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Hypercapnic acidosis activates Ca2+ channels and increases intracellular Ca2+ levels in neurons of the locus
coeruleus, a known chemosensitive region involved in respiratory control. We have also shown that large
conductance Ca2+-activated K+ channels, in conjunction with this pathway, limits the hypercapnic-induced
increase in firing rate in locus coeruleus neurons. Here, we present evidence that the Ca2+ current is activated
by a HCO3

−-sensitive pathway. The increase in HCO3
− associated with hypercapnia activates HCO3

−-sensitive
adenylyl cyclase (soluble adenylyl cyclase). This results in an increase in cyclic adenosine monophosphate levels
and activation of Ca2+ channels via cyclic adenosine monophosphate-activated protein kinase A. We also show
the presence of soluble adenylyl cyclase in the cytoplasm of locus coeruleus neurons, and that the cyclic adeno-
sinemonophosphate analogue db-cyclic adenosinemonophosphate increases Ca2+i. Disrupting this pathway by
decreasing HCO3

− levels during acidification or inhibiting either soluble adenylyl cyclase or protein kinase A, but
not transmembrane adenylyl cyclase, can increase the magnitude of the firing rate response to hypercapnia in
locus coeruleus neurons from older neonates to the same extent as inhibition of K+ channels. This article is
part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Neurons that are sensitive to CO2/H+ exist in numerous brain
regions and contribute to various functions and disorders including
the control of breathing, learning and memory, depression and panic
disorders [8,30,41,45]. These CO2/H+-sensitive neurons are referred to
as chemosensitive and the ability of a neuron to respond in this way is
generally attributed to the presence of acid-sensitive ion channels on
its surface membrane [30,31] We have focused on chemosensitive
neurons within one brain stem area, the locus coeruleus (LC). There is
considerable evidence that chemosensitive neurons from the LC play
an important role in the hypercapnic ventilatory response (recently
reviewed in [14]). Early studies showed that focal acidification of the
LC alone resulted in increased ventilation [6], showing that the LC
could drive increased breathing. Further, lesioning a large percentage
of LC neurons resulted in a marked decrease in the hypercapnic ventila-
tory response to inspired CO2 [2,23]. Finally, a high percentage of LC
neurons have been shown to be chemosensitive [11,12,29] and LC
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neurons in culture were shown to exhibit intrinsic chemosensitivity
[22]. Taken together, these studies point to chemosensitive LC neurons
as playing an important role in the control of breathing and in the
ventilatory response to inspired hypercapnia.

The chemosensitive response to hypercapnia could be due to the
sensing of changes of molecular CO2, to changes of intracellular and/or
extracellular pH, or to changes of HCO3

− in response to hypercapnia.
Recently, evidence has been presented that CO2 itself could be directly
sensed in leptomeninges and glial cells in the ventral medullary surface
[19]. The mechanism probably involves CO2 directly modifying
connexin hemichannels by forming a carbamate bridge between two
residues that favors the open state in the hemichannel [26]. Numerous
other studies have focused on the ability of changes of intracellular or
extracellular pH during hypercapnia to alter the activity of ion channels
[31]. Chemosensitive LC neurons have been shown to contain a variety
of pH-sensitive channels, including inward rectifying K+ channels
[29], transient A currents and delayed rectifying K+ currents [24],
TASK channels [1] and TRP channels [9]. Acidification alters these
channels in such a way that LC neurons depolarize and increase their
firing rate.

Ourwork has focused on the possible effects of Ca2+ channels on the
chemosensitive response of LC neurons. We have previously reported
that hypercapnia activates L-type Ca2+ channels in LC neurons [13,20,
21]. In LC neurons from young neonates, this activation seems to
contribute to the increased firing rate response induced by elevated
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CO2/H+ [13]. However, in LCneurons fromolder neonates the activation
of Ca2+ channels by hypercapnia stimulates KCa channels to produce a
braking effect on the chemosensitive firing rate response [20]. This
effect of hypercapnia on Ca2+ channels is unexpected since acidification
is commonly expected to inhibit Ca2+ channels [36,39]. Recent findings
provide evidence that elevated intracellular HCO3

− is involved in the
pathway by which hypercapnia activates the L-type Ca2+ current in LC
neurons [21]. It was hypothesized that this activationmight involve sol-
uble adenylyl cyclase (sAC).

Little is known about a HCO3
−-sensitive mechanism involved in the

chemosensitive response of brainstem neurons, but a role for HCO3
− in

the chemosensitive response of peripheral chemoreceptors has been
hypothesized [38]. This study determined that the CO2/H+ activation
of L-type Ca2+ channels in glomus cells was blocked by an inhibitor of
protein kinase A (PKA) and occurred in associationwith an intracellular
elevation of cAMP [38]. These findings showed that hypercapnia
induced elevation of L-type Ca2+ channels through activation of PKA.
The authors speculated that hypercapnia could activate PKA through a
HCO3

−-dependent mechanism. However, a more recent study has
shown that the mechanism is dependent on acidosis and does not
involve a HCO3

−-dependent mechanism [28].
Soluble adenylyl cyclase (sAC) has been characterized as an intracel-

lular HCO3
−-dependent means of producing cAMP [5,7,25,46]. Since

intrinsic chemosensitivity requires that cells respond to CO2, and that
the diffusion of increased CO2 across cell membranes results in elevated
HCO3

−, it follows that chemosensitive cells expressing sAC could
increase their cAMP levels in response to hypercapnia. The presence of
sAC in LC neurons has been shown in a preliminary report [27], which
raises the possibility that chemosensitive cells of the LC may utilize a
sAC-dependent pathway for the activation of their L-type Ca2+ channels
in response to hypercapnia.

