
1

2Q4

3

4Q5

5

6

7
8
9
10

11
12
13
14
15
16
17
18
19

29

3031

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49Q6

50

51

52

53

Biochimica et Biophysica Acta xxx (2015) xxx–xxx

BBADIS-64247; No. of pages: 5; 4C:

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is
Review
The relevance of the storage of subunit c of ATP synthase in different
forms and models of Batten disease (NCLs)
FDavid N. Palmer ⁎
Molecular Biosciences, Faculty of Agriculture and Life Sciences, BARN, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
 O

⁎ Molecular Biosciences, Faculty of Agriculture and Life
Box 85084, Lincoln 7647, New Zealand.

E-mail address: david.palmer@lincoln.ac.nz.

http://dx.doi.org/10.1016/j.bbadis.2015.06.014
0925-4439/© 2015 Published by Elsevier B.V.

Please cite this article as: D.N. Palmer, The re
(NCLs), Biochim. Biophys. Acta (2015), http:
Oa b s t r a c t
a r t i c l e i n f o
E
20

21

22

23

24

25

26

27

28
Article history:
Received 25 May 2015
Accepted 14 June 2015
Available online xxxx

Keywords:
Neuronal ceroid lipofuscinoses
NCLs
ATP synthase
Subunit c
CLN
Storage body characterisation
Lysosomal storage disease
Protein storing disease
D
 P

R

The discoveries of specific protein storage in the NCLs, particularly of subunit c of ATP synthase in most, and the
sphingolipid activator proteins, SAPs or saposins A and D in CLN1, CLN10 and an unassigned form are reviewed.
The subunit c stored in the relevant NCLs is the complete mature molecule including an unusual modification
found only in animal species, trimethylation of its lysine-43. Because of its strongly hydrophobic and lipid-like
properties subunit c is easily overlooked or incorrectly described. This is becoming more of a problem as subunit
c is not detected in standard proteomic investigations. Methods are reviewed that allow its unequivocal charac-
terisation. Subunit c storage and cellular storage body accumulation do not cause the neuropathology character-
istic of these diseases. The function of the trimethyl group on lysine-43 of subunit c is considered, along with
some indications of where its normal turnover may be disrupted in the NCLs.

© 2015 Published by Elsevier B.V.
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1. Introduction

Mutations in 13 different genes have been described that lead to dif-
ferent forms of Batten disease (the neuronal ceroid lipofuscinoses,
NCLs), and there may be more, [NCL mutation database; http://www.
ucl.ac.uk/ncl, [1]]. These inherited, mainly childhood, fatal neurodegen-
erative diseases are grouped by the similarity of symptoms and pathol-
ogies. There are animal equivalents of many of these human diseases,
both naturally occurring and constructed by genetic manipulations of
mice. A defining feature shared in the NCLs is the accumulation of
fluorescent, electron dense, lysosome derived storage bodies in cells in
the brain, and in many other cells throughout the body. Historically
differences in the ultrastructure of these lysosome derived organelles
were used as the basis of classification. Despite these ultrastructural
differences, all NCLs share the common feature of storage of specific
proteins. Direct sequencing of storage body proteins established specific
storage of subunit c of mitochondrial F1F0 ATP synthase, first in South
Hampshire sheep with a CLN6 form [2–4], and extended to CLN2,
CLN3, CLN5, CLN6, CLN7 and CLN8 [8]. The identification of these
proteins and implications drawn from their storage are the subject of
this review.
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2. The identification of the specific proteins stored and other storage
body components

The initial work characterising subunit c as the stored molecule re-
lied on the use of automated N terminal Edman degradation of the
stored protein. The dominance of subunit c storage was established by
identification of the N-terminal 40 amino acids in the first sequencing
runs where total storage body proteins were loaded on the sequencer
[3]. This identified “the lipid binding subunit of ATP synthase”, the
name given in the database entry at the time. This is in fact the c subunit
of ATP synthase, or the dicyclohexylcarbodiimide reactive proteolipid,
routinely referred to as the DCCD-reactive proteolipid [9], and known
earlier as the mitochondrial proteolipid, and sometimes subunit 9.
Proteolipids were a new class of compounds discovered by Jordi Folch
andMarjorie Lees, being entirely polypeptides or sometimes with cova-
lently attached lipids, that are soluble in common lipid extraction
solvents, particularly chloroform/methanol mixtures [11]. Further se-
quencing studies showed that the complete and normal 75 amino acid
subunit c is stored, first in the CLN6 ovine and the human late infantile
and juvenile forms, and revealed no truncation of the complete protein
[4,6]. Western blotting and preliminary protein sequencing data also
confirmed subunit c storage in affected English Setter (CLN8),
Border Collie (CLN5) and Tibetan Terrier (ATP13A2, CLN12) dogs [12].
A comparison of the yield of the protein sequenced with the amount
of total storage body protein loaded onto the sequencer allowed an
estimate of the proportion that is subunit c. Over three quarters of the
nit c of ATP synthase in different forms and models of Batten disease
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t1:1Table 1
t1:2Edman degradation sequencing of storage body proteins from different forms of NCL. Q1

