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Abstract

Tachycardia may cause substantial molecular and ultrastructural alterations in cardiac tissue. The underlying pathophysiology has not been
fully explored. The purpose of this study was (I) to validate a three-dimensional in vitro pacing model, (II) to examine the effect of rapid pacing on
mitochondrial function in intact cells, and (IIT) to evaluate the involvement of L-type-channel-mediated calcium influx in alterations of
mitochondria in cardiomyocytes during rapid pacing. In vitro differentiated cardiomyocytes from P19 cells that formed embryoid bodies were
paced for 24 h with 0.6 and 2.0 Hz. Pacing at 2.0 Hz increased mRNA expression and phosphorylation of ERK1/2 and caused cellular
hypertrophy, indicated by increased protein/DNA ratio, and oxidative stress measured as loss of cellular thiols. Rapid pacing additionally
provoked structural alterations of mitochondria. All these changes are known to occur in vivo during atrial fibrillation. The structural alterations of
mitochondria were accompanied by limitation of ATP production as evidenced by decreased endogenous respiration in combination with
decreased ATP levels in intact cells. Inhibition of calcium inward current with verapamil protected against hypertrophic response and oxidative
stress. Verapamil ameliorated morphological changes and dysfunction of mitochondria. In conclusion, rapid pacing-dependent changes in calcium
inward current via L-type channels mediate both oxidative stress and mitochondrial dysfunction. The in vitro pacing model presented here reflects
changes occurring during tachycardia and, thus, allows functional analyses of the signaling pathways involved.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It has been shown in animal models of chronic cardiac tachy-
cardia that rapid irregular stimulation of the atrium causes
detrimental effects in this tissue [1-5]. Electrophysiological
changes such as reduction of the refractory period, which results
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in electrical remodeling, have been reported [1-3]. There is a
body of evidence demonstrating that Ca®" influx into the
cardiomyocytes mediates this response to chronic cardiac
tachyarrhythmia [2,3]. Studies using atrial tissue have shown
that a tachycardia-induced Ca®" overload of cardiomyocytes
causes substantial shortening of the atrial action potential, im-
pairment of contractility, cellular hypertrophy, and induces
ultrastructural alterations such as morphologically altered
mitochondria and disrupted endoplasmic reticulum [1—7]. More-
over, a recent study has provided the first evidence of the
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involvement of oxidative stress in cardiac tachycardia [8,9].
Carnes et al. have demonstrated an increase in the concentration
of reactive oxygen species associated with increased amounts of
oxidatively modified proteins during electrical remodeling [8].

Although tachycardia-induced alterations in the mitochondri-
al morphology of cardiomyocytes have been demonstrated, lim-
ited data are available regarding the effect of tachycardia on
mitochondrial function. It has been shown in in vivo studies and
in vitro that atrial fibrillation is associated with a higher demand
of energy of cardiomyocytes, resulting in transiently decreased
concentrations of high-energy phosphates and mitochondrial
NADH [10,11]. There are controversial reports concerning the
effect of tachyarrhythmia, such as atrial fibrillation, on the acti-
vity of mitochondrial enzymes. Using a canine model, decreased
activities of mitochondrial complexes III and V have been re-
ported during rapid pacing [12], whereas no changes were found
in the activities of complexes IVand V in goats subjected to atrial
fibrillation [11]. Reduced ATP levels have been described in
human right atrial tissue samples, but it remains unclear whether
these are due to mitochondrial dysfunction or increased ATP
consumption in the cardiomyocytes [13]. Here, we address this
question by analyzing the effect of tachycardia on mitochondrial
function and adenine nucleotide concentration in intact
cardiomyocytes.

Reliable information about the effect of tachycardia on mito-
chondrial function is of particular importance since mitochon-
drial dysfunction can result in the induction of apoptosis or
necrosis. The purpose of the present study was to characterize
mitochondrial function after cardiac tachycardia, and to elu-
cidate the role of Ca*" influx via L-type channels in the induction
of mitochondrial alterations. Therefore, we analyzed mitochon-
drial respiration and the concentration of cellular adenine nucle-
otides in response to rapid pacing.

