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The action of transforming-growth-factor (TGF)-3 following inflammatory responses is characterized by
increased production of extracellular matrix (ECM) components, as well as mesenchymal cell proliferation,
migration, and accumulation. Thus, TGF-p is important for the induction of fibrosis often associated with
chronic phases of inflammatory diseases. This common feature of TGF-related pathologies is observed in
many different organs. Therefore, in addition to the description of the common TGF-B-pathway, this review
focuses on TGF-B-related pathogenetic effects in different pathologies/organs, i. e., arthritis, diabetic
nephropathy, colitis/Crohn's disease, radiation-induced fibrosis, and myocarditis (including their similarities
and dissimilarities). However, TGF-p exhibits both exacerbating and ameliorating features, depending on the
phase of disease and the site of action. Due to its central role in severe fibrotic diseases, TGF-3 nevertheless
remains an attractive therapeutic target, if targeted locally and during the fibrotic phase of disease.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The fibrotic reaction of the connective tissue following an
inflammatory response is mainly characterized by an increased
production of extracellular matrix (ECM) components and mesench-
ymal cell proliferation, migration and accumulation. Despite the
existence of numerous distinct causes of chronic inflammatory
diseases in different organs and tissues, these diseases are generally
characterized by: i) severe and intermittent progression with phases
of acute exacerbation and remission; ii) immigration of inflammatory
cells (macrophages, granulocytes and T-cells); and iii) increased
expression of pro-inflammatory mediators (Fig. 1). These processes
result in the proliferation of local fibroblasts and, by interaction with
epithelial cells, in their differentiation into myofibroblasts and can be
regarded as a misguided wound healing. Finally, the inflammatory
process comes to rest, but massive fibrosis prevents a rebuilding of
functionally intact tissue and organs.

Transforming growth factor (TGF)-f3 is an ubiquitously expressed
cytokine belonging to a large superfamily of activins/bone morpho-
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genetic proteins [1]. This mediator plays an active role in the processes
discussed above, such as proliferation, wound healing [2], and syn-
thesis of ECM molecules [3]. TGF-(3, therefore, strongly contributes to
fibrotic disorders such as diabetic nephropathy, Crohn's disease,
rheumatoid arthritis, radiation-induced fibrosis, and myocarditis.
However, TGF- is clearly a bi- (or multi-) functional molecule with
strong effects on the immune system [4,5].

2. TGF-B signaling pathway

TGF-( is synthesized as one part of a large molecule, the pro-TGF-3
containing the latency-associated proteins (LAP; Fig. 2). The latter is
cleaved from TGF- in the Golgi apparatus, but remains non-covalently
associated with the growth factor. The disulfide-bound latent-TGF-3-
binding proteins 1/2 (LTBP 1/2) connect the whole complex to the
ECM (details described in [6]). Release of TGF-3 from the pro-TGF-3
complex can be achieved through proteolytic activity by plasmin [7] or
matrix-metalloproteinase (MMP)-2 and MMP-9 [8], through integrins
[9,10] (recently reviewed in [11]), treatment with mild acids [12], or
through the action of thrombospondin (THBS; [13]) by disrupting the
non-covalent interactions between LAP and TGF-31. Once released,
TGF-p mediates signals through pairs of type I and type II receptors
[14]. The type IlI receptor (betaglycan) acts — probably in conjunction
with other heparan sulfate glycans like syndecan [15] - as a co-receptor
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Fig. 1. TGF-B1 induces different, but overlapping responses in different organ systems.

for binding/presenting TGF and as a regulator of TGF-p signaling [16].
The result of ligand binding is the activation of the type II receptor
(TGFBR2), which then phosphorylates the type I receptor (TGFBR1).
The active receptor complex then phosphorylates the so-called R
(receptor)-Smad2 or Smad3 that propagates the signal [17]. The
phosphorylation of Smad2/3 decreases the affinity for the Smad-
anchor for receptor activation (SARA), which in non-stimulated cells
mediates the retention of Smad2/3 in the cytoplasm by interaction,
and increases the affinity of Smad2/3 for Smad4 (a so-called co-Smad).
This complex is now able to enter the nucleus, to bind transcriptional
co-activators like p300 and Creb-binding-protein (CBP) or repressors
like SkiL or TGIF [18], and to regulate the transcriptional activity of
various genes.

