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Taking advantage of a series of questions raised by an association of patients with mitochondrial disease, this
review, after a brief overview of basic concepts of mitochondrial bioenergetics and genetics, discusses the
pros and cons of a number of practical options in the field of mitochondrial therapy. This makes it clear that,
in contrast to the spectacular progress in our understanding of the biochemical and molecular bases of the

mitochondrial diseases defined restrictively as disorders due to defects in the mitochondrial respiratory
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chain, we are still extremely limited in our ability to treat these conditions. We finally discussed the emerging
genetic-based strategies that show some promise, even if much work remains to be done.

© 2008 Elsevier B.V. All rights reserved.

Considering that mitochondrial dysfunction may originate from
mutations in more than 1000 genes [1], from the deleterious effects of
many toxic compounds [2], and even occur spontaneously during
ageing [3], it is hardly surprising that human mitochondrial diseases
are much more frequent than previously thought [4]. They may be
mild or severe, static or progressive, early- or late-onset, tissue-
specific or multisystemic [5-7] (Fig. 1). Besides the numerous
potential pathogenic mechanisms, additional factors that determine
the clinical phenotypes of such these disorders include the type and
severity of each defect, and the types of cells or organs involved. As a
result, it is very difficult to review the many therapeutic challenges
posed by this heterogeneous group of diseases, essentially covering all
types of medical specialties. Even if we restrict the definition of
mitochondrial diseases to include only those due to defects of the
respiratory chain (RC) and oxidative phosphorylation (OXPHOS), we
are still faced with a considerable number of diseases.

Arguably the major function of mitochondria is to burn in the
flame of oxygen substrates derived from carbohydrates, proteins and
fats, thus providing ATP for the cell [8]. The transport of substrates and
cofactors into the mitochondrial matrix space is facilitated by various
carriers in the mitochondrial membranes (Fig. 2) [9]. Notably,
different cell types may have different proportions of matrix enzymes
and membrane carriers, which adapt them to the specific metabolic
demand of each organ [10]. Similarly, the dehydrogenases either
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belonging to the RC (complex I, succinate dehydrogenase) or feeding
into the RC (ETF, glyceraldehyde 3-phosphate dehydrogenase, etc;
Fig. 3A) vary from tissue to tissue, whereas the composition and
organization of the terminal cytochrome segment of the RC (from
complex III to IV) are much more conserved among tissues [11]. This
tissue-specific structural organization of the OXPHOS system can
predictably change the clinical consequences of a given defect in
different tissues. The assembly of RC complexes into higher molecular
weight entities, the so-called super-complexes [12], further compli-
cates the potential effects of any default in the OXPHOS pathway.
Finally, before considering therapeutic strategies, we should stress
that our knowledge of the functions of OXPHOS components is still
partial and that we might still discover additional and unpredictable
roles for these proteins (as in the case of cytochrome c, or the GRIM19
protein), or their substrates (such as tumor-triggering succinate) [13].

To this functional complexity corresponds the genetic complexity
of mitochondria (Fig. 3B) [1]. Hundreds of genes are necessary to build
the OXPHOS system, of which only a small subset is still entrapped in
the mitochondrial matrix. Many more - between 1500 and 2000 of
the 30,000 genes of a human cell - are necessary to build the whole
mitochondrion, and deleterious mutation in these genes may well
result in secondary OXPHOS dysfunction. Because of the dual origin
(nuclear or mitochondrial) of the RC components, all known types of
inheritance have been reported in affected families [14]. Mutations
affecting mtDNA are either sporadic or maternally inherited, with a
single exceptional (and partial) case of paternal inheritance. However,
Mendelian inheritance of mtDNA anomalies (deletions or depletion)
are due to mutations in nuclear genes encoding proteins involved in
mtDNA metabolism. Besides maternal inheritance, the hallmarks of
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Fig. 1. The many potential features associated with mitochondrial OXPHOS diseases. The multiple syndromes and organ deficits resulting from mitochondrial dysfunction can
be isolated or multi systemic, with early- or late-onset. CIPO, Chronic intestinal pseudoobstruction; GH, Growth hormone; MELAS, Mitochondrial encephalopathy, lactic acidosis, and
stroke-like episodes; MERRF, Myoclonic epilepsy and ragged-red fibers; MNGIE, Mitochondrial neurogastrointestinal encephalomyopathy; PEO, Progressive external

ophthalmoplegia. A, Lynen helix; B, Urea cycle; C, Krebs cycle; D, malate-aspartate shuttle.

