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The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory re-
sponses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury
and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A−/− and WT mice were subjected to ischemia
(45 min) followed by reperfusion for up to 7 days. SR-A−/− mice showed smaller myocardial infarct size
and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apopto-
sis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A−/− heart
were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To in-
vestigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A
deficient (SR-A−/−) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by
reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT
macrophages but not in SR-A−/− macrophages. H/R induced caspase-3/7 and -8 activities and cell death in
WT macrophages, but not in SR-A−/− macrophages. The levels of miR-125b in SR-A−/− macrophages were
significantly higher than in WTmacrophages. Transfection of WT macrophages with miR-125b mimics atten-
uated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased
p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by
targeting p53-mediated apoptotic signaling. SR-A−/− macrophages contain high levels of miR-125b which
may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell
damage.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Innate immune and inflammatory responses mediated by Toll-
like receptors (TLRs) [26] are involved in myocardial ischemia/
reperfusion (I/R) injury [24]. The contribution of TLR-mediated
NF-κB activation to myocardial I/R injury has been well documented
[15,22,23,27,28]. We and others have shown that modulation of the
TLR4-mediated signaling pathway or TLR4 deficiency protects against
myocardial I/R injury [15,23,28]. Recently, we have reported that the
macrophage scavenger receptor class A type I/II (SR-A aka CD204) is
required for lipopolysaccharide, a TLR4 ligand, induced activation of
NF-κB signaling pathway [42].
st Tennessee State University,
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SR-A was initially discovered as a receptor for recognition of
modified low-density lipoprotein [11]. Subsequently, SR-A has been
reported to participate in clearance of modified host components, ap-
optotic cells, and pathogens [12]. Recent evidence suggests that SR-A
contributes to induction of the innate immune and inflammatory re-
sponses by cooperating with TLRs in the recognition of exogenous
pathogen-associated molecular patterns and endogenous ligands
[1,31,39]. For example, TLR ligands synergize with SR-A to mediate
bacterial phagocytosis [1], induce SR-A expression [39], and promote
SR-A recognition of LPS [39]. On the other hand, SR-A ligands trigger
apoptosis in endoplasmic reticulum (ER)-stressed macrophages by
cooperating with TLR4 [31]. SR-A may also serve as a negative regula-
tor of TLR4 in mediating immune responses [41].

SR-A is principally expressed on macrophages and dendritic cells
[17,41]. The heart contains resident macrophages located in the
perivascular space surrounding medium to large arteries [8]. Macro-
phages play a role in myocardial repair and remodeling after myocar-
dial infarction [18,35]. Recent studies have reported that ischemia
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Fig. 1. SR-A deficiency attenuated I/R-induced myocardial infarction and cardiac dys
function. (A) SR-A−/− (n=10) and WT mice (n=9) were subjected to myocardial is
chemia (45 min) followed by reperfusion (4 hrs). Infarct size was determined by TTC
staining. Ratios of risk area vs. left ventricle area (RA/LV) and infarct area vs. risk
area (IA/RA) were calculated and are presented in the graphs. Photographs of repre
sentative heart sections are shown above. (B) SR-A−/− and WT mice were subjected
to myocardial I/R (n=6/group). Cardiac function was examined by echocardiography
before (Baseline), 3 and 7 days after I/R. *pb0.01 compared with indicated groups
#, &pb0.05 compared with baseline.
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alone causes rapid recruitment of circulating macrophages into the
myocardium [7,16]. Both resident and recruited macrophages release
inflammatory cytokines and chemokines that attract neutrophil
infiltration and promote inflammatory responses [10], indicating
that macrophages participate in the initial innate immune and in-
flammatory responses [43] during early stages of acute ischemia.

MicroRNAs (miRs) are 21 to 23 nucleotide non-protein-coding
RNA molecules which have been identified as a novel regulators of
gene expression at the post-transcriptional level by binding to target
messenger RNAs [36]. Several miRs have been reported to play a role
in ischemic heart disease [2,36,38]. For example, miR-21 protects cells
from oxidative stress-induced damage [3] and the myocardium from
ischemic injury [3,5]. miR-320 is involved in I/R-induced cardiac inju-
ry and dysfunction via regulation of Hsp20 [30].