Mitogen-activated protein kinases (MAPKs) and protein kinase C
can also interfere with either the nuclear translocation or binding of
Smad3/4 complexes to DNA and regulate TGF-31 signalling [19,20].
Moreover, the serine-threonine protein kinase B can directly interact
with Smad3, thereby preventing its phosphorylation and nuclear
translocation [21]. Other pathways can be directly activated by TGF-B31.
These include components of the MAPK pathway, such as ras, raf, ERK,
p38 and JNK, the phosphatidylinositol-3 kinase cascade, as well as the
regulators of cadherin junctions, RhoA and Rac ([19,22,23]; Fig. 2).
Recently, an involvement of the focal adhesion kinase (FAK) has been
established in myofibroblast differentiation and in remodeling of the
connective tissue following stimulation with TGF [24,25]. In line with
these results, TGF-induced FAK-signaling is required for the activation
of TAK [26] or MEKK1 and, subsequently, of JNK [27], all factors shown
to be essential for the transcription of pro-fibrotic genes.

Notably, these signal transduction pathways have their own
intracellular regulators. An inhibitory Smad (Smad7) blocks TGF-31
signaling by physical interaction with the activated TGFBR1 receptor
and prevents the docking and phosphorylation of Smad2/3 [28,29].

This complex TGF-p signaling pathway (Fig. 2) contains numerous
ligands, receptors, and signaling molecules which, as potential targets
of dysregulation via increased or decreased expression, activation

or interaction, may be partially involved in fibrotic reactions in the
diseases discussed below.

3. TGF-B-related molecules in rheumatoid arthritis

The importance of TGFp1 in rheumatoid arthritis (RA) ranges
from an association with certain vascularization patterns in the
synovial membrane (SM) [30], and an association of TGF- poly-
morphisms with the radiological signs of joint destruction [31] to an
induction of pro-inflammatory cytokines, MMP [32], aggrecanase [33]
and urokinase-type plasminogen activator [34]. In addition, TGF-p
plays an important role for the function of regulatory T-cells [5] in the
suppression of autoimmunity. Indeed, increased levels of TGF-31 have
been found in the synovial membrane of patients with RA by northern
blot [35], immunohistochemistry [36,37], western blot [38] and in
synovial effusions [39]. Also TGFBR2 was detected at higher levels
than in normal synovial tissue [35].

Using “pathway-directed” software following genome-wide
comparison between synovial fibroblasts (SFB) from patients with
RA and osteoarthritis (OA) with Affymetrix arrays, gene expression
of TGF-p1, TGF-p3, LTBP1/2, THBS1, TGFBR1, SARA, CBP, SkiL -
belonging to the TGF-3-pathway (Fig. 2) - was elevated in RA [40].
After validating array data at the mRNA and protein levels using
quantitative PCR and western blot/immunohistochemistry, we
confirmed an upregulated TGF-3 pathway in RA-SFB. The presence
of TGF-B1, in conjunction with increased amounts of TGF-B-
releasing THBS1 and a higher expression of TGFBR1, may thus
lead to an amplified response of RA-SFB to TGF-P. This RA-specific
response has been confirmed by increased expression of MMP-11
following TGF-P stimulation, implying a pathogenetic relevance of
the TGF-B-pathway for MMP-induced degradation or remodeling
processes in RA [40].

The importance of TGF-( for the pathogenesis of arthritis is empha-
sized by a number of animal models. The abundant expression of TGF-
1,2, and 3 as well as the TGFBR1 and -2 in rat synovium was increased
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Fig. 2. Molecules of the TGF-B-pathway ranging from the release of TGF-{, binding of receptors, signaling through Smads, FAK and MAPK to its entry into the nucleus and the

regulation of the transcriptional activity (adapted from [40]).

after the onset of collagen-induced arthritis (CIA) [41], and direct
intra-articular injection of TGF-p1 or TGF-B2 induced synovial
erythema, swelling, and cellular infiltration resulting in synovial in-
flammation and hyperplasia [42]. Conversely, neutralization of TGF-p
inhibited acute and chronic arthritis induced by streptococcal cell walls
(SCW) [43]. In line with these observations, an adenovirus-mediated
overexpression of TGF-31 in rabbit knees led to an increased glyco-
saminoglycan release, nitric oxide production and, most notably, to
fibrosis and muscle edema [44]. The prevention of CIA by administration
of a TGFBR1 inhibitor (HTS466284), which concomitantly reduced the
expression of vascular endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF)-AA, TNF-«, and cellular proliferation
[45], further underlines the pathogenetic role of TGF-{ in arthritis.

In contrast to the above-mentioned studies, numerous observa-
tions show beneficial effects of TGF-3 in arthritis. If administered
systemically, TGF-p1 suppressed SCW-induced arthritis, as measured
by cellular infiltration and joint erosion [46]. In addition, investigation
of the cytokine expression during CIA demonstrated a strong up-
regulation of TGF-31/2 in the remission state of disease, possibly
reflecting the anti-inflammatory regulation of T-cells by TGF-3 in
arthritis. If TGF-p signaling was inhibited by expression of dominant-
negative TGFBR2 in T-cells [47] the susceptibility and the clinical
severity of CIA was strongly increased. Likewise, if TGF-p1 was
retrovirally overexpressed in arthritogenic splenocytes, CIA could not
be transferred to SCID mice and established disease was ameliorated
[48]. Therefore, it may be important to inhibit TGF-3 only at the site
of inflammation without targeting regulatory lymphocytes at extra-
articular sites.

