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A B S T R A C T

Insulin resistance leads to myocardial contractile dysfunction and deranged autophagy although the underlying
mechanism or targeted therapeutic strategy is still lacking. This study was designed to examine the impact of
inhibition of the cytochrome P450 2E1 (CYP2E1) enzyme on myocardial function and mitochondrial autophagy
(mitophagy) in an Akt2 knockout model of insulin resistance. Adult wild-type (WT) and Akt2−/− mice were
treated with the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for 4 weeks. Cardiac geometry and function
were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate au-
tophagy, mitophagy, inducible NOS (iNOS), and the NLRP3 inflammasome, a multi-protein intracellular pattern
recognition receptor complex. Akt2 deletion triggered insulin resistance, compromised cardiac contractile and
intracellular Ca2+ property, mitochondrial ultrastructural damage, elevated O2– production, as well as sup-
pressed autophagy and mitophagy, accompanied with elevated levels of NLRP3 and iNOS, the effects of which
were significantly attenuated or ablated by diallyl sulfide. In vitro studies revealed that the NLRP3 activator
nigericin nullified diallyl sulfide-offered benefit against Akt2 knockout on cardiomyocyte mechanical function
and mitophagy (using Western blot and colocalization of GFP-LC3 and MitoTracker Red). Moreover, inhibition
of iNOS but not mitochondrial ROS production attenuated Akt2 deletion-induced activation of NLRP3, sub-
stantiating a role for iNOS-mediated NLRP3 in insulin resistance-induced changes in mitophagy and cardiac
dysfunction. In conclusion, these data depict that insulin resistance through CYP2E1 may contribute to the
pathogenesis of myopathic changes including myocardial contractile dysfunction, oxidative stress and mi-
tochondrial injury, possibly through activation of iNOS and NLRP3 signaling.

1. Introduction

Insulin plays a pivotal role in the regulation of myocardial oxidative
phosphorylation and contractile function [1]. Resistance to insulin
signaling is a cardinal feature of type 2 diabetes and is associated with
multiple cardiovascular and metabolic diseases including cardiac dys-
function manifested as disruption of cardiac geometry, myofibrillary
architecture and contractile function [2–4]. Although several scenarios
have been put forward for insulin resistance-induced cardiac patholo-
gical sequelae including inflammation, endoplasmic reticulum, dysli-
pidemia and oxidative stress [5–9], the precise mechanism behind

cardiac anomalies under insulin resistance remains elusive, making
target therapeutics against insulin resistance-induced cardiomyopathy
somewhat challenging. Insulin signaling is controlled by a cascade of
complex signaling components with the phosphatidylinositol 3-kinase
(PI3K)-Akt axis mainly controlling insulin-mediated metabolic flex-
ibility [10,11]. Impaired PI3K/Akt signaling is documented in a number
of pathological conditions accompanied with insulin resistance, obesity,
and type 2 diabetes [12–15]. In particular, mutation of Akt2 (R274H)
was shown to lead to severe hyperinsulinemia and diabetes in human
subjects [16], consistent with the development of insulin resistance
with Akt2 knockout in mice [17,18]. These findings consolidate a
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permissive role for Akt2 in metabolic regulation.
Recent proteomic and transcriptomic analyses have revealed sig-

nificantly altered levels of metabolic genes in insulin resistance and
type 2 diabetes mellitus including aldehyde dehydrogenase (ALDH) and
cytochrome P450 2E1 (CYP2E1) [19–21]. CYP2E1 is a ROS generating
enzyme with a proven role in metabolic diseases [21,22]. CYP2E1 was
demonstrated to be involved in isoproterenol-induced cardiac dys-
function [23] although evidence for a role of CYP2E1 in insulin re-
sistance is still lacking. Given the pivotal role of CYP2E1 in metabolism
and oxidative stress [21,22], this study was designed to examine the
effect of the CYP2E1 inhibitor diallyl sulfide on insulin resistance-in-
duced myocardial contractile dysfunction, intracellular Ca2+ derange-
ment and potential signaling mechanisms involved with a focus on
autophagy in particular mitochondrial autophagy, which is known to
play a major role in insulin resistance [24]. Superoxide (O2