In the present study, we found that SR-A deficiency (SR-A−/−) at-
tenuated myocardial I/R injury. miR-125b expression in SR-A−/−

hearts and macrophages is significantly greater than in wild type
(WT) heart and macrophages. SR-A deficiency protects the macro-
phages from hypoxia/reoxygenation (H/R) induced damage and the
myocardium from I/R injury. We demonstrated that miR-125b exerts
a protective role in SR-A−/− macrophages by targeting p53-mediated
apoptotic signaling.

2. Materials and methods

2.1. Animals

SR-A−/− mice on the C57BL/6J background were provided by
Dr. Siamon Gordon at Oxford University. Male WT C57BL/6J mice
were obtained from Jackson Laboratory. Mice were maintained in
the Division of Laboratory Animal Resources, East Tennessee State
University (ETSU). The experiments conform to the Guide for the
Care and Use of Laboratory Animals published by the National
Institutes of Health (NIH Publication No. 85-23, revised 1996). The
experimental protocols were approved by the ETSU Committee on
Animal Care.

2.2. Induction of myocardial I/R injury

Myocardial I/R injury was induced as described previously
[13,15,23]. Briefly, mice were anesthetized by isoflurane inhalation
before the left anterior descending coronary artery (LAD) was ligated
with a 7–0 silk ligature over a 1-mm polyethylene tube (PE-10). After
completion of 45 min of occlusion, the coronary artery was re-
perfused by pulling on the exteriorized suture to release the knot.
After reperfusion for indicated time points, cardiac function was
measured by echocardiography as described previously [13,14]. The
hearts were harvested for evaluation of infarct size and for cellular
protein preparations.

2.3. Determination of myocardial infarct size

Infarct size was evaluated by triphenyltetrazolium chloride (TTC,
Sigma-Aldrich) staining as described previously [13,15,23]. Briefly,
the hearts were removed, perfused with saline on a Langendorff
system and stained with 1% Evans Blue. Each heart was then sliced
horizontally to yield five slices. The slices were incubated in 1% TTC
for 15 min at 37 °C. Ratios of risk area vs. left ventricle (RA/LV) and
infarct area vs. risk area (IA/RA) were calculated and expressed as a
percentage.

2.4. In vitro experiments

Peritoneal macrophages were isolated fromWT and SR-A−/− mice
as described previously [42]. Briefly, elicited peritoneal macrophages
were collected and suspended in RPMI 1640 medium supplemented
-
-

-
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Fig. 2. I/R-induced myocardial apoptosis was attenuated by SR-A deficiency. SR-A−/−

and WT mice were subjected to myocardial I/R (n=6/group). Sham operation served
as sham controls (n=4/group). The hearts were harvested and sectioned for analysis
of apoptosis by the TUNEL assay (A). DAPI stains nucleus (blue color) and TUNEL pos-
itive cells show green fluorescence. The bar graph shows the percent apoptotic cells.
(B) SR-A deficiency attenuated I/R-induced caspase-3/7 and -8 activities. (C, D) SR-A
deficiency prevents I/R-increased p53, Bak-1, Bax, and FasL levels in the myocardium.
Cellular proteins prepared from heart tissues were subjected to Western blot examina-
tion with specific antibodies. *pb0.05 compared with indicated groups.
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with 10% fetal calf serum, 0.1 mg/ml streptomycin, and 100 U/ml
penicillin. The cells (2×106/ml) were cultured in 6-well tissue
culture plates (Corning, Inc, Corning, NY) for 2 hrs at 37 °C with 5%
CO2. After washing sufficiently with PBS, adherent macrophages
were incubated at 37 °C with 5% CO2 overnight. The medium was
then changed to hypoxia-equilibrated medium (5% CO2 and 0.1%
O2) and the cells were immediately incubated at 37 °C with 5% CO2

and 0.1% O2 in a hypoxia chamber (Pro-Ox Model C21, BioSpherix
Ltd., Redfield NY) for 2 hrs followed by reoxygenation in an incubator
with 5% CO2. The control groups were incubated at 37 °C with 5% CO2

for the same time periods. There were 4 replicates in each group. The
supernatants and cells were harvested for analysis of chemokine
production, NF-κB binding activity, and for Western blot [13,23].

