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Animal models have been used for decades in the Alzheimer's disease (AD) research field and have been cru-
cial for the advancement of our understanding of the disease. Most models are based on familial AD muta-
tions of genes involved in the amyloidogenic process, such as the amyloid precursor protein (APP) and
presenilin 1 (PS1). Some models also incorporate mutations in tau (MAPT) known to cause frontotemporal
dementia, a neurodegenerative disease that shares some elements of neuropathology with AD. While these
models are complex, they fail to display pathology that perfectly recapitulates that of the human disease.
Unfortunately, this level of pre-existing complexity creates a barrier to the further modification and improve-
ment of these models. However, as the efficacy and safety of viral vectors improves, their use as an alternative
to germline genetic modification is becoming a widely used research tool. In this review we discuss how this
approach can be used to better utilize common mouse models in AD research. This article is part of a Special
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1. Introduction

Alzheimer's disease (AD) is the most common neurodegenerative
disease associated with age-related cognitive dysfunction [1]. There is
currently no cure for AD, and treatment regimens only partially mask
the symptoms while the disease progresses within the brain. AD is
always fatal, with death often a result of infections or complications
many patients acquire while bed ridden, such as pneumonia or cardiac
arrest [2]. As both the average human lifespan and the global population
continue to increase, diseases associated with aging are becoming a
greater burden on society [3]. Over 5.4 million people in the United
States currently suffer from the condition, and this number is
expected to double in the next 20 years. Worldwide, it is believed
that as many as 35.6 million individuals suffer from AD. It is expected
that the cost associated with AD will approach 200 billion dollars in
2012 in the United States alone and could reach 1.1 trillion dollars by
the year 2050 [3].

There has been substantial effort placed into developing animal
models as a means to better understand AD and its underlying pa-
thologies. There are two broad forms of AD, familial or early-onset
AD (FAD) and sporadic or late-onset AD (LAD). FAD results from
point mutations in genes directly related to the production of the
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amyloid-B (AR) peptide, such as the amyloid-> precursor protein
(APP) [4,5] or presenilin-1 (PS1) [6]. Although LAD has some degree
of heritability, the strongest elements of risk stem from aging, envi-
ronmental factors and commonly inherited alleles of AD associated
genes [7]. A majority of the models created to study AD have involved
overexpressing mutant proteins that were first discovered in FAD [8].
The discovery and exploration of these mutations has led to a variety
of animal models, which have led to a better understanding of AD
pathogenesis.

Most mouse models are typically created by microinjecting com-
plementary DNA (cDNA), containing a transgene of interest into the
pronuclei of a large number of zygotes [9]. Resulting embryos are
then implanted into pseudopregnant dams for normal gestation.
Producing gene targeted mice is a more involved process, although
knock-out lines for most genes in the mouse are now available
(https://www.komp.org/). Creating a simple modification to the
mouse genome is relatively routine, although generating viable an-
imals can take many attempts, and still consumes a significant
amount of resources. After the initial genetic modification is made,
anew mouse line can be crossed into a pre-existing line that already
displays one or more other aspects of the disease pathology. Hence,
given sufficient time and funding, one could build increasingly com-
plex models of the disease.

Despite many concerted attempts, none of our existing mouse models
are perfect surrogates for AD. This does not mean that these models are
without merit. Through the use of mouse models, many of the underlying
mechanisms that drive AD pathology and neurodegeneration have been
elucidated. Most, but not all, models overexpress proteins involved with
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the disease [3,10]. Some models have predominantly amyloid pathology,
others tau pathology, and a few have both. However, for many investiga-
tors, the complex interactions between AD and other genetic factors are
becoming the main focus of their research. This creates a serious logis-
tical problem. Our pre-existing mouse models are already complex,
and often involve multiple genetic modifications to reasonably mimic
AD neuropathology. As a simple example, consider a situation with a
mouse line harboring mutations in three AD associated genes, APP,
PS1 and MAPT. If these genes assort independently, and wild type litter-
mate controls are needed for an experiment, then a basic husbandry
scheme will only generate about 3% usable animals. Although there
are ways that this can be streamlined in practice, three germline modi-
fications represent the practical upper limit as to what can be accom-
modated in a modern laboratory. Therefore, to advance the field in
new directions, and incorporate the influence of novel genetic factors,
we will need to use a different approach. As the efficacy and safety of
viral vectors improves, their use as an alternative to the direct modifica-
tion of the mouse germline is currently the best option for investigators
to better study the complex disease mechanisms involved in AD. In this
short review, we discuss how this approach can be taken advantage of
to better utilize common mouse models in AD research.

2. Hallmarks of AD

AD neuropathology is characterized by two hallmarks: plaques
(either diffuse or neuritic) comprised of the AP peptide, and neurofi-
brillary tangles (NFTs) comprised of hyper-phosphorylated tau in the
hippocampus and other cortical regions [1].

