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TImpaired AMPK is associated with a wide spectrum of clinical and pathological conditions, ranging from obesity,

altered responses to exercise or metabolic syndrome, to inflammation, disturbed mitochondrial biogenesis and
defective response to energy stress. Fibromyalgia (FM) is a world-wide diffused musculoskeletal chronic pain
condition that affects up to 5% of the general population and comprises all the abovementioned pathophysiolog-
ical states. Here, we tested the involvement of AMPK activation in fibroblasts derived from FM patients. AMPK
was not phosphorylated in fibroblasts from FM patients and was associated with decreased mitochondrial
biogenesis, reduced oxygen consumption, decreased antioxidant enzymes expression levels and mitochondrial
dysfunction. However, mtDNA sequencing analysis did not show any important alterations which could justify
the mitochondrial defects. AMPK activation in FM fibroblast was impaired in response to moderate oxidative
stress. In contrast, AMPK activation by metformin or incubation with serum from caloric restricted mice
improved the response to moderate oxidative stress and mitochondrial metabolism in FM fibroblasts. These re-
sults suggest that AMPKplays an essential role in FMpathophysiology and could represent the basis for a valuable
new therapeutic target/strategy. Furthermore, both metformin and caloric restriction could be an interesting
therapeutic approach in FM.

© 2015 Elsevier B.V. All rights reserved.
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C1. Introduction

Mitochondria are essential organelles present in virtually all eukary-
otic cells. One of the primary functions of mitochondria is ATP produc-
tion via the oxidative phosphorylation (OXPHOS) pathway. Moreover,
they play crucial roles inmany othermetabolic, regulatory and develop-
mental processes [1]. The involvement of mitochondria in a variety of
pathological mechanisms has been partially ascribed to their central
role in reactive oxygen species (ROS) production and to the damaging
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effect mediated by ROS themselves on the same organelles [2]. In eu-
karyotic cells, mitochondrial biogenesis is triggered through modula-
tion of the ATP/ADP ratio, activation of adenosine monophosphate
activated protein kinase (AMPK) and the subsequent expression of per-
oxisomal proliferator activator receptorγ co-activator 1α (PGC-1α) and
nuclear respiratory factor-1 (NRF1) transcription factors. The AMPK cas-
cade is one of the intracellular pathways that have evolved to ensure
that energy homoeostasis is maintained even under pathological condi-
tions or stress [3]. AMPK has also been involved in the cellular defense
against oxidative stress damage induced bymitochondrial ROS through
the increase of MnSOD and catalase expression levels [4].

Fibromyalgia (FM) is a common chronic pain syndrome accompa-
nied by other symptoms such as fatigue, headache, sleep disturbances,
and depression. Despite the fact that it affects up to 5% of the general
restriction induce an AMPK-dependent restoration of mitochondrial
5), http://dx.doi.org/10.1016/j.bbadis.2015.03.005
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population worldwide, its pathogenic mechanism remains elusive.
Because not all FM patients have a mitochondrial dysfunction, it has
recently been hypothesized that oxidative stress and mitochondrial
dysfunction may be important events in pathogenesis of a subgroup of
FM patients [5–9]. There is evidence supporting this hypothesis, and
thus, reduced mitochondrial mass and impaired bioenergetics have
been described in blood cells derived from FM patients [8–10]. Further-
more, different antioxidant enzymes have been observed to be drasti-
cally reduced in FM patients [5–7,9,11]. Recently, we have also found
reduced AMPK gene expression levels in blood mononuclear cells
(BMCs) from FM patients [9].