In the current study, we hypothesize that a sAC-dependent pathway
is responsible for the CO2/H+ activation of the L-type Ca2+ current in LC
neurons. If so, the addition of dibutyryl-cAMP (db-cAMP) should mimic
the hypercapnia-induced increase in Ca2+ current [20]. Conversely, we
expect that the nominal absence of CO2/HCO3

− from the superfusion
solution will decrease the sensitivity of this Ca2+ current to hypercap-
nia. In addition, we expect to find the presence of the HCO3

−-dependent
sAC enzyme in the cytoplasm of neonatal LC neurons using immunohis-
tochemistry. We have shown that the activation of Ca2+ currents in LC
neurons from rats older than ~ P10 decreases the firing rate response
to hypercapnia via the subsequent activation of large-conductance
Ca2+-activated BK channels [20]. If Ca2+ channels are activated by hy-
percapnia through a sAC-mediated mechanism, we further expect that
the sAC inhibitors 2-hydroxyestradiol (2HE) or 2-(1H-benzo[d]imidaz-
ole-2-ylthio)-N'-(5-bromo-2-hydroxybenzylidene) propanehydrazide
(KH7) [3,25,33] or the PKA inhibitor H89will increase the firing rate re-
sponse to hypercapnia of LC neurons from older neonates to a similar
extent as does the BK channel inhibitor paxilline [20] while the trans-
membrane adenylyl cyclase (tmAC) inhibitor 2',5'-dideoxyadenosine
(ddAdo) [3] will have no effect on the firing rate response to hypercap-
nia of LC neurons from older neonates. Our findings strongly support
our hypothesis that a sAC-mediated pathway leads to the activation of
L-type Ca2+ channels by hypercapnia in LC neurons.

A preliminary report of our findings has previously been published
[20].
2. Materials and methods

2.1. Ethical approval

All procedures in which animals were involved were reviewed and
approved by the Wright State University Institutional Animal Care and
Use Committee and are in agreement with standards set out in the
National Institutes of Health Guide for Care and Use of Laboratory
Animals. Wright State University is accredited by AAALAC and is
covered by NIH Assurance (no. A3632-01).

2.2. Slice preparation

Neonatal Sprague–Dawley rats postnatal (P) age P3–P16 of mixed
sex were used in these studies. Depending on the age of the neonate,
they were anesthetized using either 100% CO2 or hypothermia and
then decapitated. The brainstem was removed and a vibratome (Pelco
Vibratome 1000) was used to make coronal brain slices. Slicing was
done in ice-cold (4–6 °C) artificial cerebrospinal fluid (aCSF) solution.
Slices of the pons (containing the LC) were maintained in aCSF equili-
brated with 5% CO2/95% O2 at room temperature until used (1–4 h
after slicing). For all experiments, slices were continuously superfused
at a rate of ~4 ml/min by gravity flow using solutions held at 35 °C.

2.3. Solutions

All brain slices were immersed in aCSF solution unless indicated
otherwise. This solution consisted of (in mM): 124 NaCl, 3 KCl, 1.3
MgSO4, 26 NaHCO3, 1.24 NaH2PO4, 10 glucose, and 2.4 CaCl2 and was
equilibrated with 5% CO2/95% O2, pH ~7.45 (at 35 °C). Hypercapnic
solutions had the same composition but were equilibrated with 15%
CO2/85% O2, pH ~7.0. This level of CO2 was chosen to maximize the
activation of the cellular signaling pathway being studied [17,32]. In
nominally CO2/HCO3

− free solutions, HEPES buffer isosmotically
replaced the HCO3

− in aCSF and the solution was equilibrated with
100% O2. The pH of the HEPES aCSF solution was adjusted to 7.45 and
7.0 (similar to the normal aCSF and hypercapnic solutions, respectively)
using HCl and NaOH. The whole cell pipette filling solution consisted of
(in mM): 130 K-gluconate, 0.4 EGTA, 1 MgCl2, 0.3 GTP, 2 ATP, and 10
HEPES, and was buffered to a pH of ~7.35 using KOH. For intracellular
Ca2+ (Ca2+i) measurements, 250 μM of the Ca2+-sensitive fluorescent
dye Fura-2was also added to the pipette solution. Thewhole cell pipette
filling solution for voltage clamp studies of the Ca2+ current consisted of
(in mM): 130 CsCl, 10 EGTA, 1 MgCl2, 0.3 GTP, 2 ATP, 10 HEPES, and 10
tetraethylammonium (TEA), buffered to pH ~7.45 using CsOH. For
immunohistochemistry studies of sAC, the phosphate buffered saline
(PBS) solution contained (in mM): 137 NaCl, 2.7 KCl, 4.3 Na2HPO4,
and 1.47 KH2PO4.