2.1. Amyloid pathology

The AP peptide is formed when APP (a membrane protein with 4
isoforms ranging from 695 to 770 amino acids in length) [11], is
cleaved by two enzymatic activities. Under non-amyloidogenic con-
ditions, a-secretase cleaves APP within the AP region, followed by
y-secretase cleavage, producing the APP intracellular domain (AICD),
the soluble APP fragment o (sAPPa), and the p3 fragment [12]. In the
amyloidogenic pathway APP is first cleaved by -secretase. This is again
followed by ~y-secretase cleavage, releasing the AICD, sAPPP, and the AR
peptide (Fig. 1) [13]. AP peptides are 36-43 amino acids long, the most
common being AP4, Which represents about 80% of the total pool. A
less common (<10%) form of the peptide, AR, is considered to be
more pathogenic, having a high tendency to aggregate [14,15]. Aggrega-
tion creates oligomers, fibrils, filaments and, ultimately, plaques [16].
These plaques form in the cortex and hippocampus [17], and the neuritic
form is surrounded by dystrophic neurites and activated glia [18], and
are likely an ongoing source of neuroinflammation [19,20]. Although
plaques are directly connected to the disease process, recent evidence
suggests that diffusible AP oligomers may play a greater role in driving
neurodegeneration [21,22].

Under normal conditions, ~90% of APP processing is performed with-
in the non-amyloidogenic pathway and ~10% by the amyloidogenic
pathway [23]. It is not known what causes the shift to increased APP pro-
cessing by the amyloidogenic pathway in AD [24]. One hypothesis
suggests that increased cholesterol levels result in lipid raft formation,
which has been suggested to be the physiological site of 3-secretase
and y-secretase activity [25-27]. p-Secretase is the rate-limiting step
in AP generation and [(-secretase levels are thought to increase
throughout the progression of AD [23,28]. In other cases, mutations in
AD related proteins (APP, PS1, PS2); which are typical in cases of FAD,
can enhance AP generation by increasing available substrate and prefer-
ential cleavage sites of APP [8,29,30]. Other findings point to a decrease
in AP clearance in the brain, resulting in a gradual accumulation during
aging [31].

2.2. Tau pathology

It is likely that a major portion of the neurodegeneration observed
in AD and other tauopathies, diseases involving the pathological aggre-
gation of the tau protein, results from tau pathology. For example, the
number of NFTs correlates with clinical disease severity [32,33]. The
amyloid cascade hypothesis suggests tangle formation is driven at
some level by AP [34-38]. This hypothesis suggests that AP is the caus-
ative factor in AD pathology, resulting in alterations in the equilibrium
of tau phosphorylation and dephosphorylation, ultimately leading to
tangle formation, neuronal dysfunction, and cell death [38-40] (Fig. 3).

Tau is a microtubule-stabilizing protein present in the cytoplasm of
axons but generally absent in the dendrites [41]. Tau acts on tubulin to
promote polymerization of the microtubule, paving the way for axonal
transport [42]. The MAPT gene, which encodes the tau protein, resides
on chromosome 17 and is comprised of 16 exons [43]. MAPT has four
domains: N-terminal, C-terminal, microtubule binding domain (MBD),
and a proline-rich domain [44,45]. The N-terminal and MBD regions
are alternatively spliced to include or exclude exons 2, 3 and 10, resulting
in 6 possible isoforms of the tau protein [46]. The resulting isoforms con-
tain either 3 or 4 microtubule binding domains (3R and 4R respectively)
and contain 0, 1 or 2 N-terminal domains (ON, 1N or 2N respectively)
separated by a proline rich domain [47]. MAPT also contains two
haplogroups, H1 and H2, where increased H1 levels correlate with
an increased risk of tauopathy [47].

The tau protein undergoes a variety of post-translational modifi-
cations [48-50], including cross-linking [51], glycosylation [52], nitra-
tion [53], and phosphorylation [54]. The large number of modifications
suggests that tau is highly-regulated by complex pathways. The pri-
mary cause of tau dysfunction is due to phosphorylation of tau by
enzymes such as GSK3( [55], AKT [56], or CDK5 [57], along with many
other kinases [47,58]. Phosphorylation of tau occurs at approximately
45 sites, at serine and threonine residues [59-61]. The MBDs of tau con-
fer a positive charge to the protein, allowing it to stably bind the nega-
tively charged microtubules [43]. In the disease state tau becomes
hyperphosphorylated, resulting in the neutralization of its net positive
charge (Fig. 2). This causes tau to dissociate from the microtubules
and aggregate to form paired helical filaments (PHFs) with other hyper-
phosphorylated tau molecules [60,62,63]. Upon the dissociation of tau,
the microtubule network becomes destabilized and axonal transport
may be disrupted [64]. Over time, PHFs will accumulate to form neuro-
fibrillary tangles, primarily in pyramidal neurons [65].