As AMPK has a central regulatory role in cell metabolism, mitochon-
drial biogenesis and oxidative stress response, we evaluate if AMPK
down-regulation could be at least in part responsible for the impaired
oxidative stress response and mitochondrial dysfunction observed in
FM. Here, we assessed this hypothesis in cultured skin fibroblasts from
patients enrolled in a trial concerning the study of inflammation and
mitochondrial dysfunction in BMCs (all patients had mitochondrial
dysfunction in BMCs) [8].
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2. Material and methods

2.1. Ethical statements

The approval of the ethical committee of the University of Seville
was obtained, according to the principles of the Declaration of Helsinki
and all the International Conferences on Harmonization and Good
Clinical Practice Guidelines. All participants in the study gave their
written informed consent before initiating it.
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2.2. Patients

The inclusion criterionwas Fibromyalgia, based on current ACR diag-
nostic criteria [9], and diagnosed 2 to 3 years previously. The clinical
characteristics of each group are shown in Supplementary Table 1.
Exclusion criteria were: acute infectious disease within the previous
3 weeks; past or present neurological, psychiatric, metabolic, autoim-
mune, allergy-related, dermal or chronic inflammatory disease; unde-
sired habits (e.g., smoking and alcohol); medical conditions that
required glucocorticoid treatment, analgesics or antidepressant drugs;
past or current substance abuse or dependence; pregnancy or current
breastfeeding. Three FM female patients and two healthy female volun-
teers matched for age range, gender, ethnicity and demographic
features (completion of at least 9 years of education and member of
the middle socioeconomic class), were included in the study. Healthy
controls had no signs or symptoms of FM and had not taken any medi-
cation for at least 3 weeks prior to commencing the study. None of the
patients or controls had taken any drug or vitamin/nutritional supple-
ments during the 3 weeks prior to blood sample collection. All patients
and controls followed a standard balanced diet (carbohydrate 50–60%,
protein 10–20% and fat 20–30%) for 3 weeks prior to blood collection,
as established by a diet program. Clinical data were obtained from a
physical examination and subjects were evaluated using the Fibromyal-
gia Impact Questionnaire (FIQ), the visual analogues scale (VAS) and
depression with the Beck Depression Inventory (BDI). Tender points
were identified by digital pressure at the 18 locations recommended
by ACR which included a minimum of 11 out of 18. Coagulated blood
samples were collected from patients and controls after 12 h fasting,
centrifuged at 3800 ×g for 5 min, and the serum was stored at−80 °C
until testing. Serum biochemical parameters were assayed by routine
analytical methods. Routine laboratory test yielded normal results
for glucose, uric acid, creatine kinase, aspartate aminotransferase, ala-
nine aminotransferase, cholesterol, and triglycerides (Supplementary
Table 2).
Please cite this article as: E. Alcocer-Gómez, et al., Metformin and caloric
dysfunction in fibroblasts from Fibromyalg..., Biochim. Biophys. Acta (201
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2.3. Reagents

Trypsin and metformin were purchased from Sigma Chemical Co.,
(St. Louis, Missouri). Monoclonal Antibodies specific for mitochondrial
respiratory chain complex subunits [Anti-human Complex I (39 kDa
subunit), Complex II (30 kDa subunit I), Complex III (Core 1 subunit)
and Complex IV (COX II)], MitosoxTM, PicoGreen, and Hoechst 3342,
were purchased from Invitrogen/Molecular Probes (Eugene, Oregon).
Anti-cytochrome c antibodies were purchased from PharMingen (BD
Bioscience, San Jose, California). Anti-GAPDH monoclonal antibody,
clone 6C5, was purchased from Research Diagnostic, Inc., (Flanders,
New Jersey). Complex I 8 kDa subunit and Complex II 70 kDa subunit,
anti-PGC1-alpha and OGG-1 antibodies were from Abcam (Cambridge,
UK); anti-AMPK-p antibodies were from Santa Cruz Biotechnology
(Santa Cruz, CA, USA); and MnSOD antibody was purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). A cocktail of protease inhib-
itors (complete cocktail) was purchased from Boehringer Mannheim
(Indianapolis, IN). The ImmunStar HRP substrate kit was from Bio-Rad
Laboratories Inc. (Hercules, CA).
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2.4. Caloric restriction assay