−) levels
were monitored as an indicator for oxidative stress. As an essential
member of the nucleotide-binding oligomerization domain-like re-
ceptor family, the pyrin domain-containing 3 (NLRP3) inflammasome
plays an important role in the pathogenesis of various disorders in-
cluding diabetes, insulin resistance and other metabolic disorders
[25,26]. To examine the possible involvement of NLRP3 signaling in
Akt2 knockout-induced insulin resistance, levels of NLRP3 were eval-
uated in myocardium from WT and Akt2−/− mice with or without
diallyl sulfide treatment. Given that type 2 diabetes and insulin re-
sistance are closely linked with excessive activation of inducible NOS
(iNOS) [27], levels of iNOS were also scrutinized. Activation of iNOS
leads to mitochondrial damage and ROS production [27,28], and more
recently activation of NLRP3 inflammasome [29,30]. However, the
potential involvement of iNOS and NLRP3 in insulin resistance- and
CYP2E1 inhibition-induced myocardial response remains unknown. To
further discern the role of iNOS, NLRP3 and mitochondrial integrity
(mitophagy) in Akt2 ablation- and diallyl sulfide-induced cardiac con-
tractile responses, in vitro studies were performed using selective
pharmacological inhibitors in adult or neonatal murine cardiomyocytes
isolated from WT and Akt2−/− mice.

2. Materials and methods

2.1. Akt2 knockout (Akt2−/−) mice and intraperitoneal glucose tolerance
test (IPGTT)

All animal procedures were approved by the Animal Care and Use
Committees at the Zhongshan Hospital Fudan University (Shanghai,
China) and the University of Wyoming (Laramie, WY, USA). In brief,
Akt2 knockout (Akt2−/−) mice were obtained from Dr. Morris
Birnbaum at the University of Pennsylvania (Philadelphia, PA, USA)
and were characterized in our lab previously [31]. A cohort of adult
(12-month-old) WT and Akt2−/− mice were administered the CYP2E1
inhibitor diallyl sulfide (100mg/kg/d, i.p.) for 4 weeks [32,33]. Prior
to sacrifice, mice fasted for 12 h were given an injection of glucose (2 g/
kg b.w., i.p.). Blood samples were collected prior to glucose challenge,
as well as 30, 60, 90 and 120min thereafter. Blood glucose levels were
determined using an Accu-Chek III glucose analyzer. The area under the
curve (AUC) was calculated using trapezoidal analyses for each ad-
jacent time point and blood glucose level [34].

2.2. p-Nitrophenol hydroxylation activity

Formation of 4-nitrocatechol from p-Nitrophenol (p-NP) hydro-
xylation was employed as indicator for CYP2E1 activity. In brief, tissue
samples were incubated in 0.1M phosphate buffer containing 1.3 nmol/
ml P450, 1mM NADPH, and 100 μM p-NP with a total volume of 0.5 ml
(pH 7.5 at 37 °C). A 30-min reaction was initiated and terminated by
adding NADPH and 10% perchloric acid, respectively. The mixture was
cooled on ice, and proteins were removed by centrifugation at
15,000×g for 10min. NaOH (100mM, 30 μl) was added to

supernatants (300 μl), and absorbance was read at 540 nm using a
Spectrometer [35].

2.3. Echocardiographic assessment

Cardiac geometry and function were evaluated in anesthetized
(ketamine 80mg/kg & xylazine 12mg/kg, i.p.) mice using a 2-D guided
M-mode echocardiography (Sonos 5500) equipped with a 15–6MHz
linear transducer. Left ventricular (LV) wall, septum and chamber di-
mensions during diastole and systole were recorded from 3 consecutive
cycles in M-mode. Fractional shortening was calculated from LV end-
diastolic (EDD) and end-systolic (ESD) diameters using the equation
(EDD-ESD)/EDD. Heart rate was calculated from 10 consecutive cardiac
cycles [34].