3. Viral transgenesis

Viral gene therapy was once thought to be the pinnacle for the
treatment of diseases and the future of medicine [66]. Unfortunately,
the safety of such technologies was brought into question after the
fatality of a patient in a clinical trial using adenoviral vectors [67].
Although the future of therapeutic gene delivery is still debatable, the
use of viral vectors to alter gene expression in animals has expanded
significantly. It is through viral transgenesis that existing AD mouse
models can be better utilized, reducing monetary cost and time invest-
ment as well as allowing rapid, large scale screens of potentially AD relat-
ed genes. Adenoviruses have been useful tools in some fields due to their
high efficiency and ease of production, but offer only transient expression
and can trigger a significant immune response, reducing their use in brain
research [68-71]. Despite a large field of useful viruses, there are now two
main viral technologies used in somatic transgenesis: lentivirus and
adeno-associated virus (AAV). Here we will provide a brief overview on
the benefits of each.

3.1. Lentiviruses

Lentiviruses have become popular in somatic gene modification
due to their ability to integrate transgenes into the host genome,
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Fig. 1. APP processing and generation of toxic beta-amyloid. APP is a transmembrane protein which can be processed by either the non-amyloidogenic or amyloidogenic pathways.
Upper panel: During non-amyloidogenic processing, an enzymatic activity called a-secretase cleaves APP (1) to generate a soluble N-terminal fragment (SAPPa) and an 83 amino
acid C-terminal fragment (C83). Next, the y-secretase complex (2), with PS1 acting as the catalytic subunit, cleaves the C83 fragment within the transmembrane domain, releasing a
secreted peptide known as P3. Lower panel: In amyloidogenic processing, an enzymatic activity called 3-secretase (1) cleaves APP to generate different soluble N-terminal (SAPP[3)
and C-terminal (C99) fragments. Cleavage of the C99 fragment by <y-secretase (2) results in the generation of the AP peptide. Processing of APP in either pathway results in the
production of an APP intracellular domain (AICD) with poorly defined function.
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Fig. 2. Tau hyperphosphorylation leads to neurodegeneration. Tau is a cytosolic microtubule stabilizing protein. When tau is hyperphosphorylated, there is an increased tendency
for the formation of higher order structures, such as oligomers, filaments, and toxic NFTs.
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Fig. 3. A simplified overview of the amyloid cascade hypothesis. One version of the
amyloid cascade hypothesis proposes that the increase in AR biosynthesis, resulting
from alterations in APP processing, drives AD pathogenesis. Aggregation of AP results
in the formation of neuritic plaques, increased oxidative stress, and NFT formation,
resulting in neurodegeneration. Other variations are possible. For example, altered
clearance of AP likely plays a significant role in disease progression.

resulting in long lasting expression. From the Retroviridae family,
these enveloped retroviruses utilize single-stranded RNA to transfer
genetic material and encode for reverse transcriptase and integrase
in order to integrate into host cells [72]. It is the ability of lentiviruses
to transduce non-dividing cells which make them a popular tool for
somatic brain transgenesis, as cells such as neurons are mitotically in-
active [73]. They also offer high transduction efficiencies in many cell
types, and display long-lasting transgene expression, due to genomic
integration [74]. Despite the ability of lentiviruses to integrate into
the host's genome, expression does not always follow. Many early
lentivirally-transduced animals would lack transgene expression
due to the host's antiviral immune response [75]. Upon integration
into the host genome, border regions between host and transgene se-
quences become methylated [76]. This methylation, which silences
gene expression, is a part of the cell's own innate immune response,
due to the detection of viral promoter and enhancer regions along these
border regions. Modern lentivirus systems avoid this gene silencing

mechanism by having portions of their 3’ long-terminal repeats deleted,
characterizing these viruses as self-inactivating [77-79]. In addition, mod-
ern lentiviruses have been pseudotyped to express mixed virions by com-
bining different retroviral systems, resulting in lentiviral systems which
can effectively transduce many different cell types [80]. These recent
advancements in lentiviral technology make them an advantageous
system to use in somatic transgenesis.

One major drawback to lentiviral systems is that some are derived
from viruses which infect humans such as the human immunodefi-
ciency virus (HIV) which raises concerns about potential adverse ef-
fects which may result from accidental infection [81]. A majority of
health concerns posed by using a modified HIV have been eliminated
by the removal of genes required for viral replication. In addition, pre-
vious generations of retroviruses would integrate into oncogenes,
such as LMO2, increasing the risk for tumorigenesis [82,83]. Many of
these concerns have been assuaged by studies indicating that tumor-
igenesis is not induced by lentiviruses in vivo or in vitro [84]. Another
limitation to lentiviral systems is that their packaging size is limited
to approximately 8.5 kb to retain optimal transduction efficiency,
which must include the promoter and cis-acting elements leaving
less room for the transgene itself [81].

Lentiviruses have also been shown to be useful in generating sta-
ble transgenic lines. Injecting lentivirus into embryos can generate
mice with the transgene of interest in germline cells, allowing the
transgene to be passed to subsequent generations [85]. Tissue speci-
ficity has been achieved by inserting specific promoter sequences,
such as the synapsin-1 neuron specific promoter, into the lentiviral
sequence [86]. As the efficiency and safety of lentiviral systems con-
tinue to improve, they are poised to become one of the dominant sys-
tems of viral somatic transgenesis in translational research, and will
expand the ability of researchers to utilize animal systems as research
models.

