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The nuclear receptor superfamily consists of DNA binding transcription factors that are involved in regulating
a wide variety of processes such as metabolism, development, reproduction, and immune responses. Upon
binding, nuclear receptors modulate transcription through affecting the local chromatin environment via
recruitment of various coregulatory proteins. The recent development of new high-throughput sequencing

methods allowed for the first time the comprehensive examination of nuclear receptor action in the context of
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the epigenome. Here, we discuss how recent genome-wide analyses have provided important new insights on
the interplay of nuclear receptors and the epigenome in health and disease. This article is part of a Special
Issue entitled: Translating nuclear receptors from health to disease.

© 2010 Elsevier B.V. All rights reserved.

1. Epigenetics and nuclear receptors

DNA contains the genetic information that is used in the
development and functioning of mammalian cells. However, to
ensure a proper balance between induced and repressed states of
transcription, DNA needs to be properly packed inside the nucleus.
This packaging is accomplished through the dynamic regulation of a
variety of chromatin modifications such as DNA methylation,
nucleosome remodeling, and covalent modifications at histone
amino acid residues such as acetylation, phosphorylation, and
methylation [1-4]. Open chromatin configurations, characterized by
“active” histone modifications, can be found at individual gene
promoters or clusters of coordinately regulated genes that are actively
transcribed. Transcriptional activity of these genes is often regulated
through the exchange of these active histone modifications with
repressive marks [5,6]. In contrast, DNA methylation has been tightly
linked to transcriptional repression and has been suggested to prevent
unwanted transcription. Moreover, it has an important role in
structural maintenance and proper chromosome replication [7].
Taken together, the epigenetic regulatory mechanisms function to
set up an epigenetic landscape that serves as a playground for the
actions of other DNA interacting factors such as nuclear receptors. The
nuclear receptor superfamily consists of DNA binding transcription
factors that are involved in regulating a wide variety of processes such
as metabolism, development, reproduction, and immune responses
[8]. To regulate these physiological processes, many nuclear receptors
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respond to ligands such as fatty acids, vitamins, and various steroids
including glucocorticoids, estrogens, androgens, and progesterone.
Upon binding of these ligands to the nuclear receptor, a conforma-
tional change is induced that ultimately leads to activation of gene
transcription [8]. Based on various studies, it is generally perceived
that, upon binding, nuclear receptors modulate transcription through
affecting the local chromatin environment via recruitment of various
coregulatory proteins that are essential to recruit mediator compo-
nents and RNA polymerase II to target gene promoters [9-13].

2. The nuclear receptor coregulator induced epigenetic state

Coregulators that are recruited by nuclear receptors typically
possess diverse enzymatic activities that are important in modifying
the chromatin state [9-12]. Based on their mode of action,
coregulators, in the context of chromatin, can be broadly classified
into three main categories. The first category consists of enzymes that
covalently modify histones through, for example, acetylation, meth-
ylation, phosphorylation, and ubiquitylation activities. The second
class is harbored by ATP dependent chromatin remodeling factors,
which modulate chromatin accessibility, such as members of the SWI/
SNF family. A third, but yet unexplored group, consists of proteins that
are not known to possess inherent enzymatic activity but rather act as
a platform for the recruitment of multiprotein complexes that possess
enzymatic activities, such as thyroid hormone receptor interactor 6
(nTRIP6), which can mediate both transcriptional activation and
repression, and the corepressors NCOR and SMRT.

Over the past decade, a multitude of studies have examined the
local effects of nuclear receptor presence on chromatin modifications
mediated via direct (e.g. through interaction with SRC1/p160
proteins) as well as indirect interaction (e.g. p300 and CREBBP
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though interaction with SRC1/p160 proteins) with chromatin mod-
ulators. One of the first studies identified a role of the p300 and
CREBBP transcriptional coactivator in all-trans retinoic acid (ATRA)
signaling. Here, the nuclear receptor heterodimer RAR:RXR was
shown to interact with the proteins p300 and CREBBP [14], which,
in the same year, were identified as proteins harboring histone
acetyltransferase activity [15]. Taken together, these two studies
suggested that recruitment of histone acetyltransferase (HAT) activity
to RAR:RXR bound genomic regions was a key step in retinoic acid
mediated transcriptional activation. Indeed, subsequent studies
provided the first direct evidence for nuclear receptor recruitment
of HAT activity mediated by the nuclear receptor coactivator 3
(NCOA3) and SRC1 [16,17]. In addition, it was shown that a specific
amino acid motif, LXXLL, present in these coactivators was respon-
sible for interaction with ligand bound nuclear receptors [18].