For all experiments, onlymalemicewere used. Eight-week-oldmale
C57/BL6/J mice weighing 25–30 g were maintained on a 12 h light/dark
cycle. All studies were performed in accordance with the European
Union guidelines (86/609/EU) and Spanish regulations for the use of
laboratory animals in chronic experiments (BOE 67/8509-12, 1988).
All experiments were approved by the local institutional animal care
committee. Calorie restriction (CR) regimen was progressively imple-
mented: it was initiated with 10% restriction diet during the first
week, followed by 20 and 30% during the second and third weeks,
respectively, and maintained at 30% until the end of treatment. After
testing, mice were sacrificed by decapitation. Blood samples were
collected frozen at −80 °C. In several experiments, fibroblasts were
cultured using 10% mice serum fed ad libitum (AL) or CR. Cells were
incubated at 37 °C in a 5% CO2 atmosphere. Serum was heat activated
for 30 min at 55 °C.
2.5. Behavioral assays

Behavioral analyseswere performed in a testing roomwith homoge-
neous noise and light levels. The testing apparatus was cleaned with
70% ethanol (Panreac Química S.A.U.) between trials to eliminate any
influence of animal odor on the exploratory behavior.
2.6. Pain assay

For the hot-plate test, a glass cylinder (16 cm high, 16 cm in diame-
ter) was used to constrain the mice to the heated surface of the plate.
The plate surface was maintained at 50–55 ± 0.5 °C and the latency to
paw-licking was measured, with a cut-off of 30 s.
2.7. Fibroblast cultures

Control fibroblasts were human primary fibroblasts from healthy
volunteers. Samples from patients and controls were obtained accord-
ing to the Helsinki Declarations of 1964, as revised in 2001. Fibroblasts
were cultured in DMEM media (4500 mg/L glucose, L-glutamine,
piruvate), (Gibco, Invitrogen, Eugene, OR, USA) supplemented with
10% fetal bovine serum (FBS) (Gibco, Invitrogen, Eugene, OR, USA)
and antibiotics (Sigma Chemical Co., St. Louis, MO, USA). Cells were
incubated at 37 °C in a 5% CO2 atmosphere.
restriction induce an AMPK-dependent restoration of mitochondrial
5), http://dx.doi.org/10.1016/j.bbadis.2015.03.005
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2.8. Treatment

2 mM metformin (Sigma Aldrich) and/or 100 μM of H2O2 at 48 h
were used for in vitro experiments.
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2.9. Mitochondrial respiratory chain enzyme activities

Activities of NADH:coenzyme Q1 oxidoreductase (complex I),
succinate deshydrogenase (complex II), ubiquinol:cytochrome c oxidore-
ductase (complex III), cytochrome c oxidase (complex IV), NADH: cyto-
chrome c reductase (complex I + III), succinate:cytochrome c reductase
(complex II + complex III) and citrate synthase (CS) were determined
in sonicated-permeabilized fibroblasts using spectrophotometric
methods. Results are expressed as Units/CS (mean ± SD). Proteins of
fibroblast homogenates were analyzed by the Lowry procedure.
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2.10. Western blotting

Whole cellular lysate from fibroblasts was prepared by gentle shak-
ing with a buffer containing 0.9% NaCl, 20 mMTris-ClH, pH 7.6, 0.1% tri-
ton X-100, 1 mM phenylmethylsulfonylfluoride and 0.01% leupeptine.
Electrophoresis was carried out in a 10–15% acrylamide SDS/PAGE.
Proteins were transferred to Immobilon membranes (Amersham
Pharmacia, Piscataway, NJ). Mouse anti-Complex I (8 and 39 kDa sub-
unit), mouse anti-complex II (30 kDa subunit I), mouse anti-Complex
III (Core 1 subunit), mouse anti-complex IV (COX II), AMPK-P, PGC-1
α, MnSOD, catalase and DNA repair enzyme 8-oxoguanine DNA
glycolase-1 (OGG-1) antibodies were used to detect proteins by West-
ern blotting. Proteins were electrophoresed, transferred to nitrocellu-
lose membranes and, after blocking over night at 4 °C, incubated with
the respective antibody solution, diluted at 1:1000. Membranes were
then probed with their respective secondary antibody (1:2500).
Immunolabeled proteins were detected by using a chemiluminescence
method (Immun Star HRP substrate kit, Bio-Rad Laboratories Inc.,
Hercules, CA). Protein was determined by the Bradford method.
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E2.11. Measurement of CoQ levels