3.2. Adeno-associated viruses

In recent years, recombinant AAVs (rAAVs) have come into their
own with new technological breakthroughs, correcting many of the
previous deficiencies, and conferring greater therapeutic potential
[87,88]. AAVs are small non-enveloped parvoviruses which use
single-stranded DNA as their genetic material [89,90]. Upon infection,
viral single-stranded DNA is taken up into the nucleus, converted to
double stranded DNA, and is expressed throughout the life of the
cell. These viruses are dependent on other viruses, such as adenovirus
or herpes simplex virus to achieve proper infection [91,92]. Wild type
AAV has the ability to integrate into a specific site of chromosome-19
[93,94]; this feature has been removed in modern rAAVs [95].

Currently, ten different serotypes of AAVs have been well de-
scribed [96,97]. The primary difference between serotypes lies in
the capsid amino acid sequence, which alters the tropism of each se-
rotype for different cell types [98,99]. The first broadly studied sero-
type was AAV2, which is considered to be one of the least efficient
AAVs in the CNS as it transduces far fewer cells than other serotypes
[100,101]. Serotypes 1, 4, and 5 have shown much greater levels of
transduction than AAV2 [101]. Interestingly, AAV4 has shown an af-
finity to transduce ependymal cells [101]. Overall, analysis of each se-
rotype showed that AAVS8 has the highest transduction efficiency in
the CNS [102]. However, this serotype may be overly efficacious as
studies have shown that GFP delivery via AAV8 can produce an
overabundance of GFP protein, resulting in neurotoxicity [103]. Dif-
ferent serotypes have a varying degree of specificity within the CNS
in regards to transduction efficiency. It has been shown that serotype
9 transduces the hippocampus at higher levels than serotypes 7, 8
and rh10 [97,104]. Serotype 9 also holds greater promise as it has
been shown to cross the blood-brain barrier in the absence of
permeablizing reagents and it also preferentially transduces neurons
and astrocytes [105,106]. Similar to serotype 9, serotype sh10 has
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displayed high transduction efficiencies with a small range of spread
from the site of injection [97].

These vectors have several advantages. First, rAAVs are particular-
ly useful in neurological studies as transgene expression occurs in di-
viding and quiescent cells, such as neurons [107]. Not only do these
rAAVs have the ability to transduce non-dividing cells, but also the
transgene expression in these cells is long lasting with the appropri-
ate promoter [108]. Second, AAVs pose little infective risk to humans
[109]. It is postulated that 85% of the human population is infected by
AAVs, yet no associated pathology has been observed and does not in-
duce a significant immune response [110,111]. Finally, the replicative
ability of these vectors has been eliminated, which reduces the likeli-
hood of unintended infection. After it was discovered that two
inverted terminal repeats facilitate replication of these viruses, they
were excised, resulting in a replication deficient rAAV system [73].
rAAV production relies upon trans expression of genes, typically pack-
aged into plasmids, derived from adenovirus and the rep and cap
genes from the deleted intronic regions [112,113].

There are disadvantages to utilizing AAVs in transgenesis. The main
limitation of AAV systems is that the packaging size is generally limited
to 4.7 kb [114] However, there are some exceptions to this limitation. It
has been shown that AAV5 vectors may carry up to 8.9 kb [115]. This
small packaging size severely limits the practicality of using AAVs for
transgenesis. Another drawback of AAVs when compared to lentivi-
ruses is the lack of genomic integration. Though episomal expression
can be long lasting, gene products will not replicate with the genome,
resulting in a gradual loss of expression in dividing cells. In neurons,
however, this disadvantage is negligible.

4. Current models of AD

Alzheimer's disease remains a uniquely human disorder. Although
non-human primates display some resemblances to humans when it
comes to amyloid deposition and fibrillary lesions, both pathologies
do not occur in the same species. For example, macaques develop am-
yloid plaques with a slightly different structure than those found in
humans and tend to have a greater AP4, composition [116,117].
Other species, such as baboons, have neurofibrillary tangles that
have some similarity to those seen in AD, but still lack the complete
AD phenotype [118-120]. Outside of non-human primates, canines
have shown some potential as a model of amyloid pathology. The
human and canine APP sequences are highly similar, and canines do
develop diffuse amyloid plaques similar to those seen in early AD
cases [121,122]. Canines, however, do not develop the tangle pathol-
ogy seen in the human AD brain [123]. Although there is some appeal
to using natural models of AD, a major obvious pitfall is their relative-
ly long lifespan. Since AD pathology is age-related, this can make lon-
gitudinal aging studies in these species untenable [124,125], and
these species are not easily genetically modified to incorporate muta-
tions that might accelerate the pathology.