2.4. Measurement of intracellular Ca2+

We loaded LC neurons with the Ca2+-sensitive dye Fura-2 (250 μM)
from thewhole cell patch pipette. Dye-loaded neuronswere alternately
excited at 340 nm and 380 nm using a Sutter Lamda 10-2 filter wheel
(light from a 75 W xenon arc lamp). Emitted fluorescence (505 nm)
was intensified by a GenIISys Image intensifier and captured by a CCD
camera. Fluorescence images were acquired using a Gateway 2000
E-3100 computer and analyzed with MetaFluor 4.6r software. Images
were acquired every 15 s (~2 s acquisition time). Photobleaching
was reduced by blocking excitation light between acquisitions. We
did not calibrate the Fura-2 fluorescence and instead used arbitrary
fluorescence units to monitor increases or decreases in Rfl. For analysis,
Rfl values were estimated by averaging at least 5 values before, during
and after db-cAMP administration.

2.5. Electrophysiological recordings

All electrophysiological recordings used in this study were whole
cell recordings. Whole cell pipettes were pulled to a tip resistance of
~5 MΩ using thin-walled borosilicate glass (outer diameter 1.5 mm,
inner diameter 1.12 mm). We visualized LC neurons with an upright
microscope (Nikon Eclipse 6600) using an×60water-immersion objec-
tive. A visualized neuron was patched, forming a gigaohm seal. Mem-
brane potential (Vm) was measured in both current and voltage clamp
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mode. An Axopatch 200B amplifier was used for the injection of either
current or voltage. A slope/height window discriminator (FHC Model
700B, Bowdoinham, ME) was used to determine the integrated firing
rate (FR). pCLAMP software version 10.0 was used to analyze Vm and
FR. Recordings were started when Vm reached a stable resting value. A
healthy neuron was defined as one with a stable resting Vm of −45 to
−60mVand a spontaneousfiring rate of b 4Hz. All electrophysiological
responses were shown to be reversible by returning to baseline values
when the solution was changed back to the initial aCSF. We were able
to successfully patch LC neurons for longer than 45 min in current
clamp without washout of the chemosensitive response [13]. Most
drugs/solutions exhibited their effects within less than 2 min. When
more than one hypercapnic pulse was used in an experiment, we
returned resting FR between pulses to within 0.5 Hz of the original FR
by injecting current so that we could compare the chemosensitive
responses to the two different pulses.

LC neurons were clamped at a holding potential of−70 mV in aCSF
for voltage clamp experiments. TTX (1 μM) was added to block Na+

currents and 3 mM BaCl2, to maximize Ca2+ currents, replaced NaCl
isosmotically. Depolarizations (600 ms duration) were applied in
10 mV steps from −60 mV to +50 mV and the resulting peak current
determined. These measurements were made in either aCSF equili-
brated with 5% CO2/95% O2 or in HEPES-buffered aCSF (nominal
absence of CO2/HCO3

−).

2.6. Immunohistochemistry

Brainstem slices (300 μm) from neonatal rats aged above P10 were
fixed in freshly prepared 4% paraformaldehyde (4 g/100 ml) in PBS
buffer, pH 7.4, for 72 h. Fixed slices were washed three times for
15 min each in PBS. A blocking solution of 0.1 M PBS + 0.3% Triton
X-100 (0.3 ml/100 ml) + 10% donkey serum (10 ml/100 ml) (EMD
Biosciences, Inc) was applied for 30 min. Slices were then rinsed three
times (15 min per wash) in 0.1 M PBS. Primary antibodies (rabbit
derived anti-SAC-101-AP; FabGennix) were diluted in 0.1 M PBS +
0.3% Triton X-100, at a dilution of 1:200. Fixed slices were incubated
in primary antibody solution for 72 h at 4 °C. After incubation, slices
were washed three times in PBS for 15 min for each wash. Donkey-
derived secondary antibody (anti-rabbit cy3; Jackson ImmunoResearch
Laboratories) was diluted 1:50 in 0.1 M PBS+ 0.3% Triton-X-100. Slices
that had been incubated in primary antibody were incubated overnight
at 4 °C in the secondary antibody solution. The next day, samples were
washed three times (15 min per wash) in PBS. Slices were mounted
with Vectashield Mounting Medium (Vector Laboratories) and digital
images (Z stack, 0.5 μm resolution) were obtained using an Olympus
FV1000 Confocal Microscope (Olympus Corp.) and files were managed
using Fluoview software (Olympus Corp.). Control slices were treated
identically except that the second incubation was in 0.1 M PBS + 0.3%
Triton-X-100 with no primary antibody (SAC-101-AP).

2.7. Drugs

TTX, BSA, 2HE, db-cAMP, H89, ddAdo and Fura-2 were purchased
from Sigma-Aldrich (St Louis, MO) while KH7 was a gift from Drs.
Lonny Levin and Jochen Buck. 2HE (20mM)was prepared as a stock so-
lution in EtOH while TTX (1 mM), db-cAMP (10 mM), H89 (10 mM),
and Fura-2 (10 mM) stocks were made in dH2O and KH7 (2.4 mM)
and ddAdo (3 mM) stocks were made in DMSO. All drugs were diluted
in aCSF to a final working concentration of 10 μm for 2HE, 1 μM for TTX,
250 μM for db-cAMP, 10 μM for H89, 30 μM for KH7 and 30 μM for
ddAdo.