In order to reduce the number of animal experiments, we de-
veloped a tachycardia model using in vitro differentiated car-
diomyocytes. These cells form three-dimensional embryoid
bodies (EBs) that consist of a heterogeneous mixture of cells
including pace-maker, contractile (and excitable to various ex-
tents) and non-contractile cells. In contrast to isolated pure myo-
cyte cultures, EBs reflect the myocardial tissue architecture
reasonably well. Rapid pacing of these electrically well-coupled
cardiomyocytes derived from P19 cells [14—18] causes stimula-
tion of Erk-2 expression, mitochondrial swelling, and cellular
hypertrophy, as previously shown in in vivo studies [19,20]. In
this study, we found that rapid pacing of EBs caused a verapamil-
sensitive decrease in respiration and cellular ATP.

2. Materials and methods

2.1. Differentiation of cardiomyocytes

Mouse P19 cell lines were used throughout the study. Because of the lack of
electrical coupling and synchronicity in cultures of isolated cardiomyocytes, we
used an in vitro differentiation model leading to a three-dimensional embryoid
body, which consists of electrically coupled cells with synchronized spontaneous
contractions. In contrast to embryonic stem cells requiring feeder cells for culture,
P19 cells are relatively robust and do not depend on the presence of additional cells
in culture [14—18]. Undifferentiated (pluripotent) P19 cells (ATCC CRL-1825)

were maintained and passaged in high-glucose DMEM (Gibco BRL) supplemen-
ted with 15% FBS, 200 mmol/l L-glutamine, 5 10> mol/I 2-mercaptoethanol,
10 mmol/l non-essential amino acids, and 5000 U/ml penicillin/streptomycin. P19
cells were expanded on 0.1% gelatin-coated petri dishes in monolayers to 80%
confluence before they were split. Differentiation was initiated by suspending 400—
800 P19 cells in 20 pul of medium, supplemented with 15% FBS and 1% DMSO, as
hanging drops for 2 days. The resulting embryoid bodies (EBs) were cultured for
5 days in suspension. Seven-day-old EBs were then plated onto petri dishes. In
vitro differentiation of P19 cells into cardiomyocytes was demonstrated at the
molecular level by the expression of GATA-4, a-myosin heavy chain (MHC) and
R-MHC (not shown).

2.2. In vitro pacing model

To stimulate the differentiated cardiomyocytes of EBs, a pair of custom-built
carbon electrodes (12.5x 6 x32 mm) was submersed at opposite sides of a petri
dish in medium. The distance between the electrodes was about 8 cm. Copper
wires, which were electrically isolated with silicon rubber, were inserted into
holes drilled into the carbon electrodes and connected to a stimulation unit
(GRASS Stimulator). A biphasic square wave impulse of 150 V total amplitude
and 5 ms duration was used for stimulation. The biphasic impulse (encompass-
ing a positive and negative deflection) was used to minimize electrolysis at the
electrodes. All EBs were located in the center of the petri dish (minimum
distance to each electrode: 3 cm). Synchronous contractions of the EBs at the
applied pacing frequency was verified by microscopy. Three hertz was the
fastest frequency rate that resulted in 1:1 capture of the EB. Pacing of EBs was
performed in the cell culture incubator for up to 24 h at 37 °C, at pacing
frequencies of 0.6 Hz (bradycardia) and 2.0 Hz (tachycardia). The spontaneous
frequency of EB contractions was approximately 0.5 Hz. The culture medium
was changed daily over the course of the experiments. To analyze the effect of
Ca®" influx into the cardiomyocytes on the impairment of the cells due to pacing,
0.1 uM verapamil was added to the medium throughout the electrical treatment.

2.3. Determination of the protein/DNA ratio

DNA and protein contents were determined simultaneously in each sample
of P19 EBs. DNA was extracted by using the InViSorb Genomic DNA Kit I
(InViTek, Berlin, Germany). Briefly, cells were lysed by the addition of 500 pul
lysis buffer G, followed by sonication (310 s, 30 W, VibraCell; Sonics and
Materials Inc., Dunbury, USA). Then, 30 pul of Invisorb50 carrier suspension
was added to the lysate and it was incubated at room temperature for 5 min. Both
carrier material and bound DNA were collected by centrifugation (6000xg, short
spin), and the supernatant was preserved for subsequent determination of the
protein content. DNA/carrier was washed thrice by resuspension in 1 ml wash
buffer and brief centrifugation. Finally, DNA was eluted by the addition of
200 pl pre-warmed elution buffer D and a 5-min incubation period at 60 °C.
Finally, the carrier was removed by centrifugation (10 min, 15,000 x g) and the
DNA content of the supernatant was determined spectrophotometrically.