The last two decades have seen many investigators undertake the
task of developing a mouse model that recapitulates the key features
of AD. Although these models have had a fair amount of success, none
can be described as being a complete model of AD [126]. In spite of a
general success in elucidating much of the underlying pathobiology of
the disease, the incomplete nature of these models is likely at least
partially responsible for our ongoing failures to develop clinically
useful AD therapeutics that target the disease mechanism. Other
explanations are possible. For example, there may be fundamental
characteristics of human neurons which make them more readily
damaged and prone to degeneration. Second, our reliance on FAD
mutations driven may not be completely relevant to sporadic AD. In
addition, these transgenes are often inappropriately expressed to
levels not seen in AD and may generate pathology in brain regions
which do not accurately resemble the disease state. Finally, it could
simply be due to the fact that the biochemical processes involved in

AD pathogenesis do not have adequate time to generate pathology
in animal models due to their shorter lifespan. Despite the fact that
many genetic modifications promote the expression of specific AD re-
lated genes, other enzymes and/or processes involved in the disease
still function at base rates, possibly preventing full development of
pathology.

Rodents remain the most commonly-used animal models of AD.
The genomes of the rat and mouse have been well described, making
genetic manipulation easier, and the cost of maintaining these ani-
mals is low compared to larger animals such as non-human primates
and canines. Unfortunately, neither rats nor mice naturally develop
AD pathology [127]. However, this can be overcome by the introduc-
tion of human mutations which can drive similar phenotypes in ro-
dent brain. There are a plethora of transgenic AD models described
in the literature, and we will briefly cover the more notable and pop-
ular models to give a sense of what options are available. This section
is intended to be an overview, not an exhaustive review of the AD
mouse model literature. There are many excellent recent reviews on
this topic: [3,128-130]. A summary of all models discussed herein
may be found in Table 1.

4.1. Mouse models of amyloid pathology

Nearly all mouse models of AD rely upon FAD mutations in the APP
gene. Three major isoforms of APP expressed the 695, 751 and 770
length isoforms [131]. Of these, APPggs is the isoform most commonly
expressed in neurons, whereas isoforms APP;s; and APP;;o can be
found in both neurons and glia [131]. The PDAPP mouse was the
first AD transgenic mouse created, and contained the APPY”!7F (Indi-
ana) mutation driven by the platelet-derived growth factor 3 promot-
er on a C57B6 x DBA2 background [4]. This model generates high
levels of human AP4o and APy, but the V717F mutation causes an in-
crease in the AP4z.40 ratio, due to an increase in the amount of the
more pathogenic AP4,. Plaque deposition in the neocortex is apparent
starting at three months of age in homozygotes and six months in
heterozygotes. There is significant amyloid deposition in these ani-
mals and slight cognitive deficits are observed [132]. Neurons in the
locus coeruleus decrease in size, despite the fact that there is no neu-
ronal loss in the cortex or hippocampus as seen in AD [133]. Not only
was this the first AD mouse model, but it was one of the first mouse
lines used in immunotherapy studies which showed increased amy-
loid clearance in the brain [134-136].

Not long after the PDAPP line was generated, multiple new models
were developed utilizing the FAD Swedish APPX670NMG41L qoyble mu-
tation. The Tg2576 model uses the Swedish double mutation within
APPggs [5] under the hamster prion protein promoter (PrP) [5]. Levels
of insoluble amyloid can be detected within the hippocampus be-
tween 6 and 10 months of age [137]. Though it has been reported
that plaques may appear as early as 9 months of age, most have
reported plaques beginning to appear at 13 months [5,137]. This
was the first transgenic AD mouse line reported to display cognitive
deficits, despite a lack of neuronal degeneration [138]. Interestingly,
these mice develop amyloid deposits in the spine, which results in
motor dysfunction [139]. This model has contributed greatly to the
AD field. It has been used as the focus of many immunotherapy stud-
ies [140,141] and pharmaceutical trials [142], and provided insights
into the basic mechanisms of disease [143-145].

The APP23 model takes advantage of the Swedish mutation within
the human APP;s; isoform, under the murine thymocyte differentiation
antigen 1 (Thy1) promoter [ 146]. These mice have extensive plaque de-
velopment in the neocortex and hippocampus. This was one of the first
lines reported to develop cerebral amyloid angiopathy (CAA), an accu-
mulation of amyloid protein within the vascular walls [147,148]. In ad-
dition, there are a variety of behavioral and cognitive abnormalities in
these mice that occur before much of the amyloid pathology develops
[149]. The APP23 line displays neurodegeneration, uncommon in
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Table 1
Transgenic murine models of AD.

Model Background Transgene/mutation Promoter Pathology References

PDAPP C57B6, DBA2 APPV717F PDGF-p Increased AP42 levels. Amyloid deposition by 6 months, [4,131-136]
no neuronal loss, memory deficits.

Tg2576 C57B6, SJL APPKE7ON/ME71L Hamster PrP Amyloid plaques seen by 9 months of age, memory [5,137-145]
deficits, spinal amyloid deposition.

APP23 C57B6/DBA/2  huAPP751KX670N/M671L Thy1.2 Amyloid deposition by 6 months, motor and cognitive [146-150]
impairment, cerebral amyloid angiopathy.

CRNDS C3H/C57B6 APPKE7ON/METILN717F Hamster PrP Dense amyloid plaques seen by 5 months, cognitive [151,152]
deficits develop with pathology.