2.5. Transfection of macrophages with miR-125b mimics

Peritoneal macrophages were isolated fromWTmice and cultured
in 6-well and 48 well plates, respectively. Twenty-four hours after in-
cubation, the cells were transfected with miR-125b mimics (40 nM)
or mimic control with Dy547 (Dharmacon) by Lipofectamine 2000
reagent (Invitrogen), respectively, according to the manufacturer's
protocol. To examine the role of “loss-of-function” of miR-125b in
hypoxia/reoxygenation induced cell injury, the cells were transfected
with anti-miR-125b (40 nM, Cat. No: 444084, Applied Biosystems).
AntimiR-negative control (40 nM, Cat. No: AM17011, Applied
Biosystems). Six hours after transfection, the medium was replaced
with fresh medium supplemented with 10% FBS and antibiotics.
Two days after transfection, the cells were subjected to hypoxia
(2 hrs) followed by reoxygenation at indicated time points. The
cells and supernatants were harvested for analysis of cell viability,
LDH activity and caspase-3/7 and -8 activities. There were 6 replicates
in each group.

2.6. Real time PCR assay of microRNAs (miRs)

The miRs were isolated from cultured cells and heart tissues using
a mirVana™ miR isolation kit (Ambion) according to the
manufacturer's protocol. Quantitative real-time PCR (qPCR) was
conducted using a 4800 Real time PCR machine (Bio-Red). miR levels
were quantified by qPCR using specific Taqman assays for miR (Ap-
plied Biosystems, USA). Specific primers for miR-125b were obtained
from Applied Biosystems (Primer identification numbers: 000449 for
hsa-miR-125b and 001973 for snRU6). miRNA expression was quan-
tified with the 2(-ΔΔct) relative quantification method that was nor-
malized to the U6 small nucleolar RNA (snRU6).

2.7. Measurement of cell viability and LDH activity

Cell viability was assessed by measuring mitochondrial dehy-
drogenase activity using the MTT assay kit (Sigma). Cell injury was
assessed by measurement of lactate dehydrogenase (LDH) activity
in culture medium using a commercial kit (Cytotoxicity Detection
Kit, Sigma).

2.8. Western blot

Western blot was performed as described previously [13,15,23].
Briefly, the cellular proteins were separated by SDS-polyacrylamide
gel electrophoresis and transferred onto Hybond ECL membranes
(Amersham Pharmacia, Piscataway, NJ). The ECL membranes were in-
cubated with the appropriate primary antibody [anti-p53, anti-Bax,
anti-Bak-1 (Cell Signaling Technology, Inc, Beverly, MA) and anti-
FasL (Santa Cruz Biotechnology, Inc., Santa Cruz, CA)] respectively,
followed by incubation with peroxidase-conjugated secondary anti-
bodies (Cell Signaling Technology, Inc.). The signals were detected
with the ECL system (Amersham Pharmacia). The signals were quan-
tified using the G:Box gel imaging system by Syngene (Syngene, USA,
Fredrick, MD).

2.9. Electrophoretic mobility shift assay (EMSA)

Nuclear proteins were isolated from heart samples as previously
described [13,15,23]. NF-κB binding activity was measured using a
LightShift Chemiluminescent EMSA kit (Thermo Fisher Scientific,
Waltham, MA) according to the instructions from the manufacturer.

2.10. Caspase activity assay

Caspase-3/7 and -8 activities in heart tissues were measured as
described previously [25] using a Caspase-Glo assay kit (Promega)
according to the manufacturer's protocol.

2.11. In situ apoptosis assay

Cardiac myocyte apoptosis was examined by the TUNEL assay
(Roche Applied Science, Indianapolis, IN) in the heart sections ac-
cording to the instructions provided by the manufacturer as described
previously [14]. Three slides from each block were evaluated for
percentage of apoptotic cells. Four fields of each slidewere randomly ex-
amined using a defined rectangular field area with a magnification of
40×. Myocardial apoptotic cells are presented as the percentage of field.

2.12. Chemokine ELISA

The levels of monocyte chemoattractant protein-1 (MCP-1),
keratinocyte chemoattractant (KC), TNF-α, and IL-1β were measured
[42] using commercially available ELISA kits (PeproTech, Rocky Hill,
NJ) according to instructions provided by the manufacturer.