2.4. Cardiomyocyte isolation and in vitro drug treatment

After ketamine/xylazine (80 and 12mg/kg, respectively, i.p.) se-
dation, hearts were removed and perfused with KHB buffer containing
(in mM): 118 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, 10
HEPES and 11.1 glucose. Hearts were digested with Liberase for 20min.
Left ventricles were removed and minced before being filtered.
Cardiomyocyte yield was ~75% which was not affected by either Akt2
ablation or diallyl sulfide. Only rod-shaped cardiomyocytes with clear
edges were used for mechanical evaluation [36]. To examine the role of
NLRP3 on diallyl sulfide-induced cardiac response, cardiomyocytes
from WT and Akt2−/− mice were treated with diallyl sulfide (100 μM)
[37] at 37 °C for 6 h in the absence or presence of the specific NLRP3
activator nigericin (20 μM) [38] prior to the assessment of the mito-
phagy marker Parkin and mechanical function. To examine the role of
iNOS and mitochondrial ROS in NLRP3 signaling, cardiomyocytes from
WT and Akt2−/− mice were treated with selective iNOS inhibitor S-
ethyl-isothiourea (SEITU, 1 μM) [29] or the mitochondrial ROS sca-
venger MitoQ (2 μM) [29] at 37 °C for 6 h prior to the assessment of
NLRP3.

2.5. Cell shortening/relengthening

Mechanical properties of cardiomyocytes were assessed using a
SoftEdge MyoCam® system (IonOptix Corporation, Milton, MA, USA).
Cells were placed in a chamber mounted on the stage of an inverted
microscope (Olympus, IX-70) and superfused (~1ml/min at 25 °C) with
a buffer containing (in mM): 131 NaCl, 4 KCl, 1 CaCl2, 1 MgCl2, 10
glucose, 10 HEPES, at pH 7.4. The cells were field stimulated with
supra-threshold voltage at a frequency of 0.5 Hz. The myocyte being
studied was displayed on the computer monitor using an IonOptix
MyoCam camera. An IonOptix SoftEdge software was used to capture
changes in cell length during shortening and relengthening. Cell
shortening and relengthening were assessed using the following indices:
peak shortening (PS) — indicative of ventricular contractility, time-to-
PS (TPS) — indicative of contraction duration, time-to-90% re-
lengthening (TR90) — represents relaxation duration, and maximal
velocities of shortening (+ dL/dt) and relengthening (− dL/dt) — in-
dicatives of maximal velocities of ventricular pressure rise/fall [34].

2.6. Intracellular Ca2+ transients

Cardiomyocytes were loaded with fura-2/AM (0.5 μM) for 15min,
and fluorescence intensity was measured with a dual-excitation fluor-
escence photomultiplier system (IonOptix). Myocytes were placed on
an inverted Olympus microscope and imaged through a Fluor 40×-oil
objective. Cells were exposed to light emitted by a 75W mercury lamp
and passed through either a 360 nm or a 380 nm filter. The myocytes
were stimulated to contract at 0.5 Hz. Fluorescence emissions were
detected between 480 nm and 520 nm by a photomultiplier tube after
cells were first illuminated at 360 nm for 0.5 s and then at 380 nm for
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the duration of the recording protocol (333 Hz sampling rate). The
360 nm excitation scan was repeated at the end of the protocol, and
qualitative changes in intracellular Ca2+ concentration were inferred
from the ratio of the fluorescence intensity at two wavelengths.
Intracellular Ca2+ decay rate was calculated from single exponential
curve fitting [34].

2.7. Electron microscopy

Mouse abdomen and thorax were opened under anesthesia, and the
right atrium was incised to allow the release of blood. Perfusion fixation
was immediately initiated using a saline washout. Hearts were perfused
with 20ml of warm (37 °C), pH 7.6, PIPES-buffered formaldehyde-glu-
taraldehyde at ~3ml/min, followed by 40ml of the same fixative but
chilled to 4 °C. Hearts were removed immediately and left ventricular
and interventricular septal tissues were collected from a 2-mm ring
sliced from the midventricular region. These were further minced to
1mm3. Fixation continued overnight at 4 °C in a 10:1 fluid/tissue ratio.
This was followed by rinsing in PIPES buffer +2% sucrose (pH 7.4) and
overnight postfixation in PIPES buffered 1% OsO4+2% sucrose and
1.5% K3FE(CN)6·3H2O at room temperature. Tissue blocks were dehy-
drated through graded ethanol and propylene oxide, embedded in
Epon/Araldite, and cured 48 h at 60 °C. Thin sections (silver-gray in-
terference color) were cut on an RMC-MTXL ultramicrotome equipped
with a Diatome diamond knife. Sections were collected on naked copper
(300-mesh) grids, stained with lead citrate and uranyl acetate (4% in
absolute ethanol), and imaged with a Hitachi 7500 transmission elec-
tron microscope [39].