mtDNA genetics include heteroplasmy, threshold effect, and mitotic
segregation, because cells are endowed with much more than one
mitochondrial genome (in fact, from 1000 to 1,000,000). When an
mtDNA mutation is present, a cell can harbor a mixed population of
normal and mutated mtDNA genomes (heteroplasmy) in various
proportions. If the mutation is pathogenic, a crucial minimum number
of mutated mtDNA is required to cause OXPHOS dysfunction (thresh-
old effect) [15]. As transmission of this mixed population to daughter
cell is random, the clinical phenotype resulting from varying
proportion of heteroplasmy may also shift between generations
(mitotic segregation).

It follows from the above considerations that mitochondrial
diseases can be classified on the basis of clinical presentation,
inheritance, or functional impairment. None of these categories are
very useful when considering therapy, since a) similar clinical
presentations may result from different biochemical and genetic
defects (e.g. Leigh syndrome); b) conversely, mutation in one and the
same gene can result in different diseases (e.g. BCS1L mutations); and
¢) biochemical defects of any RC complex can cause distinct diseases
(e.g. complex Il defect leading to encephalopathy or cancer). Given the
puzzling complexity and variability of mitochondrial diseases, treat-
ment strategies also require diversity and specificity, and it is
inconceivable that a single “magic bullet” could treat all mitochondrial
diseases.

Instead of reviewing all the different therapeutic strategies
(palliative, pharmacologic, genetic) available or under investigation,
we chose a more practical approach. Taking advantage of a set of
questions about real medical situations selected from a French
patient's association (Association contre les Maladies Mitochon-
driales; AMMi) catalog, and considering the future of therapy for

OXPHOS diseases, we will attempt to discuss some major issues
related to this topic.

1. Questions regarding present therapeutic approaches

1. Is Coenzyme Qo supplementation recommended in all mitochon-
drial diseases and under any circumstance?

What makes CoQqo so extremely popular in the treatment of
mitochondrial diseases is its well-documented safety, even at doses as
high as 2000 mg daily, and its dual role as a component of the RC and
as a potent reactive oxygen species (ROS) scavenger [16] (Fig. 4). Also
in favor of CoQ10 is experimental evidence from studies of
lymphocytes from 12 patients with diverse well-documented RC
defects before and after 12 months of supplementation with a
“cocktail” that included CoQqo (350 mg daily), L-carnitine, vitamin B
complex, vitamin C, and vitamin K; (Phylloquinone). [17] There was a
significant increase in ATP synthetic capacity in lymphocytes after
treatment, although none of the patients improved clinically.
Exposure of control lymphocytes in vitro to the various agents
showed that only CoQ;¢ increased ATP synthesis in a dose-dependent
manner.

There are numerous anecdotal reports of the beneficial effect of
CoQ,p in mitochondrial diseases, but a rigorous, placebo-controlled,
double-blind therapeutic trial is still missing (and sorely needed).
Standardized therapeutic trials of CoQ;o have been conducted or are
being conducted in neurodegenerative diseases, including Parkinson
disease (PD), Huntington disease (HD), and amyotrophic lateral
sclerosis (ALS), some of which suggested a trend towards improve-
ment, but none were clearly successful [18]. Not unexpectedly, the
results were generally more positive in patients with primary or even
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Fig. 2. An oversimplified scheme of the interactions between mitochondrial import and
export pathways, matrix metabolism and OXPHOS function. The products of lipid,
carbohydrate, and protein metabolism enter the mitochondria (top), are metabolized
through various interconnected catabolic pathways, and ultimately provide reduced
cofactors utilized by the electron transfer chain coupled to the ATPase to produce ATP
(bottom). Beside major mitochondria-associated metabolic pathways, i.e. the fatty acids
3-oxidation spiral (A), the urea cycle (B), the Krebs cycle (C), the malate-aspartate
shuttle (D), a number of individual reactions occur in the mitochondria, requiring a
battery of enzymes for the import and metabolism of substrates and cofactors. Several
membrane-associated proteins (in dark) have been found defective in various human
diseases. Finally, mitochondria also release important signal molecules, especially a set
of proteins recognized as cell death effectors. I, I, III, IV, V denote the various complexes
of the respiratory chain; ADP, ATP, adenosine di- and tri-phosphate; AIF, Apoptosis
Inducing Factor; CoA, coenzyme A; cyt, cytochrome; Fum, fumarate; o-KG, o-
ketoglutarate; Mal, malate; OAA, oxaloacetic acid; Succ, succinate; TIM, TOM,
Translocator of the inner and outer membranes; Tpp, thiamine pyrophosphate; UCP,
uncoupling protein; VDAC, voltage-dependent anion channel.