2.8. Data analysis and statistics

Absolute changes in firing rate (ΔFR) were quantified using the
following equation: ΔFR = (((hypercapnic average firing rate− control
average firing rate)/ (control average firing rate)) × 100%). Neurons
that responded to hypercapnia with a 20% or greater increase in firing
rate were considered chemosensitive. All values are expressed as mean
± SEM. Significant differences between two means were determined by
student t-tests or paired t-tests. Differences were considered significant
if P b 0.05.

3. Results

3.1. Effect of db-cAMP on Ca2+ currents and intracellular Ca2+

Whole cell voltage clamp of LCneurons in the presence of blockers of
Na+ and K+ channels demonstrated slowly inactivating inward
currents that activated at approximately −30 mV and reversed at
around +45 mV, consistent with L-type Ca2+ currents previously
reported for LC neurons [20] (Fig. 1). Since the peak Ca2+ current for
LC neurons was observed after day P10 [20], only rats P10 and older
were used for this study. Fig. 1A shows a typical appearance for the
peak Ca2+ current at −10 mV, including the long (N200 ms) inactiva-
tion time consistent with L-type Ca2+ channels [18,20]. When 250 μM
db-cAMP was added to the perfusion solution, a marked increase in
the amplitude of the peak Ca2+ current was observed (Fig. 1A). The
increase in current amplitude could be reversed when the slice was
washed in aCSF for ~5 min (Fig. 1A). These data suggest that increased
intracellular cAMP levels can increase the L-type Ca2+ current in LCneu-
rons. Fig. 1B shows the average Ca2+ IV plots for 5 neurons from 3 slices
aged P10–P13. The addition of db-cAMP to theperfusion solution result-
ed in an apparent increase in current amplitude and voltage sensitivity,
activation being shifted in the hyperpolarizing direction (Fig. 1B). The
peak Ca2+ current (at −10 mV) was significantly higher (paired
t-test) in the presence of db-cAMP (−2.79 ± 0.48 nA; n = 5) than in
the absence of db-cAMP (−1.50 ± 0.14 nA). These results mirror the
activation of the Ca2+ current by CO2 noted previously, and are consis-
tent with an activation of an L-type Ca2+ channel by phosphorylation
[10,18,20,34,35].

The activation of L-type Ca2+ currents by db-cAMP also increases
resting intracellular Ca2+ levels in LC neurons, similar to the effects of
1) hypercapnia and 2) the voltage activation of nifedipine-sensitive
Ca2+ currents previously reported [20,21]. Fig. 2A shows the results
from an LC neuron loaded with the Ca2+-sensitive dye Fura-2. When
db-cAMP was added to the superfusate, an increase in intracellular
Ca2+ levels was observed (Fig. 2A). This increase reversed when
db-cAMP was washed from the slice and a second exposure to
db-cAMP once again reversibly increased intracellular Ca2+ (Fig. 2A).
Fig. 2B shows the average significant (paired t-test) increase in Rfl

values caused by the addition of db-cAMP in 3 neurons from 2 slices.
In all cases, themembrane potential remained at rest or hyperpolarized
slightly, and did not show an increase in firing rate (data not shown).
The increase in intracellular Ca2+ levels by the addition of a cAMP
analogue supports the enhanced activation of L-type Ca2+ channels by
a cAMP-dependent pathway, similar to those reported previously [10].

3.2. Dependence of Ca2+ currents on HCO3
−

The nominal absence of CO2/HCO3
− decreased both the current

amplitude and voltage sensitivity of L-type Ca2+ channels in LC
neurons. Replacing CO2/ HCO3

−-buffered aCSF solutionwith HEPES solu-
tion (equilibrated with 100% O2) reduced the amplitude of the peak
Ca2+ current, and was reversed by restoring CO2/ HCO3

−-buffered aCSF
(Fig. 3A). In the nominal absence of CO2/ HCO3

−, an IV plot (4 neurons
from 3 slices) showed that the amplitude and voltage sensitivity of
the Ca2+ current in LC neurons were decreased compared to CO2/
HCO3

−-buffered aCSF (Fig. 3B). The peak Ca2+ current at −10 mV was
significantly (paired t-test) less in HEPES-buffered solutions (−1.58 ±
0.07 nA; n = 4) than in aCSF solutions equilibrated with 5% CO2 and
containing 24 mM HCO3

− (−2.03 ± 0.09 nA). These data suggest a



Fig. 1. The effects of db-cAMP (250 μM) on the Ca2+ current in LC neurons from neonatal rats older than P10. (A) Peak voltage-sensitive currents activated by a step from−70 mV to
−10 mV in the presence of Na+ and K+ blockade and 3 mM BaCl2. Top trace is in aCSF, while middle trace is in the presence of db-cAMP. Note the large difference in the amplitude of
inward current in the presence of the cAMP analogue and the long inactivation time, typical of L-type currents. Bottom trace is after 5 min of wash in aCSF, and reverses the increase
in current amplitude induced by the cAMP analogue. (B) Average IV plot of current recordings under the same conditions as in (A). Resulting IV plots are characteristic for high voltage
activated Ca2+ channels. Black trace is control in aCSF, while gray trace is in db-cAMP. Traces represent the mean ± SEM for 5 neurons.
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loss of activation of L-type Ca2+ channels in LC neurons in the nominal
absence of intracellularHCO3

−, consistentwith our previousfindings of a
HCO3

−-dependence of L-type Ca2+ channel activity in LC neurons [21].