PSAPP C3H/B6 APPK670N/MG71L pgqM146L Hamster PrP Amyloid plaques seen by 7 months, motor dysfunction by [6,153,154]
13 months.

APP-PSEN1dE9  C57B6/C3H APPK67ON/ME71L pgq AEQ Hamster PrP Amyloid deposition beginning around 6 months, cortical [8,155-157]
angiopathy and reduced LTP.

APP/PS1 CD-1/129 APPKG7ON/ME7IL pg1P264L/P264L  Knock-in Amyloid deposition and plaque formation by 6 months ofage. ~ [158-161]

5xFAD C57B6/SJL APPKE7ON/ME7ILI7TIGV.V717I Thy1 Massive cerebral amyloid deposition around 2 months, [162,163]

pSM146V. 1286V neuronal loss and cognitive impairments.

JNPL3 C57/BL Tau®301t Hamster PrP NFT formation by 6.5 months, behavioral dysfunction. [164-166]

hTau 12954/Sv]ae Tau®™ (KO), huTau MAPT PHF deposition by 9 months, behavioral abnormalities. [167-169]

3xTg-AD C57B6 APPK67ON/ME71L 1 P301L Thy1, (PS1 knock-in) Extracellular amyloid detected by 6 months, and PHFs by [34,170-176]

PS1 M146V

15 months.

many animal models of amyloid deposition [150]. These findings suggest
there must be some other mechanism involved in the neurodegeneration
observed in these animals.

The CRNDS8 transgenic line incorporates two different APP muta-
tions, the Swedish APP double mutation and the APPY”'’F mutation in
APPggs. Essentially, this model represented the logical next step of
mouse model development, by incorporating the mutations of two
other successful lines, the Tg2576 and the PDAPP lines, into a single
model. These mice rapidly develop amyloid pathology, showing signs
of amyloid deposition by nine weeks of age, and dense plaque formation
by five months [151]. These mice also display impaired fear condition-
ing response, which correlate to the plaque load [152]. Due to the
rapid onset of neuropathy this line exhibits a decreased lifespan with
a 50% mortality rate by three months of age [151].

Other common amyloid models combine several FAD mutations
into one line, by combining an APP mutation with an FAD PST mutant.
These models display a more rapid rate of pathogenesis compared to
monogenic models. The PSAPP line was one of the earlier bigenic AD
models. This line is a hybrid of two previously established trans-
genics, the aforementioned Tg2576 line and another line carrying
the PS1M!46L mutation [6,153]. These mice have more rapid amyloid
deposition than Tg2576 mice alone, with greater levels of AR, seen
in deposits, and suffer from hyperactivity and cognitive deficits as de-
termined by Y-maze testing [6,153]. Deposits are visible beginning
around nine months of age and levels gradually increase until about
12 months [154]. Deposits are also detected in the vasculature
[154]. This line provided interesting insights about the connection be-
tween APP and PS1, as the addition of the PS1 mutation increased Ap
levels beyond what is seen in the singly transgenic Tg2576 line
containing only the Swedish mutation [154].

The APP/PS1AE9 line is another model that combines APP and PS1
mutations to generate a model that displays extensive amyloid pa-
thology. This line contains the Swedish APP mutation and a deletion
of exon nine from PS1 [8,155]. Approximately equal proportions of
AB4o and AP, are seen in this line. Amyloid deposits are detected
by seven months of age, with abundant hippocampal deposition ap-
parent by 19 months [156]. An age dependent decline in long-term
potentiation and spatial memory is observed [156,157].

Interestingly, it is now known that the overexpression of FAD mu-
tant forms of APP and PS1 is not necessary to cause pathology. It is
possible to produce a model of amyloid deposition using a knock-in
of the APP Swedish mutation, and the FAD-linked PS1"2%4L mutation,
both under the control of their respective endogenous murine pro-
moters [158-160]. Amyloid deposits can be detected by six months
of age and deposition progresses linearly throughout the life of these

animals [159]. The benefit to this model is that, in the absence of ectopic
overexpression, APP and PS1 follow their physiological patterns of ex-
pression. What is perhaps most interesting in this model is that amyloid
deposition still occurs, albeit at a rate slower than other models; until
this model was reported, it was widely believed that APP overexpression
was required in order to obtain amyloid deposition in rodents. The amy-
loid deposits in this line also more closely resemble neuritic plaques than
in many other lines [161].

One of the most ambitious attempts at creating an AD model
was the 5xFAD mouse, which combines five FAD mutations
(Al)l—)l(67ON/M67lL,I7lGV.V717lY PS-1M14GV. L286V) into one line []62] ThlS
model overexpresses APP at high levels and generates abundant AP4;
that is detectable by six weeks of age. Deposition of amyloid has been
observed as early as two months of age within cortical layers and
intraneuronal AR can be detected by approximately 45 days of age
[162]. Ultimately these mice develop gliosis, cognitive impairment,
based on Y-maze testing, and neuronal loss [162]. This model has
been used to demonstrate the importance of BACE1 regulation in AD
pathogenesis [163]. The major benefit of this model is the rapid onset
of pathology that makes it an ideal biological system for the quick eval-
uation of novel hypotheses about factors influencing amyloid deposi-
tion, and for the rapid assessment of potential therapeutics.