Protein concentration was determined using the micro-Lowry-based Protein
Assay Kit (Sigma, Heidelberg, Germany), following the recommended protocol.
Initially, proteins were precipitated from the preserved supernatants by the
addition of 1/5 volume each of the desoxycholate and trichloroacetic acid solu-
tions provided with the kit, and then they were redissolved in PBS, pH 7.4.

2.4. RNA isolation and quantitative RT-PCR

Isolation of RNA and RT-PCR were performed as described previously [19].
Briefly, total RNA was prepared using the RNeasy Mini Kit (Qiagen, Hilden,
Germany) and 1 pg was transcribed into cDNA by means of AMV reverse
transcriptase (Promega, Mannheim, Germany). Quantitative PCR was per-
formed in the iCycler (Bio-Rad, Munich, Germany). A 25 pl reaction mixture
consisted of 12.5 pl HotStart Taq Master Mix (Qiagen), 1 pl cDNA, and
0.5 pmol/l of the specific primers for Erk2-US (5'-CATCGCCGAAGCAC-
CATTCAAG) and Erk2-DS (5'-GATAAGCCAAGACGGGCTGGAG). Initial
denaturation at 95 °C for 15 min was followed by 40 cycles with denaturation at
95 °C for 30 s, annealing at 62 °C for 30 s, and elongation at 72 °C for 30 s.
Quantities of a-tubulin mRNA were used to normalize cDNA content.
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2.5. Western blotting

Western blots were performed as previously described [20] using the
following primary antibody for immunodetection: rabbit anti-phospho-p44/p42
MAP kinase (Thr202/Tyr204) polyclonal, purified Ig (PhosphoPlus p44/p42
Antibody Kit; New England Biolabs, Schwalbach, Germany). Loading control
was performed using GAPDH.

2.6. Measurement of respiration

Oxygen uptake of the cells was measured at 30 °C in a thermostat-controlled
chamber equipped with a Clark-type electrode (Paar Physica Oxygraph
Respirometer; Bioenergetics and Biomedical Instruments, Innsbruck, Austria).
For the calibration of the oxygen electrode, the oxygen content of air-saturated
incubation medium was taken to be 217 nmol/ml O,. Oxygen-free conditions
were adjusted by the addition of dithionite to the medium [21,22].

2.7. Electron microscopy

For electron microscopy, three independent cell preparations were used for
each incubation strategy. After sedimentation at 320 x g at4 °C, the cell pellet was
fixed with a mixture of 4% formaldehyde and 0.4% glutaraldehyde for 1 hat4 °C.
Thereafter, the pellet was rinsed thoroughly with PBS (pH 7.4), postfixed in 1%
osmium tetroxide for 1 h at4 °C, dehydrated in a graded series of ethanol, enbloc
contrasted with 1% uranyl acetate in 70% ethanol, and flat-embedded between
two polyethylene foils in Durcupan (Fluka/Sigma, Deisenhofen, Germany). Each
washing and incubation step was followed by sedimentation at 320xg at 4 °C to
collect the cells. Ultrathin sections (50-70 nm) were prepared with a Leica
Ultracut UCT (Bensheim, Germany), mounted on Formvar-coated slot grids, and
examined with a Zeiss transmission electron microscope 900 (Oberkochen,
Germany).

2.8. Determination of cellular adenine nucleotide concentrations

Reverse-phase chromatography, as described in [21], was applied. For the
determination, a 1-ml aliquot of cellular suspension was added to ice-cold
perchloric acid (final concentration 1.04 M) and centrifuged at 20,000xg for
1 min. The supernatant was neutralized by KOH/HEPES (2 M/0.3 M) and
subjected to HPLC analysis with an L-6200 pump and an L-4250 UV/VIS
detector (Merck-Hitachi, Darmstadt, Germany) at 254 nm using a 250 x4 mm
RP18 column packed with 5 um Si particles. Adenine nucleotides were eluted
with 0.2 M KH,PO,, pH 5.95, by a step gradient of methanol: 5 min, 0% CH;OH;
6 min, 4% CH30H; 5 min, 12% CH;0H; and 1 min, 40% CH3OH; at a flow rate
of 1.0 ml/min.