2.8. Histological examination

Following anesthesia, hearts were excised and immediately placed
in 10% neutral-buffered formalin at room temperature for 24 h after a
brief rinse with PBS. The specimen were embedded in paraffin, cut in
5 μm sections and stained with hematoxylin and eosin (H&E).
Cardiomyocyte cross-sectional areas were calculated on a digital mi-
croscope (×400) using the Image J (version1.34S) software [34].

2.9. Intracellular fluorescence measurement of superoxide (O2
−)

Intracellular O2
– was monitored by changes in fluorescence in-

tensity resulting from intracellular probe oxidation [36]. In brief, car-
diomyocytes were loaded with dihydroethidium (DHE, 5 μM) (Mole-
cular Probes, Eugene, OR, USA) for 30min at 37 °C and washed with
PBS buffer. Cells were sampled randomly using an Olympus BX-51

microscope equipped with an Olympus MagnaFire™ SP digital camera
and ImagePro image analysis software (Media Cybernetics, Silver
Spring, MD, USA). Fluorescence was calibrated with InSpeck micro-
spheres (Molecular Probes). An average of 100 cells was evaluated
using the grid crossing method in 15 visual fields per isolation.

2.10. Western blot analysis

Myocardial protein was prepared as described [40]. Samples con-
taining equal amount of proteins were separated on 10% SDS-poly-
acrylamide gels in a minigel apparatus (Mini-PROTEAN II, Bio-Rad)
and transferred to nitrocellulose membranes. The membranes were
blocked with 5% milk in TBS-T, and were incubated overnight at 4 °C
with anti-NLRP3 (1:1000), anti-iNOS (1:1000), anti-LC3B (1:1000),
anti-p62 (1:1000), anti-Pink1 (1:1000), anti-Parkin (1:1000), and anti-
B-cell lymphoma 2 (Bcl-2)/adenovirus E1B 19 kDa interacting protein 3
(BNIP3, 1:1000) antibodies. All antibodies were obtained from Cell
Signaling Technology (Beverly, MA, USA). After immunoblotting, the
film was scanned and the intensity of immunoblot bands was detected
with a Bio-Rad Calibrated Densitometer. GAPDH was used as the
loading control.

2.11. Neonatal cardiomyocyte (NCM) isolation

Neonatal (1–2 day-old) WT and Akt2−/− mice were sterilized with
75% ethanol before hearts were harvested and rinsed. Small pieces of
hearts were digested 4–5 rounds using 0.25% trypsin (Carolina,
Burlington, NC, USA). For each round, heart tissues were incubated
with 2–4ml of trypsin at 37 °C for 10min. Supernatants were neu-
tralized in DMEM medium containing fetal bovine serum (20%), 1%
penicillin and streptomycin (Gibco, Grand Island, NY, USA) to termi-
nate the digestion. Cells were centrifuged at 800×g for 10min and
pellets were resuspended in DMEM medium containing fetal bovine
serum (20%) with 1% penicillin and streptomycin prior to plating in an
uncoated dish for 1 h at 37 °C. Cardiomyocytes were plated in a con-
focal plate pre-coated with 1% gelatin, and cultured for 48 h at 37 °C in
the presence of 95% O2 and 5% CO2 [41,42].

2.12. LC3B-GFP-adenoviral transfection and assessment of mitophagy

NCM from WT and Akt2−/− mice were transfected with GFP-LC3B
adenovirus for 24 h [42] and were treated with or without with diallyl
sulfide (100 μM) [37] at 37 °C for 6 h in the absence or presence of the
specific NLRP3 activator nigericin (20 μM) [38]. After treatment, cells
were rinsed with PBS 3 times and were incubated with MitoTracker

Table 1
Biometric and echocardiographic parameters of WT and Akt2−/− mice with or with DAS treatment.