CoQ levels in cultured fibroblasts were performed using a method
previously described by our group [8].
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R2.12. Antioxidant enzyme activity

Catalase activity was determined in cellular lysate by monitoring
H2O2 decomposition at 240 nm [12]. SOD activity was determined on
the basis of the inhibition of the formation of NADH—phenazine
methosulfate-nitroblue tetrazolium formazan [13].
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N2.13. Quantification of mtDNA

Nucleic acids were extracted from fibroblasts by standard cellular
lysis. The primers used were: mtF3212 (5′-CACCCAAGAACAGGGTTT
GT-3′) and mtR3319 (5′-TGGCCATGGGTATGTTGTTAA-3′) for mtDNA,
and, 18S rRNA gene 18S1546F (5′-TAGAGGGACAAGTGGCGTTC-3′)
and 18S1650R (5′-CGCTGAGCCAGTCAGTGT3′) for nDNA for loading
normalization. Arbitrary units were computed as the ratio between
the optical density band corresponding to the mtDNA studied in the
20–30th cycle and that of the nDNA in the 15th amplification cycle.
One unit was considered to be the ratio corresponding to the control pa-
tient. For imaging of mtDNA in living cells, control and FM fibroblasts
cells were cultured in dishes with a glass bottom (MatTek Corporation,
Ashland, MA) and stained with PicoGreen (3 μL/mL) for 1 h at 37 °C.
TMRM (100 nM) staining was used to visualize mitochondria.
Please cite this article as: E. Alcocer-Gómez, et al., Metformin and caloric
dysfunction in fibroblasts from Fibromyalg..., Biochim. Biophys. Acta (201
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2.14. Mitochondrial ROS production

Mitochondrial ROS generation in BMCs and fibroblasts were
assessed by MitoSOX™ Red, a red mitochondrial superoxide indicator.
MitoSOX Red is a novel fluorogenic dye recently developed and validat-
ed for highly selective detection of superoxide in the mitochondria of
live cells. MitoSOX™ Red reagent is live-cell permeant and is rapidly
and selectively targeted to the mitochondria. Once in themitochondria,
MitoSOX™ Red reagent is oxidized by superoxide and exhibits red
fluorescence.

2.14.1. Fluorescence microscopy
Cells grown onmicroscope slides in 6-well plates for 24 hwere incu-

bated with MitoSOX™ Red for 30 min at 37 °C, washed twice in PBS,
fixed with 4% paraformaldehyde in PBS for 0.5–1 h at room tempera-
ture, and washed twice with PBS. After that, cells were incubated for
10min at 37 °Cwith anti-cytochrome c antibody (Invitrogen, Barcelona,
Spain) to label mitochondria. Slides were analyzed by immunofluores-
cence microscopy.

2.14.2. Flow cytometry
Approximately 1 × 106 cells were incubated with 1 μM MitoSOXTM

Red for 30 min at 37 °C, washed twice with PBS, resuspended in
500 μL of PBS and analyzed by flow cytometry in an Epics XL cytometer,
Beckman Coultier, Brea, California, USA (excitation at 510 nm and fluo-
rescence detection at 580 nm).