4.2. Mouse models of tau pathology

No known mutations are associated with the tau protein in AD.
Because of this, most transgenic lines utilize mutations from other
tauopathies, such as frontotemporal dementia (FTD). The JNPL3
transgenic mouse was the first such line to use the FTD mutation
tau™°' under the PrP promoter, to drive tau pathology [164]. NFTs
are first detected in these mice at approximately five months, concur-
rent with observations of motor and cognitive dysfunction [165]. The
tangles generated in these mice differ somewhat from AD tangles,
with notable differences in tangle morphology, location, and density
[165]. Some of these differences can be explained by the fact that
the P301L mutation generates 4R length tau protein, where AD tan-
gles are composed of 3R and 4R isoforms [166]. Another difference
is that these animals also exhibit neuronal loss throughout the spinal
cord [165]. Spinal cord pathology is also observed in Tg2576 mice,
which utilizes the same PrP promoter, indicating that the PrP promot-
er induces significant spinal cord overexpression of the transgene.

The hTau mouse is a knock-out of endogenous rodent MAPT
coupled with the addition of a transgene expressing full length wild
type human MAPT [167]. This line expresses the full length human
MAPT gene and alternative splicing occurs, resulting in the expression
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of all six isoforms of the human tau protein. These mice show signs of
tau hyperphosphorylation at approximately six months and NFT forma-
tion by 15 months [167]. NFTs in these mice are distributed throughout
the hippocampus and neocortex, roughly following the progression of
tangle pathology seen in AD [168]. A decline in memory and cognitive
function can be observed by approximately 12 months of age, before
the onset of neurodegeneration [169].

4.3. Mouse models of both amyloid and tau pathology

In a further effort to create a more accurate model of AD, LaFerla et
al. generated a trigenic model which displays both amyloid and tau
pathology. The 3xTgAD line was generated by introducing MAPT™!%
and APPX670NME7IL transgenes by the simultaneous embryonic micro-
injection into mouse embryos carrying a PST mutant knock-in [34].
This resulted in the cointegration of the MAPT and APP transgenes.
Since the cointegrated genes do not assort independently, breeding
logistics are more manageable than they would be for a line carrying
three independent mutations. Extracellular amyloid can be first ob-
served at approximately six months in the frontal cortex and spreads
through the hippocampus by 12 months [34,170,171]. The detection
of tau accumulation within pyramidal neurons occurs at approxi-
mately 12 months and PHFs are first observed around 15 months of
age [34,172]. These mice have been shown to have disruptions in
long-term potentiation, but suffer no neuronal loss and have
disrupted sleep patterns [170,173]. It is the combination of amyloid
and tau pathologies which makes this a popular model to study AD.
This model has developed a rich history in the AD field. Inmunother-
apy studies with this line showed that clearance of AR can reduce tau
pathology and prevent cognitive decline in these animals at an early
age [174]. This gave more credit to the role Ap has in promoting
tau pathology. This model also incited a significant public debate
(http://www.alzforum.org/res/for/journal/detail.asp?livelD=193) about
the true disease relevance of intraneuronal AB [175,176].

5. The future of mouse models in AD research

Many of the existing models of AD exhibit the basic pathological
hallmarks of the disease, providing a good platform for future genetic
modification. Investigators looking to study complex interactions in-
volved with AD and other forms of pathology have combined the
existing murine AD models with models of other diseases. For exam-
ple, crossing AD models with existing models of diabetes has allowed
some of the complex interactions between the two pathologies to be
observed [177]. Crossing existing models to create hybrids allows re-
searchers to avoid committing the large amount of resources required
to generate an entirely new transgenic mouse, making the entire pro-
cess much more feasible. However, this approach is not without its
own potential problems. Some lines may not cross well, resulting in
unexpected phenotypes which, although occasionally interesting,
are often of little value. Further, creating this new line still requires
several generations of backcrossing, genotyping, and characteriza-
tion, which remains costly and time consuming. Also, introducing a
fourth genetic modification is nearly always logistically impossible.
Fortunately, recent technological advances in viral transgenesis have
given researchers another option. Combining viral transgenesis with
existing mouse models could allow for more in depth and complex
studies, and has the potential for the creation of AD mouse models
that more closely parallel the human condition.

Lentiviruses have been used extensively in the nervous systems of
rodents and non-human primates with high efficiency and expres-
sion [178,179]. In AD research, lentiviruses have been used to introduce
stably expressing genes related to disease. Lentiviral transductions of
wild type tau and the P301L mutant have been utilized in rats to show
altered kinase activity [180]. Overexpressing NF-E2 related factor-2 in
APP/PS1 mice displayed improved spatial learning as determined by

Morris Water Maze test [181]. One of the more common uses of lentivi-
ruses is for RNA interference. For example, lentiviral transduction of
BACE1 siRNA reduced levels of BACE1 and AD related pathology
[182,183]. Mice lentivirally transduced with APPggs siRNA had reduced
overall levels of APPggs mMRNA, protein, and extracellular AR [184].