2.9. Determination of total intracellular thiols by flow cytometry

The intracellular thiol concentration was measured specifically by 5-
chloromethyl-fluorescein diacetate (CMFDA) staining in flow cytometry, as
described previously [23]. Briefly, cell samples were stained with CMFDA at a
final concentration of 12.5 pM in phosphate-buffered saline for 15 min at room
temperature. After washing, the cells were fixed in 1% paraformaldehyde and
analyzed within 2 h by flow cytometry at Agx=490 nm/Agy=520 nm
(FACSCalibur; Becton Dickinson, Heidelberg). Some experiments were
performed using (5-(and-6)-(((4-chloromethyl)benzoyl)amino)-tetramethylrho-
damine (CMTMR) for thiol staining at a final concentration of 12.5 pM. Except
for the flow cytometric analysis at Apx=541 nm/Agy =565 nm, the staining
procedure was identical to that described for CMFDA. P19 cells were defined by
forward/side scattering, and gated for analysis. The levels of intracellular thiols
were indicated by mean fluorescence intensities [mfi] of stained probes versus
negative controls.

2.10. Statistical analysis

All values are expressed as means+standard deviation (S.D.) if not
indicated otherwise. Differences between the groups were evaluated using an

unpaired Student’s 7 test. A P value of <0.05 was considered to be statistically
significant.

3. Results

3.1. Rapid pacing stimulates Erk-2 expression, induces cellular
hypertrophy, and causes oxidative stress

In order to evaluate the relevance of the in vitro model of
tachyarrhythmia described here, we determined the effect of
rapid pacing on Erk-2 expression, the content of thiols, and the
protein/DNA ratio in EBs. EBs were exposed to pacing at 2.0 Hz
for 24 h. This treatment caused a significant increase in mRNA
expression of Erk-2 in EBs compared to unpaced control bodies
(351.6+80.5% versus 100.0+£37.1%; P<0.01, n=4) (Fig. 1).
Pacing with a frequency of 0.6 Hz, which is similar to the
frequency of spontaneous contraction of EBs, did not stimulate
Erk-2 mRNA expression (not shown). In order to provide
additional evidence for the stimulation of Erk-2 expression, we
used Western blot analysis to determine the amount of phospho-
Erk1/2 that was dependent on the applied pacing frequency. In
accordance with the altered Erk-2 mRNA levels, the quantity of
phospho-ERK1/2 protein was found to be increased after 24 h of
pacing at 2.0 Hz (136.5+£18.3 vs. 100£17.3%; P<0.05, n=4;
Fig. 2).

Hypertrophy of cardiomyocytes has been recognized as a
further hallmark of cardiac tachyarrhythmia in vivo [5,20,24,25].
Therefore, we determined the protein/DNA ratio of EBs in order
to document cellular hypertrophy that occurred as a consequence
of rapid pacing. The corresponding data are presented in Fig. 3.
After 24 h of pacing at 2.0 Hz, the protein/DNA ratio of the EBs
was substantially increased (1.101+£0.04 vs. 1.000+0.015
relative units; P<0.05, n=3; the unpaced control was set to
1.00). These data demonstrate that the in vitro model of cardiac
tachyarrhythmia provides a good reflection of the cellular
hypertrophy found in vivo after cardiac tachyarrhythmia.

In order to elucidate whether oxidative stress is induced in
the in vitro model of cardiac tachyarrhythmia, as demonstrated
in atrial fibrillation in vivo [8,9,26], EBs were subjected to rapid
pacing and the content of cellular thiols was determined. Pacing
at 2.0 Hz over 24 h caused a substantial decline of the intra-
cellular content of free thiols by 24.9+£12.1% (0 Hz: 1490+
162 mfi; 2.0 Hz: 1128+241 mfi; P<0.05, n=3), indicating
substantial oxidative stress. In contrast, pacing at a rate of
0.6 Hz over the same period of time did not alter the thiol
content (0.6 Hz: 1472+60 mfi) (Fig. 4).

3.2. Rapid pacing impairs mitochondrial morphology and
mitochondrial energy metabolism

To study the effect of rapid pacing on mitochondrial energy
metabolism, we first studied mitochondrial morphology in the
differentiated cardiomyocytes. The electron microscopic analy-
sis revealed that rapid pacing caused significant changes in
mitochondrial morphology. Unpaced controls were character-
ized by morphologically intact mitochondria exhibiting normal
cristaec structure. In contrast, rapidly paced cells contained
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Fig. 1. Effect of rapid pacing on the mRNA expression of MAP kinase Erk2.
Embryoid bodies derived from P19 cells were cultured in the presence or
absence of 0.1 uM verapamil and either subjected to electrical field simulation
(at 2.0 Hz) or kept at spontaneous contraction rates (0 Hz) for 24 h.
Quantitative RT-PCR was performed to analyze the effect of rapid pacing on
the expression of Erk2 in in vitro differentiated cardiomyocytes. Amounts of
Erk2 mRNA were significantly increased by 24 h pacing at 2.0 Hz. This
increase was abolished by verapamil. *P<0.01 vs. unpaced control (0 Hz),

#P<0.05 vs. 2 Hz (n=4).

increased numbers of pale and swollen mitochondria, which
partly showed cristaeolysis, as well as completely disrupted
mitochondria. In addition, loss of plasma-membrane integrity
was detected (Fig. 5).