2.15. Oxygen consumption rate (OCR)

The oxygen consumption rate (OCR)was assessed in real-time using
the 24 well Extracellular Flux Analyzer XF-24 (Seahorse Bioscience,
North Billerica, MA, USA) according to the manufacturer's protocol,
which allows measuring OCR changes after up to four sequential addi-
tions of compounds. Cells (5 × 104/well) were seeded for 16 h in the
XF-24 plate before the experiment in a DMEM/10% serum medium
and then incubated for 24 h with the different compounds studied.
Before starting measurements, cells were placed in a running DMEM
medium (supplemented with 25 mM glucose, 2 mM glutamine, 1 mM
sodium Pyruvate, and without serum) and pre-incubated for 20 min
at 37 °C in the absence of CO2 in the XF Prep Station incubator (Seahorse
Bioscience, BillericaMA, USA). Cells were transferred to an XF-24 Extra-
cellular Flux Analyzer and after an OCR baseline measurement a profil-
ing of mitochondrial function was performed by sequential injection
of four compounds that affect bioenergetics, as follows: 55 μL of
oligomycin (final concentration 2.5 μg/mL) at injection in port A, 61 μL
of 2,4-dinitrophenol (2,4-DNP) (final concentration 1 mM) at injection
in port B, and 68 μL of antimycin/rotenone (final concentration 10 μM/
1 μM) at injection in port C. A minimum of five wells was utilized per
condition in any given experiment. Data are expressed as pMol of O2 con-
sumed per minute normalized to 1000 cells (pMol O2/1000 cells/min).

2.16. Lipid peroxidation

Fibroblasts were cultured on coverslips and incubated with 1 μM
C11-Bodipy (BODIPY® 581/591 C11) for 30 min at 37 °C. Coverslips
were then rinsed with PBS and mounted onto slides as described
above for analysis with a fluorescencemicroscope. Fluorescent intensity
wasmeasured using the Image J software (National Institutes of Health,
Bethesda, Maryland, USA).

Lipid peroxidation in serum from mice was detected by measuring
the concentration of TBARS influorescence at 532nm(F7000,HITACHI),
using a TBARS detection kit according to the manufacturer's instruc-
tions. Absorbance of was measured at 535 nm. TBARS concentrations
of the samples were calculated using the extinction co-efficient of
156,000 M−1 cm−1.
restriction induce an AMPK-dependent restoration of mitochondrial
5), http://dx.doi.org/10.1016/j.bbadis.2015.03.005
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2.17. PCR Amplification and mtDNA sequencing

The completemtDNAwas amplified from total DNA in 24 overlapping
800–1000-bp-long PCR fragments. Primerswere carefully designed using
the revised human mtDNA Cambridge reference sequence (www.
mitomap.org/mitoseq.html).

The PCR fragments were sequenced in both strands in an
ABI 3730 (Applied Biosystems; www.appliedbiosystems.com;
Foster City, CA) sequencer using a BigDye v3.1 sequencing kit
(Applied Biosystems; www.appliedbiosystems.com; Foster City,
CA). Assembly and identification of variations in the mtDNA were
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carried out using the Staden package. For this purpose the revised
human mtDNA Cambridge reference sequence (www.mitomap.org/
mitoseq.html) was used. The whole process was carried out at
Secugen (Madrid, Spain).
2.18. Analysis of apoptosis and viable cells

Viable cells were determined from their normal cell and nuclear
morphology and exclusion of propidium iodide. In each case 10 random
fields and more than 500 cells were counted.
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2.19. Statistical analysis

Data infigures is given asmean±SD.Data between different groups
were analyzed statistically by using ANOVA on Ranks with Sigma Plot
and Sigma Stat statistical software (SPSS for Windows, 19, 2010, SPSS
Inc. Chicago, IL, USA). For cell-culture studies, Student's t test was used
for data analyses. A value of P b 0.05 was considered significant.
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3. Results