Parameter WT Akt2−/− DAS Akt2−/−-DAS

Body weight (g) 25.6 ± 0.6 25.3 ± 0.7 24.1 ± 0.4 25.2 ± 0.6
Heart weight (mg) 132 ± 3 137 ± 2 136 ± 3 139 ± 3
Heart/body weight (mg/g) 5.24 ± 0.12 5.44 ± 0.12 5.64 ± 0.20 5.52 ± 0.19
Liver weight (g) 1.15 ± 0.02 1.20 ± 0.03 1.21 ± 0.04 1.23 ± 0.04
Liver/body weight (mg/g) 46.1 ± 1.7 47.6 ± 1.7 50.1 ± 1.5 48.8 ± 1.6
Kidney weight (mg) 343 ± 5 344 ± 5 339 ± 9 332 ± 5
Kidney/body weight (mg/g) 13.7 ± 0.4 13.7 ± 0.3 14.1 ± 0.6 13.2 ± 0.4
Blood glucose level (mg/dl) 99.4 ± 3.3 102.0 ± 4.2 95.9 ± 2.8 100.8 ± 3.0
Heart rate (bpm) 456 ± 8 462 ± 10 443 ± 9 451 ± 13
LV wall thickness (mm) 0.80 ± 0.06 0.74 ± 0.13 1.03 ± 0.06 1.03 ± 0.10
LV septal thickness (mm) 0.84 ± 0.04 0.91 ± 0.09 0.88 ± 0.04 0.95 ± 0.07
LV ESD (mm) 1.54 ± 0.12 2.22 ± 0.09⁎ 1.57 ± 0.14 1.61 ± 0.12#

LV EDD (mm) 2.94 ± 0.14 3.44 ± 0.13⁎ 2.90 ± 0.12 3.24 ± 0.24
Factional shortening (%) 47.9 ± 2.5 35.4 ± 1.3⁎ 46.0 ± 3.9 49.9 ± 3.1#

LV: left ventricular; LV ESD: LV end systolic diameter; LV EDD: LV end diastolic diameter; Mean ± SEM, n=8–9 mice per group.
⁎ p < 0.05 vs. WT group.
# p < 0.05 vs. Akt2−/− group.
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Deep Red (Cell Signaling Technology, Danvers, MA, USA) at a con-
centration of 500 nM for 30min at 37 °C. Following incubation, cells
were rinsed with PBS and fixed in 4% paraformaldehyde for 15min at
room temperature. Cells were rinsed again with PBS and stained with
DAPI at a concentration of 5 μM for 5min at room temperature. For
mitophagy visualization, cells were imaged through the Zeiss 710
Confocal Microscope (Oberkochen, Germany) at ×40 magnification
and numbers of GFP-LC3 puncta colocalized with MitoTracker per cell
were counted. Images were analyzed using ImageJ software. Data were

performed in 5 independent experiments.

2.13. Data analysis

Data are Mean ± SEM. Difference was calculated by repeated
measures analysis of variance (ANOVA) followed by a Tukey's post hoc
analysis. A p value<0.05 was considered significant.
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Fig. 1. Effect of the CYP2E1 inhibitor diallyl sulfide (DAS, 100mg/kg/d, i.p., for 4 weeks) on Akt2 knockout-induced glucose tolerance, changes in myocardial
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group.
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3. Results

3.1. General biometric, IPGTT and echocardiographic features of WT and
Akt2−/− mice treated with or without diallyl sulfide

Neither Akt2 knockout nor diallyl sulfide treatment overtly affected
blood glucose levels, body and organ weights or organ size (organ-to-
body weight ratio). Heart rate, left ventricular wall thickness and septal
thickness were unaffected by Akt2 or diallyl sulfide treatment, or both.
Akt2 knockout significantly enlarged LV EDD and LV ESD as well as
suppressed fractional shortening, the effects of which were obliterated
by CYP2E1 inhibition. Diallyl sulfide itself did not elicit any notable
effect on echocardiographic properties (Table 1). Following in-
traperitoneal glucose challenge, blood glucose rose quickly in WT and
Akt2−/− mice peaking at 30min and returning to near baseline after

120min. However, the post-challenge glucose levels achieved sig-
nificantly higher values between 30 and 90min in Akt2−/− mice, in-
dicating poor glucose clearance capacity. Diallyl sulfide treatment did
not overtly affect the pattern of glucose clearance or AUC in WT or
Akt2−/− groups (Fig. 1A–B). Our further analysis revealed that Akt2
ablation overtly increased myocardial CYP2E1 activity, levels of iNOS
and inflammasome NLRP3, the effects of which were ameliorated by
diallyl sulfide. CYP2E1 inhibitor itself did not elicit any effect on these
parameters in WT mice (Fig. 1C, E, F). Akt2 ablation was confirmed
using Western blot, the effect of which was unaffected by diallyl sulfide
treatment (Fig. 1D).
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3.2. Effect of CYP2E1 inhibition on insulin resistance-elicited changes in
cardiomyocyte contractile and intracellular Ca2+ properties