secondary CoQo deficiencies. For some patients with primary CoQ;g
deficiency, supplementation can be life-saving, but it should be tried
in all patients with decreased CoQ;o concentration in muscle, in whom
substantial improvement is generally observed [19-25].

A synthetic form of CoQy, called idebenone, penetrates the blood-
brain barrier more effectively and has been used in therapeutic trials
of Friedreich ataxia (FA) [26] (Fig. 4E, F). This autosomal recessive
disease can be considered a RC defect because the pathogenic
trinucleotide repeat in the frataxin gene impairs the non-heme iron-
sulfur (FeS) proteins that are part of complexes I, II, and IIl [27]. While
initial studies had suggested a beneficial effect of idebenone only on
the cardiopathic component of FA, a recent standardized study
showed a dose-related beneficial effect also on the neurological
component of FA [28].

To answer the question raised by the title of this subsection, our
empirical answer is that high doses of CoQ;o (30 mg/kg in children; at
least 600 mg daily in adults) should be tried in all patients with

mitochondrial diseases because it is harmless and more often than not
at least mildly beneficial.

2. How about other electron acceptors?

In a woman with exercise intolerance, mitochondrial myopathy
with ragged-red fibers (RRF) and complex Il deficiency (later
attributed to a mutation in the cyt b gene), two artificial electron
acceptors, menadiol diphosphate (40 mg daily) and vitamin C (4 g
daily) improved the clinical picture, as documented also by 31P-MRS
[29] However, the improvement was not sustained and other patients
with complex III deficiency myopathy failed to respond [30]. At this
point in time, no other electron acceptor possibly acting as a shunt in
the respiratory chain has proven safe and effective in patients with
mitochondrial diseases.

3. Is the ketogenic diet indicated for RC defects?

The ketogenic diet (KD) has been in use for many years in children
with seizures resistant to conventional antiepileptic drugs (AEDs), but
recently it has been advocated also for children with mitochondrial
diseases, in whom it has proven safe and largely effective [31]. The
mechanism of action of the KD is not clear, but evidence has been
provided that it increases brain energy metabolism by upregulating
mitochondrial biogenesis [32]; by increasing ATP and adenosine
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Fig. 3. The respiratory chain and its dual genetic origin. (A) schematic view of the
respiratory chain showing the organization of complexes I, Il and IV as a super-complex
(respirasome), and the various ubiquinone pools channeling electrons from the different
dehydrogenases to complex IIl. (B) Dual origin of respiratory chain components.
Numerals indicate components encoded by nuclear (left) or mitochondrial (right) genes
for each complex; c, cytochrome c; dark and white arrows indicate electron and proton
flows respectively; Ddh, dihydro-orotate dehydrogenase; ETF, Electron Transfer Protein;
G3Pdh, Glycerol 3-phosphate dehydrogenase; im, inner membrane; om, outer
membrane; UQ, ubiquinone; I-V, the various complexes of the respiratory chain.
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Fig. 4. What should be known on quinones and mitochondria. (A) Ubiquinone (UQ) is in large excess when compared to any other electron carrier of the respiratory chain. In a
functional respiratory chain, only a part of these quinones is usually reduced, depending on which dehydrogenase feeds electrons to the chain. (B) UQ is found in most cell
compartments, but is particularly enriched in Golgi, lysosomal, and mitochondrial membranes. UQ content also varies markedly among tissues and is highest in the heart [16].
(C) Depending on its redox status, UQ can act as a potent reducing agent (reduced form, quinol; right) or a pro-oxidant agent (semi reduced form, semi quinone; centre). The
hydrophobic reduced form possibly reacts with oxygen, lipoperoxide (LOO°) and tocopheryl (2a-TO°) radicals to give their respective reduced forms. The more hydrophilic semi
reduced form is highly unstable and reacts with oxygen and hydrogen peroxide to give highly reactive radicals. (D) Comparison the chemical structures of ubiquinone and idebenone.
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concentrations and neuron-glia interaction [33]; by inhibiting ROS
production [34]; and even by shifting the level of heteroplasmy in cell
cultures harboring single mtDNA deletions [35]. Because of this
heteroplasmic shifting observed in vitro, we are now planning to try
the ketogenic diet in patients with large-scale mtDNA deletions (KSS,
CPEO, PS).