4. TGF-B-related molecules in diabetic nephropathy

TGF-B and its signal transduction play a major role in diabetic
nephropathy and have therefore been thoroughly studied [49-53].
Among the features of the diabetic milieu, hyperglycemia, increased
non-enzymatic glycation of proteins, de novo synthesis of diacylgly-
cerol and subsequent activation of protein kinase C, increased
intracellular glucosamine production, and enhanced renal production
of vasoactive agents (angiotensin II, endothelins, thromboxane) have
all been shown to increase the expression of TGF-{ in cultured renal
cells and animal models of diabetic nephropathy [50,52,54].

The TGF-B level is elevated in the kidneys of insulin-dependent
diabetic animals during both early and late stages of disease [53,54].
Treatment of the streptozotocin (STZ)-diabetic rat with sufficient
insulin to reduce hyperglycemia suppressed the enhanced expression
of TGF-p and matrix components in the glomeruli. In the STZ-diabetic
rat and mouse, increased TGF-31 expression in the renal cortex and
glomeruli as well as up-regulation of the TGFBR2 mRNA and protein
was noted early after the onset of diabetes [53]. The db/db mouse, a
model of type 2 diabetes, characterized by hyperglycemia, obesity, and
insulin resistance, develops increased amounts of TGF-31 localized in
the glomerular compartments [55]. In contrast, the mRNA and protein
levels of the TGFBR2 are significantly up-regulated in both the
glomerular and the tubulointerstitial compartments [55].

The development of diabetic renal hypertrophy and glomerulo-
sclerosis is likely caused by heightened activity of the TGF-p3 system
[56-63]. Short-term treatment of the STZ-diabetic mouse with a
neutralizing monoclonal antibody against all three isoforms of TGF-3
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prevented glomerular hypertrophy, reduced the increment in kidney
weight by 50%, and significantly attenuated the increase in TGF-31, a1
(IV) collagen, and fibronectin mRNAs without affecting glycemic
control [56]. The results of this study suggested a cause-and-effect
relationship between the renal TGF- system and the development of
early structural changes in diabetic nephropathy. Systemic anti-TGF-3
therapy for 8 weeks prevented the mesangial matrix expansion of
diabetic glomerulosclerosis and, most importantly, preserved kidney
function, showing for the first time that neutralization of TGF-3 acti-
vity prevents the progression of renal failure in diabetes [57].
However, the anti-TGF-p antibody did not reduce albuminuria,
which itself may promote the progression of renal insufficiency [57].
The paradox of preserved renal function in view of persistent
albuminuria may be explained by postulating that the deleterious
effects of proteinuria are themselves mediated by the TGF-3 system
[63-65].

In mouse mesangial and tubular cells, high glucose stimulates the
transcription of fibronectin and, in addition, potentiates the transcrip-
tional activation of fibronectin by TGF-31 [58,59]. This particular effect
of TGF-p1 appears to be mediated by Smad3, because over-expression
of Smad3 alone was able to induce fibronectin promoter activity [66].
In conjunction with exogenous TGF-31, Smad3 over-expression syner-
gistically increased fibronectin expression, as if the extra Smad3 had
increased the efficiency of TGF-[3 signaling [66]. Finally, transfection of
a Smad3-dominant-negative construct inhibited TGF-B1 stimulated
fibronectin promoter activity [67,68]. However, part of the TGF-31-
induced fibronectin expression may be mediated in parallel by the
p38MAPK pathway [68,69]. Finally, there is evidence that Smad3 is a
central mediator in the TGF-31-induced increase of mRNA expression
for at1(I) collagen [68,70]. TGF-B-induced MAPK activation also leads
to N-terminal phosphorylation of p53 that enables its interaction with
TGF-pB-activated Smads [64], an indication for cross-talk between the
various TGF-p signaling pathways.

TGF-31 may have additional effects besides the stimulation of
extracellular matrix production. In podocytes, TGF-B1 induces
apoptosis through Smad?7 by inhibiting nuclear translocation of the
cell survival factor NF-«B [70]. TGF-B1-mediated activation of Smad7
is specific for podocytes and is not found in mesangial cells in a limited
series of biopsies from patients with diabetic nephropathy [64]. Since
podocytes are terminally differentiated cells unable to undergo cell
division due to the up-regulation of the cell cycle inhibitory proteins
p57 and p27%iP! apoptotic loss of cells was not replaced.