In the next series of experiments, we determined endogenous
oxygen consumption of the in vitro differentiated cardiomyo-
cytes in culture medium. This experimental approach allows
study of the effect of rapid pacing on the electron flux through
complexes [-1V of the respiratory chain and essentially reflects
the mitochondrial activity for ATP synthesis. Endogenous
respiration was significantly lower in cells paced at 2.0 Hz
compared to unpaced controls (60.4£6.4 vs. 236.6+5.4 pmol
O,/min/mg protein, P<0.05, n=4) (Fig. 6). We did not find
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Fig. 2. Effect of rapid pacing on the activation of MAP kinase Erkl/2.
Quantification of phospho-Erk2 protein content by densitometric analysis of
Western blots of whole extracts from in vitro differentiated cardiomyocytes
(10 pg protein per lane). Western blots demonstrated an activation (phosphory-
lation) of MAP kinase ERK1/2 in response to pacing at 2.0 Hz (¥*P<0.05 vs.
unpaced control (0 Hz); n=4). In the presence of 0.1 pM verapamil, there was
no significant change in the amount of phospho-ERK1/2.
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Fig. 3. Rapid pacing of in vitro differentiated cardiomyocytes causes cellular
hypertrophy. Cellular hypertrophy was determined by measuring the protein/
DNA ratio as described in Materials and methods. After 24 h of pacing at 2.0 Hz,
there was a significant increase in the protein/DNA ratio when compared to
pacing at 0.6 Hz. The presence of 0.1 pM verapamil prevented the pacing-
dependent hypertrophy and also resulted in a decrease of the protein/DNA ratio
of unpaced cells. *P<0.05 vs. unpaced control (0 Hz); “P<0.05 vs. 2.0 Hz
(n=3).

significant changes in uncoupled respiration when we applied the
uncoupler FCCP (carbonylcyanide-p-trifluoromethoxyphenyl-
hydrazone), indicating no relevant impairment of the capacity of
the respiratory chain. To elucidate whether the pacing-dependent
decrease in endogenous respiration was caused by impairment of
mitochondrial ATP synthesis or by impaired cellular ATP con-
sumption, we compared the content of adenine nucleotides in
differentiated cardiomyocytes of unpaced controls and cells
exposed to 24 h of rapid pacing. In the case of impaired ATP
synthesis, the cellular ATP levels should be decreased, and
impairment of ATP consumption should result in an increased
ATP content. Cellular adenine nucleotide concentrations in un-
paced controls were 88.15+4.9 nmol/mg ATP, 19.9+3.0 nmol/
mg ADP, and 4.9+0.9 nmol AMP (n=4). Twenty four hours of
pacing at 2.0 Hz decreased ADP (—39.94+12.2%, P<0.05) and
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Fig. 4. Effect of rapid pacing on the content of cellular thiols as a marker of
oxidative stress. Determination of intracellular thiol content in in vitro differ-
entiated cardiomyocytes was performed by 5-chloromethyl-fluorescein diace-
tate (CMFDA) staining of intracellular thiols and flow cytometric analysis.
Pacing at 2.0 Hz, but not at 0.6 Hz, decreased the intracellular thiol content
compared to unpaced controls. Verapamil at a concentration of 0.1 pM
prevented the loss of free thiols (*P<0.05 vs. unpaced control (0 Hz), “P<0.05
vs. 2.0 Hz, n=3).
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Fig. 5. Effect of rapid pacing on mitochondrial morphology. P19 cells were
differentiated in vitro to embryoid bodies, which then were subjected to electrical
stimulation at 0.6 and 2.0 Hz, and at 2.0 Hz in the presence of 0.1 M verapamil.
(A, B) The electron microscopic appearance of mitochondria in untreated in vitro
differentiated cardiomyocytes showed preserved morphology and well-defined
cristae structures. (C, D) Pacing of cardiomyocytes at 2 Hz induced cell
degeneration (pale, swollen mitochondria), partial cristacolysis and destruction
of cell membrane integrity. (E, F) Verapamil reduced mitochondrial degenera-
tion, since fully intact mitochondria were observed. Magnification: 1:50,000.