4. [s creatine useful?

While CoQqo has been used extensively, other energy-boosting
compounds, such as creatine, have been less commonly employed.
Two randomized studies of creatine monohydrate supplementation
have arrived to different conclusions: a smaller cohort of severely
affected patients improved [36], whereas a larger cohort of less
severely affected patients did not [37].

A recent study has explored the effect of three compounds with
different mechanisms of action: increasing ATP production (CoQq
and creatine), scavenging ROS (CoQ;o and lipoic acid), and
providing alternative energy sources (creatine). A randomized,
double-blind, placebo-controlled, crossover study in 16 patients
with definite or probable mitochondrial diseases showed positive
results, including lower blood lactate and urinary 8-isoprostanes
and increased muscle strength [38]. Should all patients with
weakness be tried on creatine? Given the conflicting results of the
formal trials, it does not seem justified to prescribe creatine alone to
all weak patients, although it can be usefully associated with CoQqq
in selected patients.

5. Which drugs in clinical practice should be used with caution in
patients with RC defects?

Another practical question regards common drugs that may
interfere with mitochondrial metabolism or biogenesis and either
cause or exacerbate mitochondrial dysfunction. The most common
drug in this group is valproic acid, a very effective AED often
considered in children with Alpers syndrome, in whom, however, it
may cause a catastrophic worsening of the liver disease [39]. In
patients without POLG deficiency, valproate can be useful in
controlling seizure, but liver function should be carefully
monitored.

Other drugs to be used with caution are aminoglycoside anti-
biotics, which can cause hearing loss in individuals harboring the
A1555G mutation in the 12S rRNA gene of mtDNA [40,41]. If
aminoglycoside administration is required, it would be prudent to
exclude that the patients harbor the A1555G mutation. The problem of
antiretroviral drugs impairing mtDNA replication and causing symp-
tomatic mtDNA depletion is well known and has triggered surveil-
lance groups in many countries [42].

An unanswered problem regards anesthetics: on the one hand,
patients with mitochondrial diseases often require surgical interven-
tion (cochlear implantation; percutaneous endoscopic gastrostomy;
ear tubes placement; tracheotomy); on the other hand, they are
notoriously vulnerable to stress. Thus, both preoperative evaluation,
with special attention to cardiac function, and the choice of anesthesia
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(local vs general) and anesthetics (is propofol toxic to mitochondria?)
have to be carefully considered [43].

6. How do we fight lactic acidosis?

In fighting lactic acidosis (Fig. 5), administration of bicarbonate
is the first line of defense. However, on the long run, bicarbonate is
not effective and may actually exacerbate cerebral dysfunction. A
more specific lactic acid-lowering agent is dichloroacetate (DCA),
which acts by inhibiting pyruvate dehydrogenase (PDH) kinase, thus
keeping PDG in the dephosphorylated, active form and favoring
pyruvate metabolism and lactate oxidation [44]. Although treatment
of MELAS patients harboring the c.3243A>G had to be interrupted
because of peripheral nerve toxicity [45] and a demyelinating effect
of DCA has been documented in co-cultures of rat Schwann cells
and dorsal root ganglia [46], prolonged treatment of 36 young
children with lactic acidosis was considered well tolerated [47].
When is it crucial to treat lactic acidosis? Some pediatricians try to
quench even mildly increased blood lactic acid. This becomes
imperative when lactate levels surpass 10 mmol/I or blood CO, falls
below 20 mEq/l.