t1:3Dominant F0 subunit c
t1:4sequencea

DIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIGYARNPS. Q2

t1:5CLN3 mouse brain DIDTAAKFIGb

t1:6CLN6 mouse brain DIDTAAKFIGb

t1:7Cathepsin D mouse
t1:8brain

No dominant readable sequenceb

t1:9Border Collie brain DIDTAAKFIGAGAATV
t1:10Border Collie liver DIDTAAKFIGAGAATVGVAGSGA– – – TVFG– L
t1:11English Setter brain DIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIG – ARN
t1:12English Setter liver DIDTAAKFIGAGAATVGVAGS – A – IG – VFGSL-I – – ARNPS
t1:13Tibetan Terrier brain DIDT – AKFIGAGAA – V
t1:14Second minor
t1:15sequences found
t1:16CLN6 mouse brain APEY(A)IF
t1:17CLN3 mouse brain APE
t1:18Dog V0c sequencec,d GPEY(A)SF(F)AVM(G)(A)SAAMVF.. Q3
t1:19Border Collie braind GPEY(A)S – (F)
t1:20Border Collie liverd GPEY(A)SF(F)AVM
t1:21English Setter braind GPEY(A)SF(F) – VM
t1:22English Setter liverd GPEY(A)SF(F)AVM
t1:23Tibetan Terrier braind GPEY(A)SF(F)AVM

t1:24a Identical for all mammals, including trimethylation of lysine-43 [35].
t1:25b Sequence only determined for the first 10 cycles.
t1:26c Inferred from the genomic sequence for the dog ATP6VO gene.
t1:27d Amino acids in brackets are those where the ATP synthase c subunit and the vacuolar
t1:28ATPase c subunit have the same residue.
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protein or half the storage body mass was determined to be subunit c
this way, initially in the CLN6 affected sheep and CLN5 affected cattle
[13–15]. These results agreed with the proportion of protein that was
ether precipitated as proteolipid after chloroform/methanol extraction.
The readability of the sequences extended up to 43 amino acids, the se-
quence being relatively free of interfering signals indicating a high level
of purity. This was complemented by the dominance of the subunit c in
proteins on polyacrylamide gel electrophoresis (PAGE) of total storage
body proteins, visualised by a silver stain developed to detect this
Coomassie blue insensitive protein, and compared with Western blots.

Lipids comprised approximately one third of the storage body mass
and were determined as normal lysosomal components, augmented by
the storage of a number of isoprenoids normally stored in lysosomes,
there was no indication of any loss of polyunsaturated fatty acids to
lipid peroxidation and themetals stored reflected normal metal metab-
olism [16–18]. No intrinsic fluorophorwas found and it has been shown
that the fluorescence (also referred to as autofluorescence) is an
aggregate property of non-fluorescent protein and lipids. When
these non-fluorescent protein and lipid molecules were combined, re-
markably storage body like structures were created, that fluoresced
stronglywhen irradiated at the characteristic storage bodywavelengths
[17,19,20].

These techniqueswere used to establish that lysosomal proteins, the
sphingolipid activator proteins (SAPs or saposins) A and D, not F1F0 ATP
synthase subunit c, were the major storage body components in the in-
fantile CLN1 form [21] a form inMiniature Schnauzer dogs [22], and in a
CLN4/DNAJC5 Parry disease form [23,24]. Subunit c was also not stored
in ovine and human NCLs caused by cathepsin D deficiency [25,26].
These forms differ from other NCLs by sharing a granular ultrastructure
of the storage material, often referred to as granular osmiophilic de-
posits or GRODs, whereas the subunit c storing forms are characterised
by the accumulation of curvilinear and/or fingerprint membranous
profiles.

