renal proximal tubule cells. NKA, Na/K-ATPase.
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mRNA expression [175]. These effects are abolished by inhibition
of either c-Src or PI3K. Promoter mapping identified that ouabain-
response elements reside in a region between −450 and −1194 nt
and that ouabain reduces the binding of transcriptional factor Sp1 to
its cognate cis-element. In the short-term (30 min to a few hours),
ouabain regulates NHE3 trafficking [50]. Ouabain inhibits NHE3 acti-
vity (22Na+ uptake) and transepithelial 22Na+ flux, which is due to
ouabain-induced down-regulation of apical NHE3. Only administra-
tion of ouabain in the basolateral, but not in the apical aspect, reduces
surface NHE3. Concomitantly, ouabain accumulates NHE3 into EE/RE
fractions, as in the case of the Na/K-ATPaseα1 subunit. Acute ouabain
treatment has no effect on total NHE3 protein and mRNA expression.
Inhibition of either c-Src or PI3K or disruption of caveolae/lipid rafts
structure (by cholesterol depletion with Mβ-CD) is sufficient to block
ouabain-induced down-regulation of surface NHE3.

In short, ouabain down-regulates surface NHE3 expression by acti-
vating the basolateral receptor Na/K-ATPase/Src complex in renal epi-
thelial cells. However, it remains to be established whether ouabain-
activated short-term regulation involves stimulation of endocytosis or
inhibition of exocytosis/recycling of NHE3 or both. Moreover, because
ouabain still binds to endocytosedNa/K-ATPase, itwould be of interest
to test whether ouabain-induced regulation of NHE3 trafficking comes
from the endocytosed Na/K-ATPase/Src complex or directly from the
plasma membrane.

5.2.4. Ouabain-induced regulation of α1 and NHE3 is independent of
intracellular [Na+]

High concentrations of ouabain are known to increase intracellu-
lar [Na+], depolarize the proximal tubule, and affect tight junction of
epithelial cells. In LLC-PK1 cells, ouabain (up to 100 nM) has no effect
on intracellular [Na+], transepithelial electrical resistance and tight
junction integrity, suggesting that ouabain is not likely to increase
passive Na+ transport by depolarizing LLC-PK1 monolayers. To fur-
ther define whether effects of ouabain on the Na/K-ATPase and NHE3
are independent of intracellular [Na+], we have assessed the change
in intracellular transporters after the equilibrium of intracellular
[Na+] with extracellular [Na+] is achieved by using conventional
“Na+-clamping” methods [182]. LLC-PK1 cells (both control and
ouabain-treated) are pretreated either with 20 M monensin or with
10 M monensin plus 5 M gramicidins for 30 min. Both “clamping”
methods raise basal levels of α1 and NHE3 in EE/RE (monensin is
known to accumulate proteins in intracellular compartments). How-
ever, ouabain is still able to further accumulate more α1 and NHE3 in
EE/RE. These observations indicate that ouabain-induced trafficking of
α1 and NHE3 can be independent of intracellular [Na+] [50].

It is well established that high salt intake or volume expansion
increases both dopamine and CTS. Interestingly, it has been shown
that dopamine-induced regulation of the Na/K-ATPase in proximal
tubules of Dahl S rats was defective because of apparent decoupling
between the binding of dopamine to its D1 receptor and activation
of GPCRs [183–187]. In response to salt loading, Dahl S rats have a
similar diuretic, but much less CTS-related natriuretic response than
that of Dahl R rats [188]. Both dopamine and CTS are capable of reg-
ulating activity and trafficking of the Na/K-ATPase and NHE3 in the
renal proximal tubule. Even though the initiating steps and signaling
pathways are different, they share some signaling steps such as the
activation of PLC/PKC and calcium signaling. It will be of great inter-
est to further assess the role of CTS-induced regulation of the Na/K-
ATPase and NHE3 in renal handling of Na+. Moreover, it would be
equally important to test whether there is a cross-talk between
CTS- and dopamine-activated signaling pathways in regulation of
renal Na+ handling.

6. Perspective

As pointed out by Guyton many years ago [189], the kidney is the
most important organ in the regulation of Na+ handling and thus
blood pressure, which has now been well documented (for review see
[190,191]). Although relationships amongst CTS, renal Na+ handling
and hypertension were proposed many years ago, there has been an
explosion of recent data coming from a number of laboratories which
support this idea [103–105,108–110,121,122,192–197]. As discussed,
recent reports from Lingrel's laboratory clearly demonstrated a spe-
cific role of theα isoforms of the Na/K-ATPase and its interaction with
endogenous CTS in the regulation of Na+ excretion and blood pres-
sure in intact animals [121,122,195].Working from the ligandperspec-
tive, studies have demonstrated that CTS are present in measurable
amounts under normal physiological conditions, and that a number
of disease states are associatedwith elevations in the circulating levels
of CTS. We and others, during last ten years, have developed a new
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concept that the Na/K-ATPase has an ion pumping-independent
receptor function that can confer the agonist-like effects of CTS on
intracellular signal transduction. Moreover, recent studies have dem-
onstrated that this newly discovered cellular signaling mechanism
operates in intact animals in response to CTS stimulation. Thus, it is of
critical importance to test the role of Na/K-ATPase-mediated signal
transduction in renalNa+handling in intact animals. Needless to say, it
would be equally important to assess whether there is any regulatory
defect in this signaling mechanism occurring in salt-sensitive hyper-
tensive animals.
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