7. Is arginine effective in treating and preventing strokes in MELAS?

The pathogenesis of the “strokelike episodes” that characterize the
MELAS syndrome remains unclear, but probably involves both
vasogenic and cytotoxic edema. Altered endothelial function of brain
arterioles has been suggested long ago [48], by morphology and, more
recently, by serial brain imaging [49], and by flow-mediated
vasodilation (FMD) [50] and may explain the apparently beneficial
effect of L-arginine administration to patients both in the acute phase
and as a preventive measure [51,52]. Although our knowledge of
arginine metabolism is limited [53], there is little question on its role
in maintaining NO-mediated vasodilator tone. Unfortunately, the
beneficial effect of L-arginine has not yet been documented in a
standardized therapeutic trial and remains anecdotal.

8. How to handle anecdotal information on isolated cases or from
unofficial medical sources.

Anecdotal information has to be handled as interesting data
(especially if based on a convincing rationale) waiting for experi-
mental (e.g. double-blinded trial) confirmation. Non-medical data
have to be handled with extreme skepticism, both to prevent raising
false hopes among anguished parents and to prevent ruthless
commercial exploitation of what amounts to quackery. Case in point
is the recurrent inquiry on the part of parents about the efficacy
of hyperbaric therapy, which has never been proven effective and
which - if anything - raises concerns about being deleterious in children
with mitochondrial diseases.

9. Dealing with generally multisystemic diseases, does targeting one
organ, one system, or one function make any sense?

Although mitochondrial diseases, and especially those due to
mtDNA mutations, are often multisystemic, available best standard of
care has to be directed to individual affected tissues. Thus, seizures can
be controlled with AEDs (with due caution in employing valproic acid,
as discussed above); droopy eyelids (ptosis) can be alleviated by
frontalis suspension; neurosensory hearing loss can improve drama-
tically with cochlear implants; endocrine dysfunctions can benefit
from appropriate hormone replacement; cardiac block in Kearns-
Sayre syndrome (KSS) can be avoided with timely placement of a
pacemaker [18]. More controversial is single organ transplantation in
generalized diseases. Nonetheless, cardiac transplantation has been
employed successfully in some patients with mitochondrial diseases,
[54-57], and liver transplantation has been used in a few patients with
the hepatocerebral form of mtDNA depletion (usually due to
mutations in the DGUOK gene), who had severe liver failure but
relatively minor brain involvement [58-62]. Longer follow-up of
transplanted patients will be necessary to assess the value of this
intervention.

10. What is the role of artificial life support in mitochondrial
diseases?

Heroic measures to keep mitochondrial patients alive in the face of
life-threatening situations (infections; cardiorespiratory failure; liver
failure) have to be discussed with adult patients and their families and
with parents of pediatric patients well ahead of the crisis, explaining
to them that life might be prolonged for days, weeks, or even months,
but the disease is relentlessly progressive. This is exemplified by Leigh
syndrome, a devastating encephalomyopathy of infancy or childhood
with diverse etiologies, including pyruvate dehydrogenase complex
(PDHC) deficiency and a variety of RC defects. There is no effective
therapy for any form of LS and death rarely occurs later than 5 years of
age. It is important to stress that a decision of this magnitude has to be
weighed carefully on a case-to-case basis and with the full support of
the family.

11. Could some vaccines be dangerous, especially in young children?

The risk of vaccination in children with mitochondrial diseases has
taken center stage in the United States after the parents of a child with
autism and a purported - but not conclusively documented -
mitochondrial disease, were awarded compensation from the federal
government because autism was considered the consequence of
vaccination. This “cause céleébre” has probably encouraged a danger-
ous tendency on the part of parents to refuse vaccination for autistic
children and children with mitochondrial diseases [63]. While there is
evidence that autism may be related to mitochondrial dysfunction in
some cases [64], there is absolutely no evidence that vaccination
substantially worsens symptoms of mitochondrial diseases or causes
autistic traits to manifest. In fact, mitochondrial patients especially
need to be protected from infectious diseases that may run a
devastating course in energy-challenged individuals. The fear of
vaccination may be magnified by a recent report that low-hetero-
plasmy pathogenic mtDNA mutations are unexpectedly frequent
among the normal population [4].

12. Where can general information on safe practices be obtained?

Practical information can be obtained from patients advocate
groups, such as the United Mitochondrial Disease Foundation
(UMDF) in the United States. The UMDF has just published a
primer on mitochondrial diseases called “Mito 101", which tries to
answer most common concerns [65]. Increasingly, centers of
excellence in mitochondrial diseases and national or multinational
mitochondrial research consortia are appearing throughout the
world and are offering patients specialized diagnostic services and
state-of-the-art therapeutic support. We would strongly recommend
to patients who gather information from easily available websites to
check this information with that provided by the above mentioned
institutions.
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2. What next?