Storage of subunit c has also been inferred from immunohistochem-
ical staining in a large number of cases, including CLNs 2,3,5,6,7, 8 and
11 [28]. In general results agree with protein sequencing studies but
this technique provides results that are not as unequivocal, immunohis-
tochemistry being a qualitative technique where even a minor amount
of stored subunit c may give a strong signal. Furthermore the storage of
subunit c is generalised in the NCLs, occurring in many cell types
throughout thenervous systemaswell asmany visceral tissues. Because
of this generalised storage a case has been made to drop “neuronal”
from the name, preferring instead “generalised ceroid-lipofuscinoses”
or just “ceroid-lipofuscinoses,” particularly in a veterinary pathology
context. This avoids the confusion caused by the storage of some sub-
unit c containing organelles in neurons in specific brain regions in
some other lysosomal storage diseases that are clearly not NCLs, for
instance in a mouse model of mucopolysaccharidosis IIIB [28]. This
confusion has led to the mistaken conclusion that subunit c storage is
not specific to the NCLs [29].

3. Additional Edman sequencing

Table 1 summarises unpublished results of sequencing studies of
storage bodies isolated from animal models, performedwhile automat-
ed Edmandegradationwas still widely used. Storage bodieswere isolat-
ed from various tissues by centrifugation following homogenisation
of the tissues as described [3,6,16,30], total storage body proteins
dissolved in 100% formic acid and loaded onto ABI automated Edman
degradation protein sequencers and the major N-terminal sequences
determined.

These results confirm F0 subunit c storage in CLN3 affectedmice [31],
nclf CLN6 affected mice [32], CLN5 affected Border Collies [33], CLN8 af-
fected English Setters [34] and CLN12 (ATP13A2) affected Tibetan Ter-
riers [35]. The Tibetan Terrier result contradicts a claim that glial
fibrillary protein (GFAP) and histone H4 accumulate in this disease
Please cite this article as: D.N. Palmer, The relevance of the storage of sub
(NCLs), Biochim. Biophys. Acta (2015), http://dx.doi.org/10.1016/j.bbadis
E
D[36]. However, as has been pointed out, this apparent accumulation is

more likely to have arisen from contamination in the storage body prep-
arations, theGFAP coming from the astrocytosis associatedwith the dis-
ease rather than being intrinsic to storage bodies [37]. Furthermore the
gel fromwhich the protein bands were cut for sequencing [36] does not
include the low molecular weight region where subunit c would
migrate.

ATP synthase is a complex of 16 different polypeptides, a number of
them in multiple copies, including eight c subunits in animals [38]. No
other components of the ATP synthase complex were found in these
experiments and the subunit c sequence was not determinable in
attempted mixed sequencing of inner mitochondrial membrane pro-
teins, so these results cannot be an artefact of inner mitochondrial
membrane contamination of the storage body isolates. The amount of
the subunit sequenced and the clarity of the sequence, in line with se-
quence determinations of purified proteins, indicate little or no storage
of othermitochondrial ATPase subunits, or of any other innermitochon-
drial proteins, also indicated by a comparison of PAGE of storage bodies
and purified ATP synthase [4].

A second readable minor sequencewas often found, being the N ter-
minus of the V1V0 vacuolar ATPase subunit C (Table 1). This protein is
homologous with a double copy of the mature mitochondrial F0c sub-
unit, and resides in the endosome–lysosome membrane as part of the
proton pumping V1V0 vacuolar ATPase. Others have reported it to be a
major storage body component in so-called “mnd” CLN8 affected mice
[7,39]. Varying amounts have also been found in some human, canine
and ovine storage body isolates [36]. These results suggest that the
NCLs involve lesions in some common turnover pathway of both mito-
chondrial ATP synthase c and V0 vacuolar ATPase C subunits [36].
However it is not certain that this vacuolar C subunit is an intrinsic
storage body component, and it is entirely possible that it arises from
lysosomal–endosomal membrane fragments co-sedimenting with the
storage bodies during the isolation procedure. Vacuolar membranes
are rich in this molecule, acidifying capacity being regulated by the
binding of the V1 segment of the complex to it [40].

SAPs A andD have also beendetected in subunit c containing storage
body isolates, but not to the same extent as the accumulation in the
CLN1, CLN10 and unassigned Miniature Schnauzer forms [19,22,30].
unit c of ATP synthase in different forms and models of Batten disease
.2015.06.014
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Again it is likely that this minor amount results from the presence of
normal lysosomal components in the storage bodies, reflective of their
lysosomal origin.