Contrary to the nuclear receptor mediated recruitment of
coactivator proteins with HAT activity, a later study identified
glucocorticoid receptor (GR) mediated recruitment of histone
deacetylases to inflammatory gene promoters containing the acetyl-
transferase CREBBP and nuclear factor kappa B (NF-kB). Here, the
inhibition of histone acetylation was proposed as a novel GR mediated
mechanism to control inflammatory gene expression [19].

Apart from acetylation, many other histone modifications have
since been shown to correlate with nuclear receptor binding and
transcriptional regulation. For example, protein arginine methyl-
transferase 1 (PRMT1) was revealed to be recruited by the androgen
receptor (AR) resulting in dimethylation of the third arginine of
histone H4 [20]. Methylation of this arginine residue was subse-
quently shown to facilitate acetylation of histone H4 tails by p300,
thereby facilitating transcriptional activation. One of the first reports
that described a connection between nuclear receptor binding and
H3K4 methylation, the hallmark modification associated with
transcriptional activation, was the analysis of ecdysone signaling in
Drosophila. Upon ecdysone binding, the nuclear receptor EcR was
shown to heterodimerize with the retinoid X receptor homolog
ultraspiracle. This heterodimer was subsequently shown to corecruit
the H3K4me3 trimethylase TRR to ecdysone-inducible promoters
[21].

In addition to recruitment of histone methyltransferases, the
description of the first enzymes that could mediate histone demethy-
lation [22,23] led to the investigation of the connection of these
enzymatic activities with nuclear receptor signaling. This led to
uncovering the roles of the H3K9me1 and H3K9me2 demethylating
enzyme LSD1 and the H3K9me3 demethylating enzyme jumonji
domain containing 2 C (JMJD2C) in androgen receptor (AR) signaling
in prostate tissue [24,25]. Similarly, the H3K9-specific demethylase
jumonji domain containing 1A (JMJD1A) was reported to bind to the
peroxisome proliferator-activated receptor gamma (PPARY) response
element (PPRE) at the Ucpl gene promoter, not only facilitating
recruitment of PPARY:RXRa and additional coregulators but also
resulting in decreased levels of H3K9me?2 [26].

Contrary to these enzymatic coregulatory proteins, the well
characterized nuclear receptor corepressors NCOR and silencing
mediator of retinoic acid and thyroid hormone (SMRT) do not possess
any intrinsic enzymatic properties. Instead, NCOR and SMRT confer
repressive characteristics by forming platforms for recruitment of
repressive factors such as HDAC3 [12]. Similarly, a recent study on
glucocorticoid receptor (GR) signaling identified a role of nTRIP6, a
protein containing several protein interaction domains with no
inherent enzymatic activity, as an orchestrator of multiprotein
complexes [27].

Apart from these examples, many other studies on nuclear
receptors have highlighted a pivotal role of coregulatory proteins in
determining the epigenetic state of the chromatin in a cell type
dependent manner. However, a major drawback of these studies was
that they were based on analysis using a single or a small subset of

genes. Therefore, the generality of the proposed mechanisms based on
these studies was still obscure.

3. Genome-wide profiling approaches

With the development of new techniques that allowed investiga-
tion of larger genomic regions or even an entire mammalian genome,
several studies in recent years have provided more global views on
the interplay of nuclear receptor binding and epigenetic alterations.
Initially, the techniques were based on combining chromatin
immunoprecipitation (ChIP) with DNA hybridization to tiled oligo-
nucleotide microarrays (ChIP-chip). Although this technique allowed
global analysis of chromatin-associated proteins including transcrip-
tion factors and modified histones, the spatial resolution and genomic
coverage per microarray was relatively low. Moreover, as it required
multiple arrays to cover a complete genome of higher eukaryotes, the
technique was very costly in order to generate comprehensive views
on nuclear receptor activity on chromatin. Despite these drawbacks,
ChIP-chip has provided valuable insights into the general mechanisms
underlying nuclear receptor action.