Studies performed in diabetic patients with various degrees of
nephropathy also underline the importance of the renal TGF-3 system
indisease development [71-73]. All three isoforms of TGF-{ are elevated
in both the glomerular and the tubulointerstitial compartments of
patients with established diabetic nephropathy [71,72]. Furthermore,
glomerular TGF-31 mRNA is markedly increased in biopsy specimens
from patients with proven diabetic kidney disease. These investigations
suggest that increased renal TGF-33 levels closely correlate with the
degree of mesangial matrix expansion, interstitial fibrosis, and renal
insufficiency.

Another study, designed to assess renal production of TGF-{ [73]
measured aortic, renal vein, and urinary levels of TGF-3 in 14 type 2
diabetic and 11 non-diabetic control patients undergoing elective
coronary artery catheterization [73]. Both groups were roughly
matched with regard to the range of renal function and the presence
of hypertension and proteinuria. Renal blood flow was measured to
calculate the net mass balance across the kidney. The gradient of
TGF-B1 concentration across the renal vascular bed was negative in
the non-diabetic patients indicating net renal extraction of TGF-B1,
whereas the gradient was positive in the diabetic patients indicating
net renal production of TGF-31. When the renal TGF-31 mass balance
was calculated, a similar pattern was observed with the non-diabetic
kidney removing approximately 3500 ng/min of TGF-31 from the
circulation, and the diabetic kidney adding approximately 1000 ng/min

of TGF-31 [73].In addition, the level of bioassayable TGF-3 was increased
four-fold in the urine of diabetic versus non-diabetic patients. This was
not simply a function of enhanced glomerular permeability to protein
since diabetic patients both with and without microalbuminuria
displayed similarly high rates of urinary TGF3 excretion [73]. These
results demonstrated that the kidneys of diabetic patients overproduce
TGF-p1 protein; further details, e. g., the exact contribution of the
different renal cell types, need to be investigated.

An interesting post-hoc study assessed whether treatment with
the angiotensin converting enzyme inhibitor captopril would lower
serum TGF-B1 levels in a small subset of patients with diabetic
nephropathy who had been enrolled in the Collaborative Study Group
[74,75]. After 6 months, the serum TGF-p1 level decreased signifi-
cantly by 21% in the captopril-treated group, whereas it increased
slightly by 11% in the placebo-treated group [75]. Interestingly, the
captopril-treated patients with decreased serum TGF-B1 levels
tended to have better preserved renal function over the ensuing
two-year period [75]. This association was even more pronounced in
the subset of patients with an initial glomerular filtration rate of less
than 75 ml/min. These results suggest that TGF-31 plays a pivotal
role in the progression of diabetic nephropathy and that angiotensin
converting enzyme inhibitor therapy may protect the kidney by
lowering TGF-p1 production.

5. TGF-B-related molecules in intestinal inflammation — a
double-sided sword

TGF-3 is constitutively expressed by epithelial cells, fibroblasts,
and mononuclear cells in the gastrointestinal tract [76]. Its critical role
in intestinal homeostasis as a negative master regulator of inflamma-
tion is well-established [77,78] and indisputable. However, translation
of elegant mouse experiments into therapeutic interventions in
humans requires a clearer understanding of TGF- activity in the
human gut. Mice with global TGF-p defects, such as TGF-B-null mice
or transgenic mice expressing a dominant negative TGFBR2 chain, are
unresponsive to TGF-31 signaling. The former die soon after birth due
to systemic inflammation, and the latter develop severe colonic and
pulmonary inflammation [79,80]. These manifestations of global
TGF-B1 defects are mirrored in mouse models of colitis in that the
secretion of TGF-P1 is consistently associated with either the
protection from colitis or a greatly diminished severity of colitis. This
is seen both in the Ty1 model of colitis induced by the haptenating
reagent trinitrobenzene sulfonic acid (TNBS), which mimics Crohn's
disease (CD), or the Ty2 model of colitis induced by the haptenating
agent oxazolone, which mimics ulcerative colitis (UC) [81,82]. In
addition, it is seen in the colitis of SCID or RAG2-deficient mice
receiving CD45RB™#" (naive) T cells in which the protective effect of
the cotransfer of CD45RB'" T (memory) cells is abolished by
concomitant administration of a neutralizing TGF-31 antibody [83].
These and other studies quite conclusively establish that TGF-31 plays
an essential, regulatory role in the control of colitis. On the other hand,
in mice TGF-31 in combination with IL-6 induces a strong pro-
inflammatory Ty17 cell differentiation [84-86]. Notably, in humans
TGF-31 does not have a direct effect on the development of human
Ty17 cells, but it can indirectly favour the development of these cells by
suppressing the expression of T-bet and selectively inhibiting the
expansion of [FN-y-producing T cells [87-89].