ATP levels (—18.6+£12.3%, P<0.05), but increased the AMP
content by 33.6+11.8% (P<0.05) (Fig. 7). Thus, the lower rate
of endogenous respiration measured after 24 h of pacing at 2.0 Hz
in comparison with unpaced controls is almost certainly due to
impaired mitochondrial ATP production.

3.3. Rapid pacing-induced modification of Ca’" influx causes
increases in Erk-2 expression, oxidative stress and cellular
hypertrophy, and mitochondrial alterations

To investigate the role of Ca*" influx in the impairment of
cardiomyocytes upon rapid pacing, we administered verapamil
in order to diminish the Ca®" influx by inhibiting Ca*" channels
of the L-type. We compared differentiated cardiomyocytes
(EBs) that had been subjected to 24 h rapid pacing at 2 Hz in the
presence and absence of 0.1 uM verapamil. Verapamil
attenuated the pacing-induced increase in Erk-2 mRNA by
about two-thirds (351.6+80.5% versus 120.6+21.8%; P<0.05,
n=4) and attenuated the increase of phospho-Erk1/2 protein
(Figs. 3 and 4). Likewise, verapamil diminished the pacing-
dependent decline in free thiols (—6.6+5.8% with verapamil vs.
—24.9+12.1% without verapamil, P<0.05, n=3), indicating
that oxidative stress occurring during rapid pacing is mediated
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Fig. 6. Effect of rapid pacing on the rate of respiration of in vitro differentiated
cardiomyocytes. Oxygen consumption of cardiomyocytes (about 12 mg cellular
protein) incubated in growth medium was measured at 30 °C as described in
Materials and methods. Mean+S.E.M. (%) of untreated controls (0.282+
0.031 nmol O,/min/mg cellular protein), *P<0.05 vs. unpaced control (0 Hz),
#P<0.05 vs. 2.0 Hz; n=4.

by Ca*" influx (Fig. 4). Moreover, the presence of verapamil
significantly reduced the increase in the protein/DNA ratio upon
rapid pacing. This suggests that the spontaneously beating
cardiomyocytes require a considerable Ca®" influx via L-type
calcium channels to respond to rapid pacing, with increases in
protein synthesis and cell growth (Fig. 3).

Verapamil protects the mitochondrial morphology and
mitochondrial function of cardiomyocytes exposed to rapid
pacing to a significant extent (Figs. 5—7). The pacing-dependent
drop in endogenous respiration and ATP levels, reflecting
impaired oxidative phosphorylation in mitochondria, was
attenuated by verapamil (endogenous respiration: 117.0+ 3.0
with versus 60.4+£6.4 pmol O,/min/mg protein without
verapamil, P<0.05; change of cellular ATP: +2.2+13.5 with
versus —18.6+12.3% of unpaced control without verapamil,
P<0.05).
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Fig. 7. Effect of pacing and verapamil on the adenine nucleotide pattern.
Cardiomyocytes (about 12 mg cellular protein) were incubated in growth
medium at 30 °C for 10 min. Samples of 1 ml were used for the determination of
adenine nucleotide concentration as described in Materials and methods. The
decrease in ATP and ADP as well as the increase in AMP in response to 2.0 Hz
pacing reflects compromised mitochondrial ATP synthesis, which is ameliorated
by 0.1 uM verapamil. Mean+S.E.M. (%) of unpaced control, *P<0.05 vs.
unpaced control (0 Hz), “P<0.05 2.0 Hz vs. 2.0 Hz plus verapamil; n=4.
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4. Discussion

4.1. Stimulation of differentiated cardiomyocytes with an
alternating electrical field as a model of cardiac
tachyarrhythmia