AAVs have been used in a similar way. In a study by Jaworski et al.,
non-transgenic mice were intracerebrally transduced with AAV vec-
tors carrying APP.SLA mutants, which contain the Swedish, London
and Australian mutations [185]. By six months plaque deposition
was observed in the cortex and the hippocampus, yet no degenera-
tion was observed [185]. In the same study, AAVs delivering
wild-type and mutant P301L transgenes induce neurodegeneration
of pyramidal neurons of the CA1 and CA2 by 12 weeks and induce
post-mitotic neurons to activate cell-cycle machinery. Additionally,
AAV serotypes 9 and 10 have been shown to effectively deliver tau
mutants and to rapidly induce neurodegeneration of dopaminergic
neurons of the striatum [186]. Gene knock-down has also been
achieved within the CNS via delivery of siRNAs. Delivery of mTOR
siRNA via AAV5 reduced mTOR levels by 80% within the CNS [187].
A significant reduction of CDK5 was observed in 3xTgAD mice trans-
duced with AAV CDK5-miRNA, which resulted in a five-fold decrease
in tau phosphorylation [188]. A mouse model of amyloid pathology
(TASPM; APPK670N/ME71L v pg_1M146Vy transduced with pathogenic
tau mutations AAV6 TauP301S or AAV6 3P0 displayed increased tau
phosphorylation, tau aggregation, amyloid plaque deposition, neuro-
nal loss and cognitive impairment [189].

Viral transgenesis not only has the potential for the creation of
better mouse models, but should also allow investigators to explore
the role of newly discovered genetic linkages in a more efficient and
cost effective manner. For instance, several recent GWAS studies
have indicated that gene BIN1, encoding the protein bridging integra-
tor 1, may be a risk factor in AD [190,191]. It has recently been shown
that BIN1 may be directly connected to the development of tau pa-
thology, and that it strongly colocalizes and coimmunoprecipitates
with tau in vitro and in vivo [192]. BIN1 is a protein with many com-
plex cellular actions, including cellular trafficking, synaptic vesicular
endocytosis and cytoskeletal organization [193]. Alternative splicing
and misregulation of BIN1 has been observed in other diseases, such
as myotonic dystrophy [194]. There are 17 known splice forms
of BIN1 and six splice forms of tau [195,196], creating a very large
array of potential interactions, any combination of which might be im-
portant for the development of AD. Undertaking a study of this nature
purely from the standpoint of generating and crossing different mouse
models would require a huge investment in both time and physical re-
sources. Viral transgenesis, however, could be an ideal solution to this
problem. For example, the hTau mouse expresses all 6 splice forms of
human tau [167]. Transduction of these mice with viruses expressing
each individual BIN1 isoforms would allow investigators to observe
not only the effects of BIN1 isoforms on tangle pathology, but also deter-
mine if there are preferential interactions between BIN1 and these
isoforms. The process of generating the different viral vectors, followed
by transducing hTau mice, would be faster, more efficient, and probably
more likely to succeed at answering the question.

6. Conclusions

Despite the impressive progress investigators have made in gener-
ating more complex and relevant animal models of AD, no model fully
reflects the biochemical hallmarks combined with the cognitive and
behavioral symptoms present in AD. Many of these models are excel-
lent at emulating specific facets of disease. There are models which
recapitulate amyloid pathology, others that generate tau pathology
and even some which combine these models. Though all of these
models show some pathology that parallels the actual disease state,
their spatial and temporal distribution can be vastly different.
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Combining new technologies with existing models of AD can theoreti-
cally allow for better models, and overcome some of these limitations.

Both AAVs and lentiviruses have been used in combination with
existing AD mouse models with some success. There have been stud-
ies which have utilized viral technologies to overexpress proteins im-
plicated in AD, such as the oxidative stress protein NF-E2, and a
variety of tau mutants. Others have knocked-down AD-related pro-
teins in existing mouse models using short hairpin constructs. These
studies, however, represent only a fraction of the potential that so-
matic viral transgenesis has for advancing AD research. These viral
technologies can be used to introduce many genetic changes at once
for the screening of many individual factors (and their interactions)
simultaneously. Large scale screens such as this could allow for
more in depth studies at a more rapid pace than researchers have pre-
viously been able to accomplish.

In truth, it may be unrealistic to believe that a perfect animal
model of AD will ever exist, as the disease is so complex that the spe-
cies barrier may be too great to overcome. However, utilizing somatic
viral transgenesis in tandem with existing mouse lines could allow for
the creation of better models than what are currently available. We
can study more complex genetic problems, at a faster pace, and at a
lower cost. The use of viral gene delivery may our current best option
for studying the plethora of complex interactions involved in AD
pathogenesis, screen potential therapeutics, and to bring investiga-
tors closer to an ideal mouse model.
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