2.13. Statistical analysis

Data are expressed as mean±SE. Comparisons of data between
groups were made using one-way analysis of variance (ANOVA) and
Tukey's procedure for multiple range tests was performed. A pb0.05
was considered significant.
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Fig. 3. SR-A deficiency prevented I/R-induced NF-κB binding activity and cytokine pro-
duction. SR-A−/− and WT mice (n=6/group) were subjected to myocardial I/R. Sham
operation served as sham control (n=4/group). Hearts were harvested and nuclear
proteins were prepared for analysis of NF-κB binding activity by EMSA. (A) SR-A defi-
ciency prevented I/R-induced NF-κB binding activity. (B) SR-A deficiency attenuated
I/R-increased the levels of TNFα and IL-1β in the serum. *pb0.05 compared with indi-
cated groups.

340 D. Ren et al. / Biochimica et Biophysica Acta 1832 (2013) 336–346
3. Results

3.1. Reduced myocardial infarct size and improved cardiac function in
SR-A−/− mice following I/R

We examined the effect of SR-A deficiency on myocardial I/R inju-
ry. Fig. 1A shows that I/R induced large infarct size in WT mice. How-
ever, SR-A deficiency significantly attenuated I/R-induced infarct size
by 32% compared with WT I/R mice.

Fig. 1B shows that after myocardial I/R, ejection fraction (EF%) and
fractional shortening (%FS) in WT mice were significantly decreased
on day 3 (49.6% and 40.6%) and on day 7 (56.4% and 46.4%). In con-
trast, SR-A deficiency attenuated I/R-induced cardiac dysfunction.
SR-A−/− mice showed EF% and %FS values that were markedly great-
er on day 3 (33.2% and 38.8%) and on day 7 (30.7% and 46.4%), respec-
tively, when compared with WT I/R mice.

3.2. SR-A deficiency attenuated I/R-induced myocardial apoptosis

Cardiac myocyte apoptosis contributes to myocardial I/R injury.
We evaluated the effect of SR-A deficiency on I/R-induced myocardial
apoptosis. Fig. 2A shows that I/R inducedmyocardial apoptosis by 19.4
fold in WT mice and by 11.7 fold in SR-A−/− mice, compared with re-
spective sham controls. However, the numbers of apoptotic cells in
SR-A−/− I/R mice (12.7±1.40%) were 40% lower compared with WT
I/R mice (24.5±1.66%). Fig. 2B shows that I/R-increased caspase-3/7
and -8 activities were significantly attenuated in SR-A−/− I/R mice.

3.3. I/R increases myocardial p53, Bak-1, Bax and FasL levels in WT mice,
but not in SR-A−/− mice

We examined the effect of SR-A deficiency on p53-mediated apopto-
tic signaling during myocardial I/R injury. I/R increased the levels of p53
(125%), Bak-1 (50%), and Bax (64%) in WT myocardium, respectively,
compared with WT sham control (Fig. 2C). FasL levels in WT myocardi-
um were also significantly increased by 55.2% following I/R compared
with sham control (Fig. 2D). In contrast, SR-A deficiency prevented
I/R-induced increases in the expression of p53, Bak-1, Bax and FasL in
themyocardium, respectively, compared withWT I/R group (Fig. 2C–D).

3.4. SR-A deficiency prevents I/R-induced myocardial NF-κB binding
activity and cytokine production in the serum

Activation of NF-κB contributes to myocardial I/R injury [22,27].
Fig. 3A shows that I/R significantly increased NF-κB binding activity
in the WT myocardium by 95% compared with sham control. Howev-
er, SR-A deficiency prevented I/R-induced NF-κB binding activity in
the myocardium.

Activation of NF-κB stimulates inflammatory cytokine expres-
sion [26]. Fig. 3B shows that I/R increased the levels of TNF-α by 1.8
fold and IL-1β by 8.6 fold in serum of WT mice compared with WT
sham control. I/R also increased the serum levels of TNF-α by 47%
and IL-1β by 125% in SR-A−/− mice compared with SR-A−/− sham
control. However, both TNF-α and IL-1β levels in serum of SR-A−/−

I/R mice were significantly lower than that in WT I/R mice.