In vitro pacing of isolated cardiomyocytes has been described
by Ivester et al. [27] who showed that electrical field stimulation
at a frequency between 0.125 and 0.5 Hz causes acceleration of
protein synthesis in adult feline cardiomyocytes. In further
studies from the same group, the cellular pacing model was used
to induce sustained hypertrophic growth. Based on the results
presented by Ivester et al. [27], we have established stimulation
of in vitro differentiated cardiomyocytes with fast alternating
electrical fields. These cardiomyocytes were derived from a P19
cell line. The molecular biology and electrophysiology of similar
in vitro differentiated cells has been studied in detail
[14,15,18,28]. In these cells, the expression pattern of ionic
channels, including L-type Ca”>" channels, and contractile
proteins is similar to adult terminally differentiated cardiomyo-
cytes. Thereby, P19 cells represent a powerful model to study the
regulation of myocardial differentiation processes [29]. P19-
cell-derived cardiomyocytes form embryoid bodies (EBs) in
culture. In this three-dimensional structure, various cells are
electrically coupled. In addition to the presence of “atrial-like”
and “ventricular-like” myocytes, which have been described
according to the shape of the action potential, groups of cells
have pacemaker activity. Therefore, whole EBs are beating
spontaneously at a slow rate of about 0.5 Hz. In addition, EBs
contain non-contractile, non-myocyte cells, which lead to non-
homogeneous conduction as typically observed in myocardial
tissue. Under the conditions applied in this study, electrical field
stimulation induced synchronous contractions of EBs up to a rate
of 180 bpm (3 Hz). To ensure 1:1 capture, we used a fixed pacing
rate of 2.0 Hz. Similar to previous in vivo findings, we were able
to demonstrate that pacing induced a hypertrophic response in
vitro. In addition, 24 h pacing at 2.0 Hz induced upregulation of
ERK2 mRNA and protein expression. Rapid pacing models
have also shown that tachycardia induces ultrastructural changes
and myolysis in vivo [1-5,30]. Similar to these in vivo models,
we demonstrated significant ultrastructural and functional
changes of mitochondria in our in vitro pacing model. Recent
studies have demonstrated the importance of tachycardia-
induced “oxidative stress” within atrial and ventricular myocar-
dium [8,9,31]. Carnes et al. demonstrated the involvement of
oxidative and nitrosive stress in “electrical remodeling” in a
rapid atrial pacing model [8]; they demonstrated that 48 h of
rapid pacing reduced tissue ascorbate levels and increased
protein nitration. In an earlier study, the same group also showed
increased rates of protein carbonylation in fibrillating human
tissue [9]. These results provide evidence that tachycardias
increase the concentration of reactive oxygen species (ROS) and
reactive nitrogen species (RNS). The nitration and carbonylation
of structural proteins impair myocardial energetic and electro-
physiologic properties. Carnes et al. [8] proposed that oxidative
stress mediates the alterations in atrial electrophysiologic
parameters such as shortening of the atrial action potential. In

the ventricles, tachycardia-induced oxidative stress may be
critical for the induction of apoptosis [31]. The occurrence of
oxidative stress in our model was demonstrated by decreased
levels of cellular thiols. These findings resemble the physiologic
response described in vivo and, thus, contribute to the validation
of our model.

4.2. Tachycardia-induced mitochondrial dysfunction

In the present study, to the best of our knowledge, we are the
first to demonstrate in intact cardiomyocytes that 24 h of pacing
at 2.0 Hz induces both impairment of mitochondrial ATP
production structural mitochondrial changes. Reduced endoge-
nous respiration, in combination with a decreased ATP/ADP
ratio, clearly indicates reduction of mitochondrial ATP synthe-
sis. Separate impairment of ATP utilization would lead to
reduced respiratory chain activity accompanied by increased
cellular ATP levels. Moreover, impairment of mitochondrial
ATP synthesis is reflected by significantly increased AMP
levels. Among mitochondrial enzymes, the most prominent
candidate responsible for the impairment of mitochondrial ATP
synthesis is the FoF{-ATPase. This has to be concluded from our
finding that rapid pacing did not significantly affect uncoupled
respiration which reflects the maximal capacity of mitochondrial
oxygen consumption. Decrease in the activity of FoF,-ATPase
has been reported in a canine model of pacing-induced cardiac
failure [12]. However, the measurement of the FyF;-ATPase
activity was not performed in intact cells, thus not allowing final
conclusions concerning its pathophysiologic relevance. It is
known that the maximal activity of many mitochondrial
enzymes is expressed above the physiologic need. Therefore,
small reductions in enzyme activity may be without any effect on
ATP-synthesis in the intact cell. Energy failure may cause
detrimental effects in the function of cardiomyocytes. Moreover,
it has been shown that mitochondrial dysfunction, such as
insufficient ATP synthesis or membrane permeabilization, can
cause cell death due to apoptosis or necrosis [32,33].