Neither Akt2 ablation nor diallyl sulfide treatment, or both, sig-
nificantly affected the resting cell length. At 10months of age, Akt2
ablation significantly reduced PS and ± dL/dt as well as prolonged
TPS and TR90, the effects of which were abolished by the CYP2E1 in-
hibitor. Diallyl sulfide itself did not elicit any notable effect on cardi-
omyocyte contractile mechanics (Fig. 2). To better discern the potential
mechanism(s) behind CYP2E1 inhibition-offered beneficial myocardial
effects against insulin resistance, Fura-2 fluorescence was examined to
assess intracellular Ca2+ handling properties. Our data shown in Fig. 3
revealed that cardiomyocytes from Akt2−/− mice exhibited an overtly
depressed rise in intracellular Ca2+ in response to electrical stimulus
(ΔFFI) and prolonged intracellular Ca2+ decay although baseline and
peak intracellular Ca2+ levels were not significantly affected by Akt2
ablation. Although diallyl sulfide itself did not affect intracellular Ca2+

properties, it abrogated Akt2 deletion-induced changes in ΔFFI and
intracellular Ca2+ decay.

3.3. Effect of diallyl sulfide on Akt2 ablation-induced changes in
ultrastructure, O2

– production and histology in murine hearts

To assess the impact of diallyl sulfide on myocardial ultrastructure,
oxidative stress and histology under Akt2 ablation-induced insulin re-
sistance, transmission electron microscopy (TEM) was employed to
assess the ultrastructure in left ventricles. Our data revealed cytoarch-
itectural damage as manifested by mitochondrial swelling and overtly
disrupted sarcomeres and myofilament array in myocardial tissue sec-
tions from Akt2−/− mice, the effect of which was ameliorated by
diallyl sulfide treatment. There was essentially little difference in
myocardial ultrastructure in myocardial sections between diallyl sul-
fide-treated and untreated WT groups. Our data also noted enhanced
myocardial O2– production in cardiomyocytes from Akt2−/− mice, the

effect of which was also reversed by diallyl sulfide with little effect from
the CYP2E1 inhibitor itself. Findings from H&E staining revealed that
neither Akt2 ablation nor CYP2E1 inhibition (or both), overtly affected
cardiomyocyte transverse cross-section area (Fig. 4).

3.4. Effect of diallyl sulfide on insulin resistance-induced changes in
autophagy and mitophagy

To explore the possible mechanism underlying diallyl sulfide and/or
Akt2 ablation-induced changes in cardiac contractile and intracellular
Ca2+ function, western blot was employed to assess the levels of protein
markers for autophagy and mitophagy. Our data shown in Fig. 5 re-
vealed that Akt2 ablation overtly decreased LC3BII-to-LC3I ratio, Pink1
and Parkin levels, and upregulated the levels of p62 without affecting
the levels of BNIP3. Although the CYP2E1 inhibitor itself did not alter
levels of these autophagy or mitophagy protein markers, it negated
insulin resistance-induced changes in LC3B, p62, Pink1 and Parkin with
little effect by itself (Fig. 5).

3.5. Role of NLRP3 in Akt2 deletion-induced changes in cardiomyocyte
mitophagy, GFP-LC3B-mitochondrial colocalization and cardiomyocyte
mechanical function

To discern the up- and down-stream relationship among NLRP3,
mitophagy and CYP2E1 in insulin resistance-induced cardiomyocyte
anomalies, we re-examined cardiomyocyte contractile responses and
mitophagy protein marker Parkin in the absence or presence of the
NLRP3 activator nigericin. Resulted depicted in Fig. 6A revealed that
NLRP3 activation nullified diallyl sulfide-induced restoration of Parkin
levels in Akt2 knockout group. Nigericin itself did not significantly af-
fect the levels of Parkin. This received support from the cardiomyocyte
contractile function evaluation where nigericin cancelled off the ben-
eficial effect of diallyl sulfide on cardiomyocyte contraction in the face
of Akt2 deletion. Diallyl sulfide treatment corrected Akt2 deletion-
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induced depression in peak shortening and ± dL/dt as well as pro-
longation of TPS and TR90 without affecting resting cell length, the
effect of which was absent in the presence of nigericin (Fig. 6B–F). The
effect of NLRP3 activation and CYP2E1 inhibition on Akt2 ablation-
induced changes in mitophagy was also evaluated in neonatal murine
cardiomyocytes using GFP-LC3B-mitochondria colocalization. Our data
shown in Fig. 7 revealed that diallyl sulfide effectively ameliorated
Akt2 ablation-induced loss in the colocalization of GFP-LC3B and mi-
tochondria (labelled with MitoTracker Red), the effect of which was
negated by the NLRP3 activator nigericin.