3.5. Increased expression of miR-125b in the myocardium of SR-A−/−mice

microRNA-125b has been shown to target p53 expression [19,20].
We examined the expression of miR-125b in the myocardium.
As shown in Fig. 4A, the levels of miR-125b in SR-A−/− sham
hearts were significantly greater than in WT sham group. Ischemia
(45 min) followed by reperfusion (4 hrs) further increased the levels
of miR-125b in SR-A−/− hearts but not in WT hearts.
3.6. SR-A−/− macrophages show increased levels of miR-125b in the
presence and absence of H/R

SR-A is predominantly expressed on macrophages [17,41]. We
examined the expression of miR-125b in SR-A−/− macrophages. As
shown in Fig. 4B, the levels of miR-125b in SR-A−/− macrophages
are significantly greater than in WT macrophages. Hypoxia alone fur-
ther increased miR-125b expression in SR-A−/− macrophages but not
in WT macrophages. Hypoxia followed by reoxygenation markedly

image of Fig.�3
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decreased miR-125b expression in WT macrophages. In contrast, the
levels of miR-125b in SR-A−/− macrophages following H/R were
comparable with the levels in SR-A−/− normal macrophages.

3.7. SR-A deficiency prevents hypoxia/reoxygenation-induced NF-κB
activation and chemokine production in macrophages

We examined the role of SR-A in NF-κB activation following
hypoxia/reoxygenation (H/R) challenge in macrophages. SR-A is pre-
dominantly expressed on macrophages [17,41]. Peritoneal macro-
phages were isolated from WT and SR-A−/− mice, respectively and
subjected to hypoxia (2 hrs) followed by reoxygenation (4 hrs).
Fig. 5A shows that H/R induced NF-κB binding activity in WT macro-
phages but not in SR-A−/− macrophages. We also examined the effect
of SR-A on macrophage secretion of chemokines following hypoxia
(2 hrs) followed by reoxygenation (24 hrs). H/R significantly in-
creased the levels of KC by 61% and MCP-1 by 41% in WT macro-
phages compared with WT control (Fig. 5B). In contrast, H/R did not
increase MCP-1 and KC levels in SR-A−/− macrophages.
3.8. Macrophage SR-A deficiency attenuated hypoxia/reoxygenation-
induced cellular injury and decreased viability

We examined the role of SR-A in H/R-induced cell injury. Fig. 6
shows that H/R significantly increased LDH activity by 173% (A) and
decreased cell viability by 52.7% (B) in WT macrophages compared
with WT control group. H/R also increased LDH activity by 83% and
decreased cell viability by 31.2% in SR-A−/− macrophages compared
with the SR-A control group. However, SR-A deficiency significantly
attenuated H/R-induced cell injury by 52% and H/R-decreased viabil-
ity by 40.7%. SR-A deficiency also significantly attenuated H/R-
increased caspase-3/7 and -8 activities (Fig. 6C). To determine
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whether increased miR-125b in SR-A−/− macrophages plays a pro-
tective role in H/R induced cell injury, we transfected cells with
anti-miR-125 mimics before the cells were subjected to H/R. As
shown in Fig. 6D, attenuation of cell viability in SR-A−/− macro-
phages was lost after inhibition of miR-125b.

3.9. Transfection of wild type macrophages with miR-125b prevented
H/R-induced cell injury and caspase-3/7 and -8 activities

To determine the role of miR-125b in the protection against
H/R-induced cell injury, we transfected WT macrophages with
miR-125b mimics. Scrambled mimics served as miR-control. The
cells were subjected to hypoxia (2 hrs) followed by reoxygenation
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3.10. miR-125b transfection suppresses p53 and Bak-1 expression and
prevents H/R-induced increases in Bax levels in macrophages

We examined the effect of miR-125b transfection on p53-
mediated apoptotic signaling in macrophages following H/R. Fig. 7D
shows that H/R markedly increased the levels of p53, Bak-1 and Bax
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compared with control group. However, transfection of macrophages
with miR-125b suppresses both p-53 and Bak-1 expression in macro-
phages in the presence and absence of H/R. miR-125b transfection
also prevented H/R-induced increases in Bax levels.