3.3. The presence of sAC in LC neurons and its involvement in
hypercapnic-activation of Ca2+ channels

L-type Ca2+ channel activity could be HCO3
−-dependent if LC

neurons contain sAC. We performed immunohistochemistry experi-
ments to look for the presence of sAC in LC neurons from neonatal
rats. We observed positive staining for sAC (red puncta, Fig. 4A) in
the cytoplasm of LC neurons from a P10 rat. The green is autofluores-
cence from the catecholamines in the largely catecholaminergic
LC neurons, and readily identifies the cytoplasm of individual
neurons (Fig. 4). Nonspecific staining was not seen in LC neurons
(rat aged P12) in a control slice treated with secondary antibody
Fig. 2. The effects of db-cAMP (250 μM) on Ca2+i levels in LC neurons from neonatal rats older t
ratio of fluorescence from excitation at 340 nm/ 380 nm. Exposure to themembrane permeable
(B) Average values for Rfl before (left bar) and after adding db-cAMP (right bar) to the superfu
only (Fig. 4B). These immunohistochemical findings indicate the pres-
ence of sAC in the cytoplasm of LC neurons from older neonatal rats.

The possible role of sAC in a pathway involving HCO3
−-activated

L-type Ca2+ channels can be determined by studying the firing rate
response of LC neurons to hypercapnia in the presence of an inhibitor
of sAC, 2-hydroxyestradiol (2HE) [25,33]. The activation of an L-type
Ca2+ current has previously been shown to significantly decrease the
firing rate response of LC neurons to hypercapnia (a braking phenome-
non) via the activation of BK channels in neonatal rats older than P10
[20]. Since we hypothesize that the activation of sAC is the mechanism
behind the hypercapnic activation of the Ca2+ current, it follows that
inhibition of the sAC enzyme should increase the firing rate response
of LC neurons to CO2 in a similar fashion, i.e. inhibition of the braking
pathway should increase thefiring rate response. Fig. 5A shows a typical
chemosensitive response of increased firing rate in response to hyper-
capnia (from 5% to 15% CO2) for an LC neuron from a P10 rat [14,20].
han P10. (A) LC neuron loaded intracellularly with the Ca2+-sensitive dye Fura-2. Rfl is the
cAMP analogue db-cAMP causes a reversible and repeatable increase in intracellular Ca2+.
sate (n = 3). Increases in Rfl values were significant with a P b 0.005 (paired t-test).

image of Fig.�1


Fig. 3. The effects of HEPES-buffered aCSF on the Ca2+ current in LC neurons from neonatal rats older than P10. (A) Peak voltage-sensitive currents activated by a step from−70 mV to
−10mV. Top trace is in aCSF, whilemiddle trace is inHEPES-buffered aCSF equilibratedwith 100%O2. Note the decrease in the amplitude of inward current in the nominal absence of CO2/
HCO3

−. Bottom trace is after 5min ofwash in aCSF, and reverses the decrease in current amplitude. (B) Average IV plot of current recordings under the same conditions as in (A). Black trace
is control in aCSF, while gray trace is in HEPES-buffered aCSF. Traces represent the mean ± SEM for 4 neurons.
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When the same neuron was exposed to the sAC inhibitor 2HE (10 μM),
the firing rate response to hypercapnia (5 to 15% CO2) was increased
(ΔFR value of approximately 0.5 Hz in aCSF to 1.5 Hz in the presence
of 2HE) (Fig. 5B). Another example of the effects of 2HE is shown in
Fig. 5C, where repeated pulses of hypercapnia (going from 5 to 15%
CO2) in an older (P14) neonate yield a similar increase in firing rate
but the firing rate is markedly increased in the presence of 2HE. Note
that the effects of 2HE do not rapidly wash off (Fig. 5C). Note also that
the addition of 2HE during normocapnia (5% CO2) causes no change in
the firing rate (Fig. 5C), suggesting that sAC has a very low activity
under normal physiological conditions. The average effect of
hypercapnia (going from 5% CO2 to 15% CO2) on the firing rate of LC
neurons was an increase of firing rate of 0.80 ± 0.19 Hz (n = 5). In
these same neurons in the presence of 2HE, the increase in firing rate
Fig. 4. Immunohistochemistry studies of soluble adenylyl cyclase in LC neurons. (A) Immuno
and secondary antibody CY3 show the presence of the sAC enzyme in the cytoplasm (red p
catecholaminergic LC neurons. (B) LC neurons from a P12 rat incubated with CY3 only. Notice
was significantly (paired t test) larger, 1.46 ± 0.35 Hz. These data
show clearly that there is a significantly increased firing rate response
to hypercapnia in the presence, compared to the absence, of 2HE, and
support our hypothesis that sAC is involved in the activation of L-type
Ca2+ channels in a HCO3

−-dependent braking pathway that results in
elevated intracellular Ca2+ and activation of BK channels.