The important role of Smad3 as an essential mediator of TGF-31-
induced anti-inflammatory and suppressive activities at the mucosal
level emerges from studies in mice with targeted deletion of the
Smad3 gene. The animals are viable, but die from defects in mucosal
immunity at 1-6 months of age. Mutant mice show diminished cell
responsiveness to TGF-31, massive infiltration of T cells, and multiple
pyogenic abscesses in the stomach and intestine [87,90]. When Smad
signaling was studied in normal human gut mucosa, whole biopsies or
isolated lamina propria mononuclear cells, a basal level of phospho-
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rylated (phospho-) Smad3 was observed which was rapidly upregu-
lated by the addition of exogenous TGF-31 [91].

TGF-p has been also implicated as a key inducer of epithelial-
mesenchymal transition (EMT) [92-97]. Amongst others, EMT is an
essential component of tissue remodeling and wound repair
(reviewed in [98,99]) and fibrosis (reviewed in [100]). During this
transition, the epithelial phenotype, characterized by strong cell-cell
junctions and polarity, is replaced by a mesenchymal phenotype, with
reduced cell-cell interactions, a fibroblastic morphology and
increased motility. TGF-p stimulates the proliferation of many cell
types, particularly those of mesenchymal origin, and it is also a potent
inhibitor of epithelial cell proliferation. EMT in response to TGF-31
and in fibrosis is mediated predominantly via Smad-dependent
(mainly Smad3) pathways [101,102]. A loss of Smad3 in mice blocked
both morphological changes of lens epithelium to a mesenchymal
phenotype and expression of EMT markers in response to injury in
vivo or to exposure to exogenous TGF-3 in organ culture [101].

CD is a chronic, progressive disease of the gastrointestinal tract
with an unknown etiology. It is characterized by transmural inflam-
mation of all layers of the bowel wall. The formation of stenoses and
strictures is common in this disease, which causes abdominal pain,
anorexia, and weight loss. Approximately 50% of CD patients undergo
surgery for this type of complication during a 10-year course; how-
ever, the recurrence rate after surgery is high. In contrast, UC rarely
causes intestinal stenosis. Cytokines released from inflammatory cells
have long been implicated in the pathogenesis of intestinal fibrosis.
TGF-3/Smad signaling plays an important role in CD [103-105]. The
transmural infiltrate of CD is responsible for initiating and maintain-
ing a series of connective tissue changes not only involving the
mucosa, but also the submucosa and muscularis mucosae and muscu-
laris propria, where a marked increase of collagen type I, IIl, and V
mRNA is observed [106,107]. TGF-p has been identified as one of the
central growth factors/cytokines that specifically induces a fibrotic
response after inflammatory injury in the intestinal tract. In CD, there
is a marked overexpression of TGF-B1 and TGFBRs in the colonic
mucosa [76,108]. Fibrosis in CD can therefore be interpreted as an
aberrant healing response to mucosal injury [109]. In addition, TGF-p
appears to be involved in intestinal fibrosis in other enteropathies,
such as radiation enteritis, collageneous colitis, and intestinal graft-
versus host disease [110-112]. Both TGF-B and its receptors are
overexpressed in the intestine of patients with CD [113]. Intestinal
fibroblast expression of TGF-B isoforms varies according to the nature
of tissue. Fibroblasts from normal and inflamed mucosa both express
the TGF-p1 and TGF-R3 isoforms, while those from fibrotic tissue
show reduced expression of TGF-3, but enhanced expression of TGF-
2 and TGF-B1 [114]. This is remarkable, since the TGF-31 and TGF-32
isoforms have been specifically implicated in pathogenic fibrosis,
while TGF-33 appears to have antifibrotic properties [115]. Monte-
leone et al. have provided insight into the failure of TGF-3 down-
regulation in CD. Despite the abundant expression of TGF-3 in the
mucosa of patients with CD, phospho-Smad3 is diminished in the
mucosa compared to control mucosal samples, as is the complex of
Smad3 with Smad4. This may be due to the induction and over-
expression of Smad7 in the mucosa of patients with CD and UCs [116].
However, upregulation of Smad7 is not specific for inflammatory
bowel disease (IBD), but also occurs in Helicobacter pylori-induced
gastritis [117]. In addition, mucosal T cells in both whole tissue and
isolated cells show defective TGF-B1 signaling as measured by
reduced immuno-reactivity against phospho-Smad3 [117]. Specific
anti-sense oligonucleotides for Smad7 reduce expression of Smad7 in
cells isolated from IBD patients which then become responsive to
exogenous TGF-31. TGF-31 cannot inhibit pro-inflammatory cytokine
production in isolated lamina propria mononuclear cells from CD
patients, but inhibition of Smad7 with anti-sense oligonucleotides
restores TGF-1 signaling and allows TGF-1 to inhibit cytokine
production. In inflamed mucosal tissue explants from CD patients,