3.1. Mitochondrial metabolism

AsAMPK signaling has beenpreviously reported to be altered in BMCs
from FM patients [9], we have next studied the role of AMPK in FM path-
ophysiology using isolated fibroblasts from three representative FM
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patients. FM fibroblasts displayed a significant reduction in the activities
of mitochondrial respiratory enzymes compared to control fibroblasts
(Fig. 1A). Mitochondrial protein expression levels correlatedwith the de-
pressed activities found in respiratory enzymes (Fig. 1B). Next, we inves-
tigated mitochondrial function by measuring the OCR values in control
and FM fibroblasts, exposed sequentially to each of four modulators of
oxidative phosphorylation (OXPHOS): oligomycin (an inhibitor of F1Fo-
ATPase or complex V), 2,4-DNP (uncoupling of the OXPHOS electron
transport chain) and antimycin/rotenone (complex I and III inhibitors re-
spectively) (Fig. 2A). The basal OCR was markedly affected in fibroblasts
from FM patients compared to controls (Fig. 2B). The spare respiratory
capacity (SRC) of cells was obtained by calculating the mean of OCR
values after injection of 2,4-DNP minus the basal respiration and could
be used as an indicator of how close a cell is operating to its bioenergetic
limit. Fibroblasts from FM patients showed a significant decrease of SRC
compared to control cells (Fig. 2C). Furthermore, similarly to what was
previously found in BMCs [8], FM fibroblasts also showed decreased
CoQ10 levelswhen compared to controls (Fig. 2D). CoQ10 content offibro-
blasts frompatient 1was reduced by 70%, frompatient 2 by 78% and from
patient 3 by 82%. FM fibroblasts also had a smaller number of mitochon-
dria; we measured mtDNA content and compared it with control values.
Results showed that mtDNA content was 30–50% lower in fibroblasts
from FM (Fig. 2E). This finding was further confirmed by visualizing the
number of mtDNA nucleoids per cell using PicoGreen staining and fluo-
rescencemicroscopy.Mitochondrial nucleoidswere significantly reduced
in FM fibroblasts (Figs. 2F and G).

Since mitochondrial respiratory chain defects are usually associated
with mtDNA mutations or deletions, we next sequenced the complete
mtDNA from FM patients. Sequence analysis did not show any impor-
tant alterations as mutations or deletions which could justify the mito-
chondrial defects. We only found mitochondrial polymorphisms which
are also observed in control fibroblasts (Table S1).
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3.2. AMPK is implicated in oxidative stress response in FM

Mitochondrial superoxide production was significantly increased in
FM fibroblasts compared to controls (P b 0.001), accompanied by high
levels of lipid peroxidation (Figs. 3A, B, D and E). To confirm these
results, the expression of an additional oxidative stress marker such as
8-oxoguanine glycosylase (OGG1) was also determined. FM fibroblasts
showed high levels of OGG1 (Fig. 3C).

As AMPK induces PGC-1α phosphorylationwhich leads to increased
antioxidant enzymes expression levels and mitochondrial biogenesis,
we analyzed AMPK protein expression levels and activation in FM
fibroblasts. Results showed low expression levels of active phosphory-
lated AMPK, PGC-1α and MnSOD (Fig. 4A), suggesting that AMPK-
dependent activation of PGC-1αwas indeed impaired in FM fibroblasts.
As reduced antioxidant enzyme levels have been previously described
in FM [5,6,11], we next investigated the response tomoderate oxidative
stress induced by exogenous addition of H2O2 in FM fibroblasts. Incuba-
tion of FM fibroblasts with H2O2 failed to activate AMPK and PGC-1α
and to increase MnSOD expression levels (Fig. 4A). As a consequence
of an impaired defensive response to oxidative stress, cell death
increased in FM fibroblasts treated with H2O2 (Fig. 4B).

Under oxidative stress condition, AMPK was found to lead to an
increase in the NADPH generation [14]. However, as FM fibroblasts
had reduced activity of phosphorylated AMPK, we found low levels of
NADPH. Interestingly, metformin, an AMP mimetic that directly acti-
vates AMPK, induced an increase of NADPH levels and the activity of
SOD and catalase (Figs. 5A–C).