To further test for a role of sAC in activation of Ca2+ channels and
restricting the firing rate response of LC neurons to hypercapnia, we
used the more specific and potent sAC inhibitor KH7 [3]. As with 2HE,
inhibition of sAC by KH7 (30 μM) resulted in a significant increase in
the firing rate response of LC neurons to hypercapnia in rats older
than P10, with the firing rate response to hypercapnia being larger in
the presence than in the absence of KH7 (Figs. 6A,C). To test the speci-
ficity of the involvement of sAC in this process, we examined the effect
histochemical studies of LC neurons from a P10 rat incubated with an antibody for sAC
uncta). Green fluorescence is autofluorescence from the catecholamines in the largely
the absence of red puncta. Scale bars represent 50 μm.

image of Fig.�3
image of Fig.�4


Fig. 5. The effects of sAC inhibition on themagnitude of the chemosensitive response in LC neurons from neonatal rats older than P10. The inhibition of sAC enzyme by 2-hydroxyestradiol
(2HE; 10 μM) causes an increase in the chemosensitive response. (A) A typical chemosensitive response for whole cell current clamp experiments fromneonatal rats older than P10when
CO2 is increased from 5% to 15%. The bottom trace represents the integrated firing rate (reported asHzmeasured in 10 s bins). Note that 15% CO2 causes an increase in the integratedfiring
rate of LC neurons that is reversible upon return to 5% CO2. The top trace shows individual action potentials (voltage scale of 50mV) at a faster time scale than the lower panel. The first set
of action potentials is in the presence of 5% CO2, themiddle set of action potentials is in thepresence of 15% CO2 and the last set of action potentials is upon return to 5% CO2 at the end of the
lower trace. (B) The same neuron as in (A) in the presence of 2HE. Notice the significant increase in the integrated firing rate response to hypercapnia (5% to 15% CO2) in the presence of
2HE shown in the lower trace. Just as in (A), the upper traces show individual action potentials at a faster time trace in the presence of 5% CO2 + 2HE (left trace), 15% CO2+ 2HE (middle
trace) and 5% CO2+ 2HE again (right trace). (C) A complete current clamp record of a whole cell patch from an LC neuron from a P14 rat. In the lower trace is the integrated firing rate for
this neuron in response to 15% CO2 in the presence and the absence of 2HE. Note that repeated bouts of hypercapnia (going from 5% to 15% CO2) result in a similar increase in integrated
firing rate. The addition of 2HE does not increase thefiring rate in control conditions (5%CO2) but leads to a substantially increased firing rate response to hypercapnia (15% CO2) that is not
easily washed off upon removal of 2HE. The upper trace is a plot of action potentials vs. time for this neuron but at a slow time scale. This does not make individual action potentials clear
but highlights the entire trace. Note the large apparent hyperpolarization in response to 2HE that reverses upon washing it off. This hyperpolarization is most likely due to a change in
junction potential, caused by the addition of 2HE to the superfusate; however, the inhibition of sAC does not appear to reverse.
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of a specific inhibitor of transmembrane adenylyl cyclases (tmAC),
ddAdo [3], on the firing rate response to hypercapnia of LC neurons
from rat pups older than P10. Unlike the large increase in firing rate
seen with inhibitors of sAC, the inhibitor of tmAC, ddAdo (30 μM), did
not affect the firing rate response of LC neurons to hypercapnia from
rat pups older than P10 (Fig. 6B, C). The increase in firing rate in re-
sponse to hypercapnia was not significantly different in the absence
vs. the presence of ddAdo. These findings with inhibitors of sAC and
tmAC suggest that the firing rate response of LC neurons to hypercapnia
in rat pups older than P10 involves activation of sAC but not tmAC.

image of Fig.�5


Fig. 6. The effects of sAC and tmAC inhibition on the magnitude of the chemosensitive
response in LC neurons from neonatal rats older than P10. The inhibition of sAC enzyme
by KH7 (30 μM ) causes an increase in the firing rate response induced by hypercapnia
while the inhibition of tmAC by ddAdo (30 μM) has no effect on the firing rate response
induced by hypercapnia. (A) A typical chemosensitive response for whole cell current
clamp experiments from neonatal rats older than P10 when CO2 is increased from 5% to
15% and the effect of KH7 on that increased firing rate response. The bottom trace
represents the integrated firing rate (reported as Hz measured in 10 s bins). Note that
15% CO2 causes a small increase in the integratedfiring rate of LC neurons that is reversible
upon return to 5% CO2. This increase is dramatically increased in response to 15% CO2 in
the presence of the specific sAC inhibitor KH7. The top trace shows individual action
potentials (voltage scale of 50 mV) at a faster time scale than the lower panel. The first
three sets of action potentials depict the action potentials at the points indicated by the
numbers on the lower trace (1, 2 and 3) for the control response. The second three sets
of action potentials depict the action potentials at the points indicated by the numbers
on the lower trace (4, 5 and 6) for the firing rate response to hypercapnia in the presence
of KH7. (B) A similar set of traces to (A) but for the effects of the tmAC inhibitor 2’,5’-
dd-Ado. In the lower trace, note that hypercapnia induces a small increase in firing rate
that is similar in both the presence and in the absence of 2’,5’-dd-Ado. The upper traces
show individual action potentials segments at the times indicated on the lower traces
but at a faster time scale. (C) Bar graphs showing themean± SEM for the change in firing
rate in going from 5% CO2 to 15% CO2 in the absence vs. the presence of 2,5-dd Ado (left
two bars; n = 5)) and in the absence vs. the presence of KH7 (right two bars; n = 6).
Note that 2’,5’-dd-Ado does not affect the firing rate response to hypercapnia in LC
neurons but that KH7 results in a significantly higher (P b 0.05) response of firing rate
to hypercapnia.
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3.4. The involvement of PKA in hypercapnic-activation of Ca2+ channels