1. Faithful animal models: do they exist?

One of the most formidable problems of mitochondrial medicine
(and especially of “mitochondrial therapy”) has been the lack of
faithful animal models, at least for the mtDNA-related disorders. For
disorders due to nDNA mutations, there are steadily increasing
numbers of transgenic mice (both knockout and knockin) that more
or less faithfully recapitulate the human diseases, especially defects of
intergenomic signalling. Thus, knockout mice for the ANTI gene
develop mitochondrial myopathy [66]; two different knockin mice for
the TK2 gene caused mtDNA depletion but different clinical pheno-
types [67,68]; mice carrying heterozygous mutations in the OPA1 gene
show optic nerve pathology [69]; knockin mice for the PEO1 gene
show mitochondrial myopathy and respiratory dysfunction [70]; and
mice harbouring an error-prone version of the POLG gene (“mutator
mice”) accumulate mtDNA mutations and show dramatically pre-
mature aging [71]. There is at least one example of knockout mice for a
COX assembly gene, COX10, which develop a mitochondrial myopathy
[72].

Lately, the progressive ataxic phenotype of the Harlequin mouse —
a natural mutant due to a retroviral insertion in the first intron of the
Aif (Apoptosis Inducing Factor) gene [73] - has been ascribed to a
defective complex I activity [74]. Both disease progression and
phenotypic variability of the Harlequin mouse strongly resemble
that of human mitochondrial-complex I-deficiency syndromes,
including progressive cerebellar ataxia, optic atrophy, growth retarda-
tion, and, inconsistently, late-onset cardiac hypertrophy [75]. Thus,
the Harlequin mouse is a promising model in which to experiment
treatments for complex I deficiency syndromes. Targeting the NDUFS4
subunit of complex I also produced mice that exhibited several
features seen in patients with complex I deficiency [76]. However, the
severe enzyme defect in these mice causes death at 7 weeks of age and
does not allow the animals to express the extraordinary clinical
variability of the human disease.

Generating transmitochondrial mice is enormously more difficult
because nobody has found a way of putting DNA into mitochondria
[77,78]. The best transmitochondrial mouse was obtained through an
ingenious trick by Hayashi et al. [79]: these mice harbour and transmit
maternally large-scale mtDNA deletions and manifest mitochondrial
myopathy, growth retardation, and kidney failure.

2. When will gene therapy become available for mitochondrial
diseases?

Although gene therapy for mtDNA-related diseases has been
pursued with great fervour in many laboratories and has generated
numerous elegant papers, it is fair to say that most of this activity has
been confined to the bench and has had few bedside applications [80].
We think that the most viable of the many strategies proposed [18]
(Fig. 6) is heteroplasmic shifting towards wild-type mtDNA, in part
because clinical experience teaches us that a relatively small such shift
may suffice to lower the mutation load below the pathogenic
threshold. Many different approaches have been tried, but their
applicability to humans appears remote [81]. These include: (i)
inhibiting the replication of mutant mtDNA by selective hybridization
with nucleic acid derivatives (such as peptide nucleic acids, PNAs)
[82,83]; (ii) importation of yeast tRNA to replace mutated human
tRNA [84]; (iii) importation of wild-type polypeptides (either
allotopically or xenotopically expressed) into mitochondria to replace
mutated ones [85-88] or to complement faulty function [89,90]; (iv)
importing specific restriction endonucleases that cut mutated but not
wild-type mtDNA and act as “silver bullets” [91,92].

Potentially more applicable are pharmacological or dietary
approaches that would specifically inhibit mutated mitochondrial
genomes. For example, exposure of cybrid cell lines harbouring single
large-scale mtDNA deletions to ketone bodies in the culture medium
has resulted in a downward heteroplasmic shift [35]: as the ketogenic
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Fig. 6. Strategies for a future gene therapy of respiratory chain defects. (A) investigating
the ability of mitochondria to import exogenous DNA to be used by the mitochondrial
transcription/replication machinery [104]; (B) delivering cytosolic tRNA into mito-
chondria thanks to the expression of the Leishmania RNA import complex (RIC) [105];
(C) using the ability of mitochondria to import tRNAs that can complement for defective
ones [106]; (D) attaching mRNAs of interest to the mitochondrial outer membrane
through mitochondria-bound polyribosomes to boost the intramitochondrial location
of their translation products [88]; (E) expressing allotopic proteins whose functions
complement respiratory chain defects [81,107]; (F) boosting the expression of
mitochondrial genes thanks to PPAR ligands [101]; (G) providing antigenomic drugs
(PNA, peptide nucleic acid; CMCO:PNA, cell membrane crossing oligomers PNA
hybrids), such as peptides that could enter mitochondria and selectively impair the
replication of mutant mtDNA [80]; (H) targeting to mitochondria endonucleases that
would specifically recognize mutant mtDNA.