4. Subunit c storage, lipofuscin, “universal” proteomics and the
biochemical lesions in the NCLs

Despite the robustness of these results they have not been universal-
ly accepted and numbers of papers and authoritative texts still refer to
the storage material as the fluorescent product of lipid peroxidation
cross-linked to proteins, or claim that it is not known. These claims
are driven by dogma, not experimental investigations. The dogma arises
from experiments in which various proteins and lipid peroxidation
productswere heated together to form lipofuscin likefluorescent aggre-
gates [41,42], but are not supported by good structural studies of
lipofuscin itself. As indicated above the storage bodies contain no such
fluorescent compounds, their fluorescence being an aggregate property
of non-fluorescent compounds [17,19,20].

There is another difficulty. Unfortunately subunit c will not be de-
tected in many modern “universal” proteomic methods. Automated
Edmandegradation is nowunusual, having been replaced bymass spec-
tral methods of protein sequencing and analysis. Detecting subunit c by
these methods is not straight forward. Special techniques are required
for chromatographic isolation and mass spectral detection [43,44].
Trypsin does not cleave F0 subunit c separated by polyacrylamide gel
electrophoresis and chymotryptic digestion is required to provide frag-
ments for LC-MS verification of lysine-43 trimethylation [38]. Subunit c
also has a high propensity to irreversibly aggregate prior to gel electro-
phoresis, is insoluble in many solvents routinely used in protein analy-
ses and is insensitive to Coomassie blue staining. For all these reasons
the presence of subunit c can be overlooked in proteomic investigations
and thus its storage in NCL samples can, and has been, overlooked. Un-
fortunately storage material in some of the more recently described
NCLs is also ascribed to heterogeneous peroxidative linking of sugars,
proteins and lipids with no rationale other than dogma, as in CLN1l as-
sociated with a mutation in the progranulin locus [45], this is in spite of
positive subunit c immunohistochemistry [46].

5. Storage body accumulation does not cause the neuropathology

There is a longstanding paradigm in the lysosomal storage diseases
that the storage material itself is the cause of the pathology, either be-
cause of its toxic nature or because it somehow blocks normal cell func-
tion. This is often used in the failed “rubbish disposal” portrayal of
pathogenesis. There is no evidence of this in the subunit c storing
NCLs. Subunit c containing storage bodies accumulate in most cells in
most tissues, without any suggestion of tissue or organ failure or disrup-
tions of cellular functions [47]. Evenwithin the brain the pattern of stor-
age body accumulation is independent on the progressive regional
atrophy. For instance careful longitudinal studies of neuropathological
changes in brains from presymptomatic sheep affected with a CLN6
ovine form showed that astrocytic activation and progressive transfor-
mation of microglia to brain macrophages started regionally, preceded
neurodegeneration and spread to different cortical areas, most promi-
nently regions associated with clinical symptoms [48]. In contrast, stor-
age body accumulation was much more evenly spread across regions,
indicating that neurodegeneration and storage body accumulation are
independent manifestations of CLN6 mutation. Whereas storage body
accumulation in the cerebellum of these sheep is similar to cortical ac-
cumulation the cerebellum remains virtually unchanged even at end-
stage disease. There was no correlation between disease-related chang-
es and the presence of storage bodies in thalamus and hypothalamus of
these sheep, where storage bodies were abundant but there was no
neurodegeneration or signs of activated astrocytes or microglia [49].
Unfortunately this failed rubbish disposal analogy is often used in lay
Please cite this article as: D.N. Palmer, The relevance of the storage of subu
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explanations in an allusion that it will aid understanding when in fact
it has the opposite effect.

6. The biochemical lesion

A longstanding paradigm in lysosomal diseases, arising from
Garrod's insights on the nature of in-born errors of metabolism [50] is
that the nature of the storagematerial should directly reflect the under-
lying enzyme, interpreted to mean that it should be a substrate of the
missing enzyme activity. Traditionally this has been a partially degraded
macromolecule but careful mass spectral characterisation of subunit c
has shown that the complete and normal subunit is stored [44], includ-
ing trimethylation of lysine-43 and cleavage of the lead sequence,
strongly indicating that the stored protein has been processed through
mitochondria prior to accumulation in lysosomes, but has been subject-
ed to nodegradation.One scenario thatwouldfitwithGarrod's proposal
is that subunit c storing NCL genes function in a subunit c turnover
pathway, an essential step of which is de-methylation of lysine-43.
Further studies of the role of methylation of lysine-43 of the c-subunit
of F-ATPases would be greatly aided by the identification of themodify-
ing enzyme.