4. Discussion

In the present study, we have observed that SR-A−/− mice showed
significantly smaller infarct size and better cardiac function following
acute myocardial I/R injury compared with WT I/R mice. The mecha-
nisms involve attenuation of I/R-activated p53-mediated apoptotic sig-
naling and prevention of I/R-induced NF-κB activation in the
myocardium. Importantly, we found that miR-125b levels in SR-A−/−

hearts are significantly greater than in WT hearts. In addition to
miR-125b, the levels of miR-21 and miR-146a were also significantly
increased in SR-A−/− heart. We have also observed that miR-125b ex-
pression is significantly increased in macrophages of SR-A−/− mice.
SR-A−/−macrophages showed prevention of H/R-induced NF-κB activ-
ity and chemokine production and attenuation of H/R-induced cell in-
jury. Transfection of miR-125bmimics into WTmacrophages markedly
attenuated H/R-induced cell injury and caspase-3/7 and -8 activities
through inhibition of p53-mediated apoptotic signaling. These data
suggest that increased miR-125b in SR-A−/− macrophages may play a
role in protection against acute myocardial I/R injury.

Historically, SR-A is known to be responsible for the uptake of
modified LDL [11]. Recent evidence indicates that SR-A participates
in the induction of innate and immune responses [4]. Recent studies
have reported that SR-A can recognize and clear modified host com-
ponents, apoptotic cells, and pathogens [12]. SR-A has been reported
LD
H

 A
ct

iv
ity

 (
%

)

0

5

10

15

20

25 Control
miR-control
miR125b

Normoxia 12 h 24 h 36 h

*
*

*
*

*
*

H/R

A

C

0
150000

200000

250000

300000

350000 Normoxia
H/R

C
as

pa
se

-3
/7

 A
ct

iv
ity

Lu
m

in
es

ce
nc

e 
(R

LU
)

Control miR-Con miR-125b

*
*

*

*

Fig. 7. Overexpression of miR-125b attenuated H/R-induced cell injury. WTmacrophages we
Forty-eight hours after transfection, the cells were subjected to hypoxia followed by reoxyge
ity (B), and increased caspase-3/7 and caspase-8 activities (C). Overexpression of miR-125b
replicates in each group. *pb0.05 compared with indicated groups.
to cooperate with TLR4 in response to LPS stimulation [31]. Recently,
we have reported that deficiency of SR-A decreases cerebral I/R injury
[25] and increases survival in polymicrobial sepsis [29]. Unfortunate-
ly, we still do not know endogenous ligands for SR-A during I/R or in-
fectious challenge. However, SR-A−/− mice showed significant
attenuation of I/R-increased myocardial apoptosis and prevention of
I/R-induced increases in the levels of p53, Bak-1, and Bax in the myo-
cardium. The data is consistent with in vitro data showing that the
levels of p53 and Bak-1 were markedly lower in SR-A−/− macro-
phages than in WT macrophages following H/R. p53 is a well-
known transcription factor which mediates apoptosis by stimulating
the expression of pro-apoptotic genes, including Bax, apaf-1 and
caspase-3 [37]. p53 also interacts with the proapoptotic mitochondri-
al membrane protein Bak-1 which causes oligomerization of Bak-1
and release of cytochrome c from mitochondria, leading to apoptosis
[37,44]. Recent studies have demonstrated that miR-125b targets
both p53, Bak-1 and TNF-α [19,20,32,44]. We have observed that
miR-125b expression is significantly increased in SR-A-deficient
hearts. We speculate that the mechanisms by which SR-A deficiency
attenuates I/R-induced myocardial apoptosis may be due, in part, to
increased levels of miR-125b in SR-A−/− hearts.

We have observed that increased levels of miR-125b were present
in SR-A−/− macrophages and that SR-A−/− macrophages showed at-
tenuation of H/R-induced NF-κB activation, chemokine production,
and cell injury. MicroRNA-125b is a homolog of lin-4, which is the
first miR discovered and an important regulator of developmental
timing in C. elegans [21]. miR-125b has been proposed to regulate
both cell proliferation and apoptosis by repressing p53 and Bak-1 ex-
pression [19,20]. In the present study, we observed that the increased
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levels of miR-125b in SR-A−/− macrophages positively correlated pro-
tection against H/R-induced cell injury while inhibition of miR-125b
expression abolished the protective effect of SR-A−/− macrophages
on H/R-induced cell injury. To further confirm the role of miR-125b
in SR-A−/− macrophages in the protection against H/R-induced cell in-
jury, we transfected WT macrophages with miR-125b mimics and ob-
served that overexpression of miR-125b significantly attenuated H/
R-induced cell injury, caspase-3/7 and -8 activities, and prevented H/
R-activated p-53-mediated apoptotic signaling. Our observation is con-
sistent with previous reports that miR-125b targets p53 expres-
sion [19,20]. At present, we do not understand the mechanisms by
which SR-A deficiency results in increased expression of miR-125b in
macrophages. Recent studies have demonstrated that SR-A could
serve as a co-receptor for TLR4 in response to LPS stimulation [6,39].
We have reported that SR-A is required for LPS-induced TLR4 mediated
NF-κB activation in macrophage [42]. Tili et al. [32] have reported that
LPS stimulation significantly down regulates the expression of
miR-125b which is reversely correlated with NF-κB activity. The data
indicates that activation of NF-κB suppresses the expression of
miR-125b [32]. Therefore, it is possible that presence of SR-A sup-
presses the expression of miR-125 via TLR4-mediated NF-κB depen-
dent mechanism. Our data showed that miR-125b plays a protective
role in H/R-induced cell injury in macrophages. We have observed
that increased expression of miR-125b in the myocardium protects
against myocardial I/R injury in vivo (unpublished data).