3.6. Role of iNOS and mitochondrial ROS in Akt2 deletion-induced changes
in NLRP3

To determine the correlation among iNOS, mitochondrial O2
– pro-

duction and NLRP3 activation, levels of NLRP3 were examined in
murine cardiomyocytes fromWT and Akt2−/−mice incubated with or
without the iNOS inhibitor SEITU (1 μM) or the mitochondrial ROS
scavenger MitoQ (2 μM) for 6 h. Resulted shown in Fig. 8 revealed that
iNOS inhibition but not mitoQ negated Akt2 deletion-induced upregu-
lation of NLRP3. Neither inhibitor exerted any notable effect on the

levels of NLRP3 themselves.

4. Discussion

The salient findings from our study revealed that CYP2E1 inhibition
rescued against myocardial contractile dysfunction, intracellular Ca2+

mishandling, mitochondrial ultrastructural damage, deranged autop-
hagy and Pink1-Parkin-mediated mitophagy in Akt2−/− model of in-
sulin resistance. Our data observed elevated cardiomyocyte O2

– pro-
duction, upregulated levels of iNOS and NLRP3 along with unaltered
cardiac geometry (heart weight, size and cardiomyocyte cross-sectional
area) in Akt2−/− murine hearts, the effects of which were reversed or
significantly attenuated by diallyl sulfide, suggesting a possible role of
oxidative stress, iNOS and NLRP3 inflammasome in CYP2E1 inhibition-
elicited beneficial myocardial effect against insulin resistance.
Furthermore, our in vitro findings further validated a role of iNOS-
NLRP3 signaling cascades in Akt2−/− insulin resistance-elicited cardiac
anomalies. Taken together, these findings revealed, for the first time,
that Akt2 insufficiency may contribute to the development of metabolic
cardiomyopathy through a CYP2E1-mediated mechanism, indicating
the therapeutic potential of CYP2E1 in the management of metabolic
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cardiomyopathy.
Observations from our study revealed that prolonged Akt2 ablation

triggered insulin resistance, cardiac contractile anomalies (decreased
fractional shortening, peak shortening,± dL/dt, prolonged TPS and
TR90), intracellular Ca2+ derangement, and oxidative stress, in a
manner similar to our previous reports using Akt2−/− or sucrose-fed
insulin resistant models [31,34,43,44]. Akt2 knockout elicited cardiac
contractile dysfunction in the absence of overt change in cardiac geo-
metry (heart weight, size, resting cell length or cardiomyocyte cross-
sectional area), consistent with previous reports using the same or other
models of insulin resistance [31,34,44]. The intracellular Ca2+ results
indicated that cardiac mechanical anomalies in Akt2−/− mice may be
underscored by intracellular Ca2+ defects (decreased ΔFFI and delayed
intracellular Ca2+ decay), in line with the earlier notion of impaired
intracellular Ca2+ homeostasis in insulin resistance [9,31,34,44]. In our
hands, Akt2 ablation-induced insulin resistance provoked increased

CYP2E1 activity, expression of iNOS and NLRP3 as well as mitochon-
drial ultrastructural damage as evidenced by swollen mitochondria, loss
of sarcomere and myofilament array. Upregulation of iNOS is a
common denominator in insulin resistance and cardiovascular sequelae
[28]. Upregulation of iNOS is tied with increased mitochondrial da-
mage and ROS production [27,28], and more recently, with activation
of NLRP3 inflammasome [29,30]. Increase in iNOS is associated with
oxidative stress, macrophage recruitment, upregulated NLRP3 in-
flammasome, en route to obesity-associated adipose tissue inflamma-
tion [30].