The biology and structure of the F0c subunits supplies some clues as
to why it may be stored in these NCLs. Recent studies have confirmed
that the sequence of subunit c is very highly conserved in all metazoans
(Animalia) both vertebrate and non-vertebrate, including absolute
conservation of trimethylation of lysine-43 and three alanines, in the
N-terminal α-helix at positions 13, 19 and 23 [38]. This highly con-
served mature protein segment is in contrast to other areas of the
gene product which are much less conserved, including the lead se-
quences in nuclear encoded subunit c, which guide the gene product
to the mitochondria for import and are cleaved off in the process. Pre-
cursors of the human and bovine c-subunits, for example, are each
encoded by three nuclear genes [51,52]. In each case, the products differ
in the sequences of theN-terminal extensions that direct the proteins to
the matrix of the mitochondria, but removal of the import sequences
during the import process produces identical mature c-proteins.

Studies have shown that conservation of these residues in mature
metazoan subunit c is critical to the way the subunit c interacts with
cardiolipin in the innermitochondrial membrane and allows an insulat-
ed c-rotor driving ATP synthesis made up of only 8 c subunits [53]. Re-
placement of the critical alanines by amino acids with larger side
chainswould destabilize the ring, and such residues can only be accom-
modated in the larger c-rings, such as those found in fungi and
eubacteria. Replacement of these alanines by glycineswould abolish hy-
drophobic packing interactions that contribute to the ring's stability.

Each complete rotation of the rotor produces three ATP molecules,
one from each of the three catalytic sites in the F1-domain [54], and re-
quires the translocation through the membrane of one proton per c-
subunit [53]. Thus, the number of translocated protons required to
make each ATP is the number of c-subunits comprising the ring divided
by three, a parameter referred to as the “energy cost” for making each
ATP molecule [53]. The identity, or near identity, of the sequences of
vertebrate c-subunits makes it highly likely that the c8-rings observed
in the bovine enzyme will persist throughout vertebrate F-ATPases,
and hence the energy cost in their F-ATPases will be 2.7 translocated
protons per ATP, the lowest value so far observed [38].

Trimethylation of the conserved lysine is restricted to Animalia and
does not occur in species from the other kingdoms. The sequences
of c-subunits from representatives of other opisthokont kingdoms
(choanoflagellates, filasterea, icthyosporea and fungi) show that
lysine-43 is conserved except in the fungus, Pichia angusta, where an ar-
ginine residue is substituted. However, in the two cases where the
methylation status of the conserved lysine has been investigated,
Saccharomyces cervisiae and Yarrowia lipolytica, it is not methylated
[38]. Also, the three alanines in the N-terminal α-helix that are con-
served in metazoans are frequently mutated to amino acids with large
nit c of ATP synthase in different forms and models of Batten disease
2015.06.014
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side chains in non-metazoans. It is of interest that no accumulation of
subunit c has been reported in yeast models of NCLs, where causative
gene homologs have beenmutated. This fits with the idea that demeth-
ylation of lysine-43 is a critical step in subunit c turnover, and that this
process is somehow perturbed in the subunit c storing forms of NCL. It
also indicates limits as to what should be deduced from yeast or other
non-metazoan models of NCLs.

Further studies of the role of methylation of lysine-43 of the c-
subunit of F-ATPases and the NCLs would be greatly aided by the iden-
tification of the modifying enzyme(s). Until the recent reports of the
first arginine and lysine methyltransferases found in the matrix of
human mitochondria [55,56], it was not known whether such enzymes
are associated with the mitochondrial matrix. In the case of the c-
subunits in porifera, there can be little if any doubt that themethylation
of subunit c is an event that takes place in the mitochondrial matrix as
the sponge c-subunits are the products of the mitochondrial genomes
[57], in contrast to other metazoans where the c-subunit is encoded
by nuclear genes. Critical demethylation could be a mitochondrial,
autophagic, endosomal or lysosomal event and the family of subunit c
storing NCLs may be linked by lesions along this pathway.
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