inhibition of Smad7 also restores phospho-Smad3 and decreases pro-
inflammatory cytokine production, an effect which is partially blocked
by anti-TGF-P1. The extension of these studies examined the
interactions between Smad signaling and NF-«B activation in inflamed
gut: while TGF-1 is a potent inhibitor of TNF-a-induced NF-xB
activation in normal gut, it has no activity in inflamed gut. This can be
attributed to over-expression of Smad7, since treatment of cells from
inflamed gut with anti-sense to Smad7 allows TGF-B1 to rapidly
down-regulate NF-<B activation [117].

If it becomes possible to specifically inhibit Smad7, endogenous
TGF-B1 in the inflamed gut may negatively regulate pro-inflammatory
cytokine production and NF-kB activation, the major components of
the immune overactivity which drives tissue injury in IBD. At the same
time, however, it is important to discover the factors which control
Smad7 expression in the inflamed gut. Furthermore, cell-specific
expression of Smad7 will be important because TGF-31 has different
effects on different cell types. Thus, while blocking Smad7 will allow
TGF-P1 to reduce pro-inflammatory cytokine production by T cells and
macrophages, it may allow TGF-31 to increase collagen production in
myofibroblasts, resulting in fibrosis. However, at the moment the
relative importance of the known inducers of Smad7 in the gut, such
as IFN-vy or TNF-q, or even whether TGF-B1 itself induces Smad7 in a
negative regulatory loop, is still unclear.

6. TGF-B-related molecules in radiation-induced fibrosis

TGF-B1 levels are increased in irradiated mouse skin [118,119] and
decrease slowly after irradiation in both pig and human skin [120,121].
Following microvascular hard or soft tissue transfer, TGF-31 is again
upregulated in a biphasic manner. The first expression peak on day 3
post operation is due to enhanced activation of latent TGF-31 by
extracellular enzymes while the second between day 14 and 28 after
surgery is a result of de novo synthesis [122]. Its most important
signaling receptor TGFBR2 is upregulated in irradiated graft beds as
well [123]. Signaling leads to increased nucleoplasmatic shuttling of
active Smad2/3 and induction of TGF-31 target genes in fibrotic
healing, which is mainly due to decrease in cytoplasmatic levels of the
inhibitory Smad7 [124].

As a consequence, the extracellular matrix is qualitatively and
quantitatively altered [125]. Prolyl-hydroxyprolinase-> overexpres-
sion [126] promotes synthesis of collagen I, Ill and IV [124], while
repression of degrading enzymes, such as MMP-1 and induction of
tissue inhibitors [127] suppresses the degrading pathways. Moreover,
integrin surface receptors, such as a231 integrin are up-regulated as
well and modulate transmission of tensile forces [128]. In the presence
of such forces fibroblasts differentiate into myofibroblasts resulting in
constrictive fibrosis [129].

Irradiation-induced fibrosis and damage to the microvasculature
lead to wound healing disorders following surgery in previously
irradiated areas. Such disorders are dependent, in part, on the
radiation dosage and the timing of surgery after irradiation [130,131]
and reduce the success rate of free flaps to 90% compared with 94% in
non-irradiated graft beds [132].

Taking the central role of TGF-B1 in radiation-impaired wound
healing into account, the question of whether TGF-B1-levels differ in
the healthy tissue between different patients is of utmost importance.
It has been demonstrated that patients with an increased TGF-31
plasma level exhibit an increased risk of developing skin fibrosis
following irradiation [133]. To find a particular predictor which
sufficiently corresponds with the frequency to develop wound healing
complications following surgery in previously irradiated graft beds
would give a large clinical impact on planning individual treatment
protocols. The availability of reliable markers may eventually allow the
prediction of outcome prior to commencement of treatment, and thus
allow modification of combined protocols to minimize late adverse
effects without compromising tumor control.
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7. TGF-B-related molecules in myocarditis

Heart fibrosis is a hallmark feature of the chronic stage of viral
myocarditis [134,135]. Human pathogenic coxsackievirus B3 (CVB3) is
considered the most frequent viral cause of chronic myocarditis in men
[136]. Clinical manifestations of acute myocarditis vary from flu-like
symptoms to the fulminant fatal forms. Frequently, acute myocarditis,
with distinct onset, follows a monophasic clinical course, and the
majority of patients recover spontaneously after several days of
congestive heart failure. Some patients progress into subacute or
chronic forms, which ultimately lead to death. The molecular mecha-
nisms underlying fibrosis development in chronic myocarditis are
currently not well understood.