If sAC/cAMP is activating the Ca2+ currents in LC neurons via PKA
phosphorylation, then the inhibition of PKA should also increase the
firing rate response of LC neurons to hypercapnia. When the PKA
inhibitor H89 (10 μM) was added to the superfusate during the whole
cell patch of an LC neuron from a P12 rat, there was no increase in firing
rate under control conditions (5% CO2) but there was an increase in the
firing rate response to hypercapnia (Fig. 7A). This effect reversed when
the slice was restored to normocapnic aCSF (Fig. 7A). The firing rate of
LC neurons in response to hypercapnia (5% to 15% CO2) in older neo-
nates (NP10) increased from control values of 0.28 ± 0.04 Hz (n =
12) in the absence of H89 to 1.33 ± 0.43 Hz (n = 5) in the presence
of H89 (significant difference; unpaired t-test) . Thus, it appears that
PKAhas very low activity in control LC neurons but that hypercapnia ac-
tivates PKA.

We also hypothesized that acidified HEPES, in the nominal absence
of CO2/HCO3

−, would not activate the braking pathway (no activation
of sAC) and would thus result in a large firing rate response of LC
neurons to hypercapnia. Indeed, a large increase in the firing rate
response to acidification was seen when an LC neuron (from a neonatal
rat older than P10) in HEPES-buffered aCSF (pH 7.4) was exposed to
HEPES-buffered aCSF acidified to pH 6.9 (Fig. 7B). In comparison to
the firing rate response to hypercapnia (5% to 15% CO2) of LC neurons
from older neonates, which was 0.28 ± 0.04 Hz (n= 12), the response
of similar neurons to acidified HEPES solution was significantly
(unpaired t-test) larger, amounting to 1.43 ± 0.32 Hz (n = 5). These
data are consistentwith the proposed HCO3

− dependence of the braking
pathway in LC neurons from older neonatal rats.

Our results support our hypothesis that a HCO3
−/sAC/PKA-dependent

pathway leads to the chemosensitive activation of Ca2+ channels,
resulting in a BK channel-dependent braking mechanism on the firing
rate response of LC neurons to hypercapnia.

4. Discussion

In this study we report on our findings of the presence of a HCO3
−-

dependent pathway, involving sAC and PKA, whichmediates the activa-
tion of L-type Ca2+ channels by hypercapnia in LC neurons. This
pathway is consistent with our previous demonstration of a HCO3

−

dependence to Ca2+ channel activation in LC neurons [21]. This is the
first demonstration of such a pathway being active in chemosensitive
neurons, adds a novel pathway by which the magnitude of the
chemosensitive response could be regulated in LC neurons, and empha-
sizes a potential role for Ca2+ in central chemosensitivity.

4.1. Hypercapnic-activation of L-type Ca2+ channels through a
HCO3

−-dependent pathway involving sAC, cAMP and PKA

We have demonstrated the presence of sAC in the cytoplasm of
neonatal LC neurons (Fig. 4). sAC differs from transmembrane adenylyl
cyclases by being insensitive to G-proteins and to forskolin and by
its regulation by HCO3

− [38,46]. In LC neurons, it is likely that sAC is
activated by the increase in intracellular HCO3

− induced by hypercapnia.
Most studies of the cellular signaling pathways in chemosensitive
neurons emphasize changes in pH and the role of pH-sensitive ion
channels [1,4,9,12,24,29,31,43,44]. Our findings suggest that changes
of intracellular HCO3

− are an additional important signal associated
with the chemosensitive response to hypercapnia.

We have previously demonstrated that hypercapnia activates an
L-type Ca2+ current in LC neurons [12] and that this activation is
pH-independent and develops over the ages P3–P16 [20,21]. The cur-
rent study helps to define the precise mechanism of this activation.
When db-cAMP was added to the superfusate, the IV plot for Ca2+

currents was enhanced in LC neurons from neonatal rats older than
P10 (Fig. 1), resulting in increased levels of intracellular Ca2+ (Fig. 2).
The ability of db-cAMP to increase intracellular Ca2+ levels and the
Ca2+ current amplitude and voltage sensitivity in the presence of
normocapnia (5% CO2) is analogous to the effects of hypercapnia on
Ca2+ currents and intracellular Ca2+ levels in LC neurons [20]. These
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Fig. 7. The effects of PKA inhibition and HEPES-buffered aCSF on themagnitude of the firing rate response of LC neurons from neonatal rats older than P10. (A) The bottom trace shows an
integrated firing rate of an LCneuron to 3 challenges of hypercapnia (going from5% to 15% CO2). Note themodest increase infiring rate in thefirst and the third challenge, both done in the
absence of the PKA-inhibitor H89, but the largerfiring rate response in themiddle challenge,which is in the presence of H89. The top trace shows a record of individual action potentials at
a very slow time trace to show thewhole record. (B) The bottom trace shows the integrated firing rate for a neuron that has gone fromHEPES-bufferedmedium at pH 7.45 to an acidified
HEPES-bufferedmedium (6.9). Note the reversible increase in firing rate induced by the acidifiedHEPES-buffered solution. The top trace shows a record of individual action potentials at a
very slow time trace to show the whole record.
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findings implicate increased cAMP in thehypercapnia-induced pathway
of activation of Ca2+ channels in LC neurons. We have further shown
that in the nominal absence of CO2/HCO3