SR-A expression is primarily on macrophages [17,41]. The normal
heart contains resident macrophages [8] and I/R stimulates circulat-
ing macrophage infiltration into the myocardium [7,16]. We have ob-
served that miR-125b levels in SR-A−/− hearts are significantly
greater than in WT hearts. I/R further increased miR-125b levels in
SR-A−/− hearts, but not in WT hearts. Based on the data obtained
from in vitro and in vivo experiments, we speculated that SR-A defi-
ciency reduces myocardial injury following I/R, in part, through
miR-125b-dependent mechanisms. Indeed, in vivo data showed I/R-
induced myocardial infarct size and cardiac dysfunction were signifi-
cantly attenuated in SR-A−/− mice compared with WT I/R mice.
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Our observation indicates two important concepts. First, increased
miR-125b levels in macrophage may contribute to cardioprotection in
SR-A deficiency. Recent studies have shown that several cell types,
including macrophages and dendritic cell can secrete exosomes
containing miRs [34,45]. The exosomes can transfer genetic message
from cell to cell [34,45].We have observed using in vitro co-culturedmac-
rophages and cardiomyoblasts, that miR-125b mimics in macrophages
can be transferred to cardiomyoblasts through an undetermined mecha-
nism (unpublished data). At present, we do not know if a similar transfer
occurs in vivo through exosomes. Second,macrophages play an important
role inmyocardial I/R injury. It is well known that both resident and infil-
tratingmacrophages play a critical role inmyocardial remodeling and re-
pair, by ingesting necrotic cardiac myocytes and apoptotic neutrophils,
secreting inflammatory cytokines and growth factors, andmodulating an-
giogenic responses after myocardial infarction [18]. Recent studies have
shown that macrophages contribute to induction of the innate immune
and inflammatory responses during the early stage of cardiac ischemia
[7,16,18]. Kakio et al. have reported that ischemia alone rapidly promoted
macrophage infiltration into the myocardium [16] and activated macro-
phages secrete cytokines and chemokines that recruit neutrophils into
the tissues causing further tissue damage [16,18]. We have observed
that in vitro H/R increased the secretion of MCP-1 and KC by WT macro-
phages but not by SR-A−/− macrophages. MCP-1 and KC are CC
chemokines that are associated with the recruitment of macrophages
and neutrophils into tissues [9]. Collectively, these data indicate that
SR-A positive macrophages responded to I/R challenge by secreting
chemokineswhich attract neutrophils andmacrophages into themyocar-
dium, which may contribute to myocardial I/R injury.

Our observation suggests that SR-A macrophages may play a crit-
ical role in the pathophysiology of acute myocardial I/R injury. Tsujita
et al. [33] reported that SR-A deficiency might cause impairment of
infarct remodeling that results in cardiac rupture following per-
manent occlusion of left coronary artery for 4 weeks. Tsujita et al.
employed the model of permanent occlusion of the left coronary
artery to examine the role of SR-A in remodeling after myocardial
infarction, whereas, we employed an acute myocardial I/R model to
investigate the role of SR-A in initial innate immune and inflammato-
ry responses during early stage of myocardial I/R. Therefore, the
results of Tsujita et al. may not be comparable to our results due to
the significant differences in the experimental models employed.
Indeed, we have previously reported that SR-A deficiency protects
against cerebral I/R injury [25]. Our observation is supported by a re-
cent study showing SR-A promotes cerebral I/R injury [40].
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