diet is already employed in pediatric neurology to control drug-
resistant epilepsy, this dietary regimen could be tried in patients with
KSS, PEO, or PS.

An even friendlier approach to gene shifting is exercise, but the
results are mixed. Aerobic (endurance) exercise has been shown to
improve quality of life, physiological features (peak work, Vo,max,
peak O, extraction) and biochemical features (muscle energetics as
reflected by 3'P-magnetic resonance spectroscopy, citrate synthase
activity, and COX activity) in muscle of patients with mitochondrial
diseases [93-95]. However, the effect on heteroplasmy is question-
able: one study showed an increase of the mutation load [93], another
showed stable heteroplasmy level of single large-scale mtDNA
deletions [95]; a third study by the same group showed greater levels
of oxidative stress during endurance training [96]. On the other hand,
resistance exercise promotes maturation and incorporation of satellite
cells, which, harboring lower mutation loads, shift heteroplasmy
towards the wild-type [97].

However, the efficacy and safety of resistance exercise in
mitochondrial patients remain to be fully assessed.

For Mendelian mitochondrial diseases, stem cell therapy offers real
promise. This is best illustrated by the success of allogeneic stem cell
transplantation (alloSCT) in one woman with MNGIE: her clinical
condition improved, TP activity reached heterozygous levels in the
buffy coat, blood levels of toxic compounds, thymidine and deoxyur-
idine, returned to normal, and nerve conduction velocities improved
[98]. Almost two years after alloSCT, she continues to improve.

Yet another approach to the therapy of Mendelian RC disorders
tries to imitate mother nature by promoting mitochondrial biogenesis
(and the residual activity of a defective enzyme). The key molecules
here are the peroxisome proliferator activated receptors (PPARs), a
family of ligand-modulated transcription factors that regulate gene
expression programs of metabolic pathways. Mitochondrial biogen-
esis is regulated by PPARY coactivator o (PGC-1at). The PPAR/PGC-1ax
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pathway is, in turn, activated by bezafibrate, a drug already used in
medicine. Initially, fibrates were used to document that fatty acid
oxidation (FAO) could be stimulated in cells with FAO defects, such as
carnitine palmitoyltransferase Il (CPT II) or very long-chain acyl-CoA
(VLCAD) dehydrogenase deficiency [99]. More interesting for us,
bezafibrate increased the activities of RC complexes both in normal
cultured cells and in cells with RC enzyme defects [100]. Similarly, in a
mouse with COX deficiency myopathy due to an engineered mutation
in the assembly gene COX10, treatment with bezafibrate increased
residual COX activity and ATP production in muscle and delayed both
the onset of myopathy and the time of death [101]. Because
bezafibrate has already been used in humans and is part of our
pharmacological armamentarium, it could be tested relatively rapidly
in patients with mitochondrial diseases.

An ethically controversial preventive approach to severe mtDNA-
related diseases is “ooplasmic transfer”. A woman carrying a mtDNA
mutation could have her fertilized oocytes “cleansed” in vitro of the
cytoplasm and, with it, of most of the mitochondria. The naked
pronucleus can then be transferred to a normal enucleated host oocyte
and implanted in the woman's uterus. If successful, the resulting
children would be mitochondrially normal while carrying all the
nuclear traits of both parents. Although partial replacement of the
cytoplasm of aged oocytes has been used to “rejuvenate” them and
improve the success of in vitro fertilization [102], there are strong
objections to a more thorough application of the same technique
[103], which offers the best hope for carriers of severe mtDNA
mutations of having “their own” normal progeny. Fortunately,
experimentation of ooplasmic transfer has been approved in the UK
and the results are awaited with great expectation.
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