Like humans, mice develop a marked age-related susceptibility to
CVB infections [137]. The myocardial lesions in mice closely resemble
those seen in human disease [138]; therefore, experimental murine
models of coxsackievirus-induced myocarditis have been developed
to investigate the pathogenesis of this disease. Although chronic
inflammation is characteristic for the human disease as well as for
respective mouse models of fibrosis is more prevalent in the latter.

Excessive fibrosis, as it occurs under conditions of chronic myocar-
ditis, can be classified as either replacement fibrosis, when functional
tissue is replaced by connective tissue, or as reactive fibrosis, which is
part of an adaptive process [ 139]. In addition to collagen, tenascin C, and
fibronectin, splice variants of these molecules are often part of the
fibrotic tissue [140,141]. Various cytokines and growth factors are
believed to contribute to the induction of fibrosis, including TGF-3 [ 142],
IL-1, [143], TNF-o [144,145], and PDGFs [146,147]. For example,
persistent expression of cytokines in the chronic stage of CVB3-induced
myocarditis has been described for various mouse models [148-150], as
well as for human dilatative cardiomyopathy [151]. New observations
suggest that sustained pro-inflammatory signaling is associated with a
pro-fibrotic phenotype based on TGF-3-mediated signaling [152].

For fibrogenesis in the heart, members of the PDGF family are
apparently important mediators. Transgenic overexpression of PDGF-
C and PDGF-D, two more recently discovered PDGF isoforms [153], in
the heart leads to massive cardiac fibrosis [146,147]. Therefore, the
importance of PDGF for the pathology of chronic myocarditis was
investigated in mice with CVB3-induced myocarditis. Interestingly, all
analysed isoforms of PDGEF, i.e., PDGF-A, -B, and -C were upregulated in
close correlation with the inflammatory process. High levels of the
growth factors persisted only in MHC class Il knockout mice, which
develop a chronic myocarditis upon CVB3 infection, whereas immu-
nocompetent C57BL/6 wild-type mice exhibited only an acute,
completely reversible myocarditis [154,155].

Furthermore, it has been shown that the PDGF-receptor (PDGFR)
blocker Imatinib inhibits activation of resident PDGFR, and attenuates
fibrosis in this mouse model significantly [156]. These data strongly
suggest that elevation of PDGF levels and subsequent activation of
PDGER causally contribute to the type of cardiac fibrosis which occurs
in this model. Efficacy of Imatinib for attenuation of fibrosis has
recently been reported also for other organs, i.e., liver, joints, kidney,

and lung [157-160]. It can therefore be assumed that Imatinib-
sensitive tyrosine kinases play a more general role in fibrogenesis. In
addition to the PDGFR [157,160], the Abelson tyrosine kinase (c-Abl), a
mediator of TGF-B-signaling [161], has also been proposed as a
relevant target for Imatinib in the inhibition of fibrogenesis [159,162].
While our data [156], and data of others [146,147] strongly suggest a
causal involvement of the PDGFR in fibrogenesis, they do not exclude
that c-Abl activity is also involved in fibrogenetic signalling. It could
function downstream of TGFBRs, but also partially mediate signalling
of the activated PDGFR [163]. It is known that TGF-3 can drive cardiac
fibrosis when overexpressed in the mouse heart [164] and the use of
genetic mouse models to understand the role of TGF-{ signalling in the
heart is reviewed in [165]. But the relative contribution of the different
TGF-B-mediated signalling mechanisms to fibrosis in our model of
CVB3-induced chronic myocarditis remains to be fully elucidated.

8. Differences and similarities of TGF-p in different organs

As presented in Table 1, numerous molecules have similar
expression patterns in the diseases mentioned in this review. Due to
limited information from the human system, some data were replaced
by results derived from the respective animal model (fibrosis
following irradiation).

TGF-31 is elevated in most pathologies in its active or latent form
and shows similarities with the isoform TGF-p2 in most cases. In
contrast, the expression of TGF-33 varies from down-regulation during
wound healing and CD, abundance without regulation in rheumatoid
arthritis and UC, to up-regulation during diabetic nephropathy. If
determined, the expression of TGFBR2 is often enhanced during
disease. The widespread appearance of the term “n.d.” points out the
urgent need for further investigation of the expression and the effects
of TGF-B-related molecules in human diseases associated with fibrosis,
particularly at the stage of signaling and transcriptional regulation.

9. Therapeutic strategies

As either increased or decreased activity of the TGF-p pathway has
been implicated in the pathogenesis of different human diseases,
methods for increasing or decreasing signaling through these path-
ways are required [166]. There are some tools for enhancing TGF-p
signals, e. g., direct administration of the ligand, usage of agonists, and
increased expression of receptors or decreased expression of signaling
antagonists.