FM fibroblasts under moderate oxidative stress conditionsmediated
by H2O2 treatment or induction of AMPK by metformin showed PGC-
1alpha activation (Fig. 5D) which increased protection against H2O2

exposure and reduced cell death (Fig. 5E). These results suggest that
the induction of AMPK phosphorylation could to be an interesting
FM2 FM3

* *

p-AMPKα

PGC-1α

MnSOD

*

broblasts between FMpatients and healthy subjects. (A) Protein expression levels of phos-
vels were determined by densitometric analysis (IOD, integrated optical intensity) of three
patients. (B) Percentage of apoptosis in control and FM fibroblasts after incubation with

restriction induce an AMPK-dependent restoration of mitochondrial
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therapeutic approach in FM. Given that it has been speculated that the
beneficial effects of caloric restriction (CR) could be mediated by
AMPK [3], CR could be a promising method to alleviate oxidative dam-
age in FM. Taken into account the possible role of AMPK in FM patho-
physiology and the results with metformin treatment, we next studied
the implication of AMPK in the protective effect of CR on FM fibroblasts.

Thus, we performed an experiment with a mouse model of CR. Sev-
eral mice were fed with a normal diet and with CR for onemonth. Mice
submitted to the CR diet for one month developed a marked analgesia
Please cite this article as: E. Alcocer-Gómez, et al., Metformin and caloric
dysfunction in fibroblasts from Fibromyalg..., Biochim. Biophys. Acta (201
when compared with ad libitum (AL) fed mice (Fig. 6A) accompanied
by AMPK phosphorylation (Fig. 6B) and reduced levels of serum oxida-
tive stress (Fig. 6C). To determine the potential effect of improvement of
AMPK by CR, fibroblasts from FM patients were cultured with serum
from AL and CR mice, and cell growth, ATP and mitochondrial mass
were assessed. Serum from CR mice improved cell growth in controls
and FM fibroblasts (Fig. 6D), accompanied by an increase in ATP levels
and mitochondrial mass (determined by increased citrate synthase
activity) and cell morphology normalization (Figs. 6E–G).
restriction induce an AMPK-dependent restoration of mitochondrial
5), http://dx.doi.org/10.1016/j.bbadis.2015.03.005
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U
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C4. Discussion

Despite decades of intense research, the basic pathophysiological
mechanisms of FM still remain elusive. Several important pathophysio-
logical processes in FM onset and development have been described:
oxidative stress, mitochondrial dysfunction, bioenergetic alterations
and inflammation processes are only someof themost importantmech-
anisms that have been postulated [5–11]. AMPK has been reported to
play a master regulatory role in all these cellular processes and its dys-
regulation has been described in several other diseases [15]. Recently,
we have reported alterations in AMPK signaling in BMCs from FM pa-
tients. However, the role of AMPK in FM remains unknown. In this
study, we found a marked mitochondrial dysfunction in fibroblasts de-
rived from 3 FM patients. It is interesting to remark that until now, all
the studies in FM have explored the pathophysiological processes only
in biological samples isolated directly from patients, e.g. BMCs, platelets,
serum, plasma, saliva,muscle. In this workwe have used human dermal
fibroblasts that have a long track record of utility in mitochondrial
Please cite this article as: E. Alcocer-Gómez, et al., Metformin and caloric
dysfunction in fibroblasts from Fibromyalg..., Biochim. Biophys. Acta (201
disease biochemistry and molecular studies [1]. Skin fibroblasts repre-
sent a useful biological model in which defined mutations and the
cumulative cellular damage can be examined. We found reduced mito-
chondrial chain enzimatic activities and proteins, CoQ10 levels, mito-
chondrial mass and ATP levels, accompanied by increased oxidative
damage.We found no specific mutation aftermtDNA sequencing; how-
ever, we cannot rule out the presence ofmutations in nDNA or potential
mtDNA mutations in other patients not included in this study.