The first leap forward for genome-wide profiling in higher
eukaryotes was the analysis of E2F binding on a 1500 promoter
containing DNA microarray using human fibroblasts [28]. This study
was later followed by many other ChIP-chip studies that examined in
most cases only 1 or 2 proteins either on dedicated arrays, or, at later
stages, array platforms with genome-wide coverage, such as the study
of global TFIID binding in IMR90 cells [29]. As the ChIP-chip technique
allowed for the first time the global binding analysis of factors
interacting with DNA, it set the stage for the analysis of genome-wide
nuclear receptor activity. One of the first large-scale studies involving
nuclear receptors was the examination of estrogen receptor (ER)
binding along the complete chromosome 22 [30]. This analysis was
followed by many other ChIP-chip based studies (see also http://
www.nursa.org), such as a genome-wide binding analysis of PPARY in
3T3-L1 cells [31], which was amongst the first comprehensive
analyses to correlate nuclear receptor binding with the acetylation
of histone H3.

However, during these analyses, several problems associated with
ChIP-chip studies became apparent. These included not only the high
costs of using multiple arrays to generate one profile but also the
biases introduced in the ChIP-chip procedure that demanded
extensive bioinformatic and statistical analysis. In addition, the large
amounts of material needed to obtain genome-wide coverage
restricted most studies to cell lines.

4. From ChIP-chip to ChIP-seq

More recently, techniques have been developed that couple ChIP
with high-throughput sequencing (ChIP-seq). Here, massive sequenc-
ing of ChIP DNA generates libraries of relatively short DNA sequences
that can be mapped to annotated genomes of interest, thereby
determining localization of proteins or chromatin modifications of
interest. This approach has been shown to be of significant
importance as it offers for relatively low costs the possibility for
genome-wide analysis at single base-pair resolution [32].

Indeed, the initial ChIP-seq studies were the first to describe
globally several chromatin modifications in mouse and human
cells, thereby creating the first comprehensive overviews of a
complete epigenomic landscape [33,34]. These studies were setting
the stage for many other genome-wide studies that examined a
wide variety of chromatin modifications, from histone acetylation
and lysine methylation to nucleosome occupancy, in a wide range
of cellular systems such as mouse ES cells and human CD4 and
CD133 cells [35-38]. Recently, these advances in sequencing
resulted even in the description of the first DNA methylome at
single base resolution [39].
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The development of ChIP-seq allowed for the first time the extension
of nuclear receptor studies towards different cell systems and variable
experimental settings. Currently, genome-wide studies on nuclear
receptors are stretched throughout all fields of molecular biology,
from hematopoiesis to adipogenesis and from cancer to inflammation.

5. Nuclear receptors and the epigenome

The wealth of information on genome-wide nuclear receptor
binding and its interplay with the epigenome has shed new lights on
the actions of these proteins. Generally, two aspects were studied.
First, many analysis were devoted to examining the epigenetic
modifications that are induced upon nuclear receptor binding and
identification of the responsible enzymes. A second theme was related
to the key question on what determines nuclear receptor binding.
Following the recent studies that examined genome-wide binding of
nuclear receptors (reviewed in [8]), a main conclusion was that only a
small fraction of consensus motifs are bound by receptors in vivo in a
given cell line. Therefore, the specific binding of nuclear receptors to a
subset of motifs in a given cell begged the question of how this
selective binding was achieved. With the hypothesis that the
epigenome is a main determinant to orchestrate nuclear receptor
binding, a myriad of studies were devoted to unveil the interplay of
nuclear receptors with the epigenome.