On the other hand, there are different ways to inhibit TGF-p
signaling, e. g., administration of neutralizing antibodies, application
of soluble receptors, usage of antisense nucleotides, and chemically
synthesized inhibitors of the receptor serine/threonine kinases.

Regarding TGF-f inhibition, some clinical trials have been
performed with neutralizing antibodies, especially in fibrotic diseases,
including a TGF-P2 neutralizing antibody (lerdelimumab) which
effectively decreased the amount of scarring after glaucoma surgery
[167]. A TGF-B1 neutralizing antibody (CAT-192, metelimumab) has

Table 1

Expression of TGF-( related proteins in human disease compared to controls (normal or inflammatory).

Organ Irradiated skin Heart Synovial membrane Gut Kidney

Disease Wound healing Fibrotic heart diseases* RA CD inflamed CD fibrotic uc Diabetic nephropathy
Molecule

THBS1 n.d. 1 [178,179] 1 [40,180] 1 [181] n.d. « [181] 1 [182]
Latent-TGF-p 1 [122] n.d. < [183], 1 [39] n.d. n.d. n.d. 1 [182]

TGF-31 1[122] 1[184,185] < [35,36,40,183], 1 [37,38] 1[76,108,114] 1[108,114] 1 [76,108,114] «— [186], 1 [53,72]
TGF-R2 1 [122] — [185] < [35,183] 1 [114] 1 [114] < [114] 1[72]

TGF-p3 1 [187] 1 [185] < [35,183] 1[114] 1 [114] < [114] < [186], 1 [72]
TGFBR1 n.d. 1 [184] 1 [40] < [113] n.d. n.d. n.d.

TGFBR2 1 [123] — [184] 1[35,183] 1[113] n.d. n.d. n.d.

1 increased, | decreased, < no change, n.d. not determined; *mostly following myocardial infarction.
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been administered intravenously to patients with systemic sclerosis,
which causes scarring in skin and internal organs, however, without
any evidence of efficacy and with more adverse events and serious
adverse events in verum than in placebo patients [168]. This raises the
question of whether broader or even complete blockade of the TGF-p
axis will be safe or rather associated with substantial toxicity [168].
Despite these concerns, a pan-TGF-3 (GC-1008) neutralizing antibody
has recently being administered to patients with idiopathic pulmonary
fibrosis in a phase I clinical trial for safety evaluation [169] and is being
administered to patients with focal segmental glomerulosclerosis [170],
renal cell carcinoma, and malignant melanoma [171]; however, safety
and efficacy data from these studies are not yet available.

Similar to neutralizing antibodies, soluble TGF-p superfamily
receptors abrogate signaling at the ligand level by binding the ligand
and preventing it from binding to its cell surface receptors. Due to the
lack of studies in humans, only data from animal models are available.
For example, soluble TGFBR3 has demonstrated efficacy against renal
damage progression associated with diabetes in mice [172]. Similarly,
soluble TGFBR2 has anti-cancer effects in mice, as it suppresses the
growth and metastasis of pancreatic cancer cells [173] and also inhibits
breast cancer cell growth, migration, invasion, and metastasis [174].

Using anti-sense oligonucleotides to reduce the expression of TGF-
B superfamily members is a relatively new therapeutic tool that has
been already successfully applied in clinical trials for cancer treatment
[175,176]. Also, small molecule inhibitors have been introduced to
block TGF- signaling. The TGFBR1-inhibitor Ly573636, which blocks
intrinsic receptor-kinase activity, is currently being assessed in
patients with certain cancers (see [176]), whereas other TGFBR1-
inhibitors have shown to be efficient in mouse tumor models [177].

10. Conclusions

Due to the central role of TGF-3 in severe fibrotic diseases (with
similarities and dissimilarities among organs/diseases) it is an
attractive therapeutic target, as already shown in several clinical
trials (see above).

The strongly bifunctional role of TGF-3, however (pro-fibrotic, but
anti-inflammatory), requires great care for the application of TGF-3-
directed treatments. Future strategies will therefore have to focus on
developing suitable tools to address this bifunctionality such as: 1)
locally or regionally restricted administration of agonists or antago-
nists (in particular, broad TGF-3 blockade by agents such as TGF-p
antibodies, TGF-3 receptors (soluble/anti-sense), latency-associated
peptide or Smad7; 2) phase-dependent application in those periods of
disease dominated by the critical pathogenetic features of TGF-3; and
3) development of local or systemic biomarkers indicative of a future
favorable response. The systemic applicability of broad TGF-3
blockade will have to await the safety date from ongoing trials.
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