Moreover, we observed reduced levels of phosphorylated PGC-1α
accompanied by low levels of antioxidant MnSOD and impaired oxida-
tive stress response which are protective mechanisms controlled by
AMPK. Furthermore, reduced levels of active phosphorylated AMPK
were observed in FM fibroblasts. These data are interesting because
AMPK has been involved in the control of peripheral sensitization of
nociceptors, providing evidence of AMPK activation as a novel treat-
ment avenue for acute and chronic pain states [16]. In addition, the
exposition of fibroblasts to moderate oxidative stress, as induced by
exogenously added H2O2, fails to up-regulate AMPK, PGC-1α and
restriction induce an AMPK-dependent restoration of mitochondrial
5), http://dx.doi.org/10.1016/j.bbadis.2015.03.005
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antioxidant enzymes. Concerning this, AMPK has been deeply involved
in the regulation of oxidative stress and mitochondrial dysfunction
[17–19]. In this sense, AMPK phosphorylation by metformin treatment
induced activation of PGC-1α accompanied by increased antioxidant
enzyme activities and, as a consequence, protection of FM fibroblasts
against stress exposure. PGC-1α is a key player in the ROS-induced mi-
tochondrial biogenesis, along with the NRF-1 and the mitochondrial
transcription factor Tfam [20]. According to our data, metformin could
induce PGC-1α activation by AMPK phosphorylation. Furthermore,
PGC-1α has a key role in the antioxidant enzymes biosynthesis, and
its genetic deletion has shown an inhibitory effect in SOD2 and catalase
expression levels [4,20]. Furthermore, it has been shown that PGC-1α
induction by phosphorylation of AMPK increases SOD2 and catalase
expression levels [21]. Our data show that PGC-1α activation bymetfor-
min induces increased mitochondrial biogenesis and antioxidant en-
zymes expression levels, and, as a consequence, a more physiological
response to oxidative stress. A chronic exposure to oxidative stress
and dysregulation of the stress response are accepted causative factors
involved in the pathophysiology of FM [11,22–24]. Our results could
represent the basis for a valuable new therapeutic target/strategy. We
found in FM fibroblasts: (i) a lack of AMPK phosphorylation and (ii) res-
toration of its phosphorylation by AMPK activators, such as metformin.
These findings suggest that AMPK plays a central role in FM pathophys-
iology and stress response. Identification of AMPK as a regulating factor
in FMwould have implications for patient management and treatment.
We can hypothesize that the loss of sensitivity of AMPK activation is re-
sponsible for increased oxidative stress and impaired bioenergetics in
FM patients. Furthermore, other metabolic events have been related
with AMPK down-regulation. Reduced AMPK activity has been found
in obesity or metabolic syndrome [3], both reported to be implicated
in FM [25,26]. AMPK dysfunction seems to explain many of the patho-
physiological alterations found in FM. In this sense, activation of AMPK
with other activators having similar effects to metformin must induce
similar beneficial effects. To investigatewhether AMPK could be respon-
sible for the ability of CR to improve the cells of FM patients, we used an
in vitro cell culturemodel that recapitulates key in vivo proliferative and
phenotypic features of CR [27]. In this model, cells from patients were
cultured in the presence of serum from caloric restricted mice resulting
in an important improvement in FM fibroblasts alterations. Future re-
search should be focused on studying the significance of AMPK in FM
etiology and as a therapeutic target. Furthermore, an important chal-
lenge in FM is themoderate effectiveness of pharmacological therapies;
in this sense, AMPK activators, such as AICAR,metformin, CoQ10, resver-
atrol, CR or physical activity, can provide new therapeutic opportunities
[3]. As not all patients have a mitochondrial dysfunction, our results
could help to characterize a subgroup of patients inwhichmitochondri-
al target treatment could be themost appropriate strategy. In this sense,
mitochondrial protector drugs or mitochondrial biogenesis activators
may also be considered as new possible therapeutic approach in FM.
Nevertheless, more research is needed in order to establish a possible
primary causation link between AMPK and FM.

The results described in this article could serve as a new way of
designing experiments to better understand the influence of oxidative
stress on the development of FMandgenerate new therapeutic strategies.
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