4.3. Ca’" influx through L-type channels triggers changes in
differentiated cardiomyocytes during rapid pacing

The increase in protein/DNA ratio and the activation of
ERK1/2 was ameliorated by verapamil. This suggests that non-
physiologic Ca*" influx through L-type Ca®" channels induced
the increased protein synthesis (marker for cellular hypertro-
phy) in this model. In contrast, pacing at slow frequency did not
increase either ERK1/2 phosphorylation or the protein/DNA
ratio, demonstrating that the frequency of the alternating
electrical field, but not the electrical field per se, triggers the
development of hypertrophy. However, the fact that verapamil
did not completely prevent the increase in ERK1/2 phosphor-
ylation does not rule out the involvement of other signaling
pathways in ERK activation.

It is known that an increase in the intracellular Ca”" level
activates cellular proteases and different hypertrophic pathways
[25]. Recently, a Ca®"-dependent signal transduction pathway
leading directly to ERK activation has been suggested, involving
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protein kinase A [34]. The final step of this pathway is the
phosphorylation of ERK1/2, and, thereby, the expression of
transcription factors (c-jun, c-myc, Elk1, ATF2, etc) is induced,
which results in altered gene expression and enhanced protein
synthesis. The impact of Ca®"-channel blocking drugs on myo-
cardial hypertrophy has recently been investigated by Sanada et
al. [35]; they showed that long-acting dihydropyridine Ca®"-
channel blockers inhibit cardiac hypertrophy by inhibiting both a
70-kDa S6 kinase and ERK in vivo. Thus, the present study
provides what we think is the first evidence that a tachycardia-
altered Ca®" influx through L-type Ca®" channels initiates an
ERK-dependent hypertrophic response.

Inhibition of cellular Ca* entry by verapamil prevented the
loss of intracellular thiols and attenuated mitochondrial changes.
Thus, it seems that mitochondrial Ca®* plays a pivotal role in the
impairment of mitochondria upon rapid pacing. Although no
increase in mitochondrial Ca®" has been found during atrial
fibrillation by electron probe microanalysis [36], inhibition of
mitochondrial Ca®" influx by ruthenium red had a protective
effect in a rat heart model of ventricular tachycardia [37]. Thus,
we provide what we think is the first direct evidence that non-
physiologic Ca”" entry is the primary trigger for mitochondrial
dysfunction and oxidative stress within myocytes during
tachycardia. The finding that verapamil protects from oxidative
stress is supported by a recent study from Mason et al. [38]; they
showed that mibefradil, which blocks L-type and T-type Ca*"
channels, and verapamil prevent the oxidation of cellular
constituents and have cytoprotective effects. Mibefradil was
found to be more potent than verapamil at preventing lipid
peroxide formation. However, due to significant side effects
mibefradil is not used clinically, and, therefore, the demonstrated
verapamil effect appears to be clinically more relevant. The
concentration of verapamil used in this study (0.1 uM) is in the
range of its reported ICs( for ERG channels (143 nM) [39]. This
concentration was chosen because at 10-fold higher concentra-
tions viability and capturing of the EBs appears to be com-
promised. Similarly, beneficial clinical use of verapamil is based
on a partial decrease of Ca®" influx, and it must under no cir-
cumstances fully block it. Since verapamil blocks ERG chan-
nels, it may alternatively affect cellular Ca®" homeostasis by
attenuating the reaction potential. The possibility that changes in
the reaction potential influence cellular Ca®" concentration has
been demonstrated by Sah et al. [40].

ROS are also known to cause an increase in phosphorylation of
ERK1/2 in cardiac myocytes and coronary arteries [41,42]. Pi-
mental et al. [41] have shown that low- and high-amplitude stretch
cause a ROS-dependent activation of ERK 1/2. Interestingly, JNK
was activated by high-amplitude stretch only. In the study of
Pimental et al., activation of mitogen-activated protein kinases
was associated with a differential induction of hypertrophic and
apoptotic phenotypes. Thus, generation of ROS may have also
contributed to the observed increase in ERK1/2 phosphorylation
and cellular hypertrophy in our in vitro pacing model.

We have just started to investigate the molecular mechanisms
that are altered during tachycardias. In the case of atrial ar-
rhythmias, especially, knowledge regarding functional changes
is limited because repetitive atrial biopsies are not feasible in

vivo. The model presented here, however, may help further in
vitro experiments to address the functional role of different
signaling pathways on tachycardia-induced myocardial altera-
tions. This is particularly relevant as our findings indicate that
cellular and molecular responses to rapid pacing in vitro largely
mirror the pathophysiologic alterations observed in atrial tissue
of patients with atrial fibrillation.
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