−, using an acidified HEPES-
buffered aCSF, Ca2+ currents recorded from LC neurons are decreased
(Fig. 3). These results support the previous finding of a strong correla-
tion between intracellular HCO3

− and Ca2+ channel activity [21].
Taken together, the above findings imply a HCO3

−-dependent path-
way that leads to the production of intracellular cAMP. It seems possible
that such a pathway should involve sAC. Our demonstration of the
presence of sAC in LC neurons (Fig. 4) is consistentwith its involvement
in the activation of Ca2+ channels by hypercapnia in LC neurons.
Further, the involvement of increased cAMP suggests activation of PKA
in LC neurons by hypercapnia and activation of Ca2+ channels by PKA-
mediated phosphorylation.

4.2. Reduction of the chemosensitive brake in LC neurons by inhibitors of
the Ca2+ channel activation pathway

Our previous results have implicated hypercapnia-activated Ca2+

channels and increased intracellular Ca2+ in a braking pathway,
mediated by activation of BK channels [20]. We have used this braking
phenomenon to further investigate the pathway by which hypercapnia
activates Ca2+ channels. We reasoned that if an inhibitor blocks part of
the Ca2+ channel activationmechanism, it would also block the braking
pathway in LC neurons from older neonates. Using such an approach,
two inhibitors of sAC, 2HE and KH7, resulted in a significant increase
in the firing rate response to hypercapnia of LC neurons from older
neonates (Figs. 5 and 6). The hypercapnia-induced firing rate increases
in the presence of 2HE or KH7 were similar to those recorded in the
presence of an inhibitor of BK channels [20]. We also found that the
PKA inhibitor H89 resulted in a significant increase in the firing rate
response to hypercapnia of LC neurons from older neonates (Fig. 7A).
Once again, PKA inhibition led to increases in hypercapnia-induced
firing rate that were similar to the increases resulting from inhibition
of BK channels. These data are consistent with a role for a HCO3

−-sAC-
cAMP-PKA pathway in the activation of Ca2+ currents in LC neurons in
response to hypercapnia causing a concurrent decrease of the
chemosensitive response of LC neurons from neonatal rats older than
P10.

In our study we use a high concentration of CO2 (15%) in order to
determine if a HCO3

−-dependent pathway exists for activation of Ca2+

channels and the braking phenomenon. In preliminary data we have
observed the braking phenomenon in response to 10% CO2 and a small
but significant phenomenon in response to 7.5% CO2. Further, we
have evidence from in vivo experiments that inhibition of BK channels
in LC neurons increases the hypercapnic ventilatory response. These
findings suggest that the pathway proposed here is involved in the
chemosensitive response of LC neurons and in ventilatory control.
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However, given the strong response to high levels of CO2 it is also
possible that the pathway described here is involved in other responses
to hypercapnia mediated by the LC such as anxiety and panic disorders
[16,37]. Further study will be required to clearly define the role of
this HCO3

−-dependent pathway in the response of LC neurons to
hypercapnia.

4.3. Significance

There are several significant findings to this study. Our findings
suggest a role for HCO3

− as a chemosensitive signal in LC neurons and
describe the first role for a sAC-cAMP-PKA pathway in a central
chemosensitive neuron. Further, that this pathway leads to the activa-
tion of Ca2+ channels and increased intracellular Ca2+ points to a previ-
ously nearly unexplored potential role of calcium in central
chemosensitive signaling. There are several possible ways in which
calcium could contribute to central chemosensitivity. The activation of
Ca2+ channels should depolarize and therefore activate chemosensitive
neurons. In fact, the inhibition of L-type Ca2+ channels by nifedipine
decreased the chemosensitive response in LC neurons from young
neonatal rats (P1–P9) [13]. This could reflect a Ca2+-dependent activa-
tion of chemosensitive LC neurons from young neonates. Alternatively,
since L-type Ca2+ channel inhibition can also diminish synaptic input,
it is possible that the effects of nifedipine inhibition on LC neuron
chemosensitivity are not due to depolarization of Vm by activated
Ca2+ channels, but rather due to the inhibition of synaptic input. It is
clear that in LC neurons from older neonates (NP10), increased intracel-
lular Ca2+ plays a role as a brake on the chemosensitive response due to
activation of BK channels [20].

Our work raises some interesting unanswered questions as well.
Elevated intracellular Ca2+ could alter the activity of any number of
channels or intracellular signaling pathways, all of which could affect
the chemosensitive response of LC neurons, but such a possibility
remains largely unexplored. It is also currently unclear to what extent
sAC or the activation of Ca2+ channels is involved in the hypercapnic
response of chemosensitive neurons from other areas of the medulla
and pons, although there has been evidence for hypercapnic Ca2+

signaling in astrocytes near the region of the retrotrapezoid nucleus
[15,19,42]. In addition, pH-induced inhibition of tonically active KCa

channels (possibly by inhibition of Ca2+ channels) in cultured medul-
lary neurons has been suggested to be part of the pathway by which
hypercapnia activates these neurons [40]. It is clear, therefore, that
there is a need to better characterize pathways involving Ca2+ and
central chemoreceptive control.
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