Perhaps the most striking of findings from our study was that
CYP2E1 inhibition negated insulin resistance-induced myocardial,
cardiomyocyte contractile and intracellular Ca2+ defects, O2

– produc-
tion and mitochondrial damage. Our study suggested that CYP2E1 in-
hibition is capable of retarding or reversing the progression of insulin
resistance cardiomyopathy. Several mechanisms may contribute to the
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beneficial effects of diallyl sulfide against Akt2 knockout-induced me-
tabolic cardiomyopathy. First, diallyl sulfide may likely exert its ben-
eficial effects through alleviating O2

– production. CYP2E1 inhibition
was previously shown to resist alcohol intake-induced oxidative stress
and cardiac dysfunction [45]. Second, preserved autophagy, in parti-
cular, mitochondrial autophagy, may play an important role in
CYP2E1-offered cardioprotection in insulin resistance. Our data re-
vealed that Akt2 ablation suppressed protein markers for autophagy
and mitophagy including LC3B, Pink1, and Parkin as well as promoted

p62 accumulation as well as GFP-LC3B-mitochondria colocalization,
the effect of which was restored by diallyl sulfide. Insulin resistance has
been shown to compromise autophagy in the heart [9,46]. Deletion of
Atg7 in cardiac and skeletal muscles ameliorated exercise-induced
sensitization of insulin signaling, consolidating the role of autophagy in
insulin sensitivity [47]. Maintenance of mitochondrial homeostasis
through autophagy, in particular mitophagy, by way of removing aged
or damaged mitochondria govern mitochondrial function and insulin
sensitivity [48]. Our data revealed reduced O2

– production in Akt2−/−
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group following diallyl sulfide treatment, in line with preserved mito-
phagy and mitochondrial ultrastructure. Third, findings from our pre-
sent work revealed a role of NLRP3 inflammasome in Akt2 ablation-
and diallyl sulfide-induced mitophagy and mechanical responses in
cardiomyocytes. Activation of NLRP3 nullified diallyl sulfide-induced
protective actions against Akt2 ablation-induced unfavorable effects on
cardiac mitophagy (protein markers and GFP-LC3B-mitochondria co-
localization) and mechanical function, suggesting a permissive role of
NLRP3 in CYP2E1 inhibition-offered cardiac benefit. NLRP3 has
emerged as an unexpected marker of cardiometabolic stress and is
tightly controlled by mitophagy [49]. Our in vitro data convincingly
suggested that NLRP3 may also serve as an upstream regulator for
Parkin-mediated mitophagy and is regulated by iNOS but unlikely mi-
tochondrial ROS in Akt2−/− insulin resistance model. Our results re-
ceived support from a recent report using human mononuclear cells and
mouse macrophage cell line (J774) suggesting an iNOS-mediated reg-
ulation of NLRP3 [29]. Activation of NLRP3 has been shown to promote
mitochondrial damage through inhibiting mitophagy by way of cas-
pase-1 (a downstream target signal for NLRP3)-mediated proteolytic
cleavage of Parkin [50].

Experimental limitations: Our present study suffers from a number
of limitations. First and perhaps the foremost, diallyl sulfide may pro-
duce off-target (CYP2E1 inhibition) effects such as pleiotropic responses
involving Nrf2 regulation [22]. Use of other selective CYP2E1 inhibitors
will offer better understanding with regards to the effectiveness of
CYP2E1 in insulin resistance-induced cardiac anomalies. Next, although
DHE is routinely employed as preferred technique and sensor for in vitro
detection of superoxide (O2

−), the red fluorescence may also be

originated from products derived reactions other than the reaction of
O2

– with DHE including H2O2, ONOO¯, HOCl and the binding of nuclear
DNA with ethidium formed from a two-electron oxidation of DHE [51].

In summary, data from our study provided compelling evidence that
CYP2E1 inhibition using diallyl sulfide counteracts insulin resistance-
induced myocardial contractile anomalies, intracellular Ca2+ mis-
handling, oxidative stress, loss of autophagy and mitophagy, favoring a
role of cytochrome P450 in metabolic cardiomyopathy. CYP2E1 parti-
cipates in the metabolism of a number of small molecule substrates
including ethanol, drugs and carcinogens [52,53] and contributes to the
metabolic derangement in metabolic disorders [19–21]. However, how
CYP2E1 and other P450 isozymes are induced by pathological stimuli
such as insulin resistance, obesity and type 2 diabetes remains unclear,
further study is warranted to better elucidate the role of cytochrome
P450 and mitophagy in the onset and development of metabolic car-
diomyopathy.
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