6. Nuclear receptors directing chromatin modifications

Classically, chromatin modifications at nuclear receptor binding
sites have been proposed as dependent on the nuclear receptor itself.
Small scale studies suggested that upon nuclear receptor binding,
remodeling of chromatin leads to an open chromatin conformation
and subsequent gene activation [40]. New technological develop-
ments have now for the first time allowed examining the generality of
these mechanisms.

Indeed, global PPARY:RXR binding during adipogenesis using an in
vitro model in the 3 T3-L1 preadipocyte cell line [31,41] was described
to correlate with increases in H3 acetylation, and these studies could
be substantiated by PPARYy genome-wide localization in mouse
macrophages [42]. Interestingly, a difference in factor colocalization
was observed between the two cell types; while CCAAT/enhancer
binding proteins (C/EBP) were found colocalizing with PPARYy in
adipocytes, PU.1 was found colocalizing in macrophages. Despite
these differences in factor colocalization, ChIP-qPCR experiments
using sets of PPARy binding regions in both cells highlighted the
association of both PU.1/PPARy and CEBP/PPARYy binding with
increases in H3 acetylation and DNA accessibility. Interestingly, the
presence of repressive marks H3K9me2 and H3K27me3 seemed to
preclude binding of PPARv, hinting at an important role of the
epigenome in determining PPARYy binding. Recently, the PPARYy
interactions with the epigenome were further extended towards a
human model of adipogenesis [43], again revealing a correlation
between adipocyte and preadipocyte-specific enhancers and regula-
tion through histone acetylation.

The importance of H3 acetylation was further substantiated by
showing that the acetyltransferase protein p300, along with GR, C/EBP,
and MED1 laid down a transient H3 acetylation pattern at several genes,
such as PPARY2, that are involved in adipocyte differentiation [44].

ER cistromes have also been correlated with cell type specific
epigenetic histone modifications. For example, estrogen was shown
to induce H3R17me2 and mediate p300 and SRC1 recruitment,
thereby acetylating H3K18, H3K27, and H4K12 in addition to
increasing the DNA accessibility at subsets of estrogen receptor
bound sites [45], while another ChIP-chip study also reported a
strong correlation between ER binding at promoters of E2
stimulated genes, SRC recruitment, and acetylated histones [46].
In addition, the interplay of ER with H3 acetylation was observed in

an alternative setting in which the cooperative interaction between
retinoic acid receptor alpha (RARa) and ER in breast cancer was
investigated [47]. Following the analysis of the genome-wide ER
and RARa binding profiles that uncovered ER dependent recruit-
ment of RARa to genomic regions, ChIP-qPCR was used to show a
role for RAR« in recruitment of the acetyltransferase protein p300
to ER bound genomic regions and subsequent increases in histone
H3 acetylation.

7. Chromatin states and pioneering proteins define lineage
specific nuclear receptor binding sites

It is increasingly evident that, apart from the DNA consensus
motif, other factors have important roles in determining transcrip-
tion factor interaction with chromatin [8]. Indeed, recent genome-
wide studies of transcription factors point out that a large fraction of
mapped binding sites are epigenetically pre-marked and that these
chromatin modifications could be main determinants of cell-specific
binding patterns of transcription factors. For example, inflammatory
enhancers responsible for cell type specific NF-xB and AP-1 target
gene regulation are found to be marked with specific histone
modifications as well as with the coactivator p300 and the
transcription factor PU.1 [48]. It is plausible to think that these cell
type specific epigenetic hotspots confer important pioneering
regions for cell type specific effects of nuclear receptors. Indeed,
several studies have already highlighted an important role for
histone modification patterns and pioneering proteins in determin-
ing nuclear receptor action. In these studies, a central role for a
specific chromatin mark, histone H3 lysine 4 dimethylation, and
FOXAT1 binding was revealed [49-52].

In estrogen signaling, FOXA1 was shown to be a main determinant
for directing ER recruitment to chromatin in MCF-7 cells. Similarly, in
LNCap cells, FOXA1 was important for AR recruitment. Comparison of
FOXAT1 binding in these cell types uncovered cell type specific binding,
suggesting that in a given cell type, the distribution of FOXA1
demarcates sites for nuclear receptor action. Subsequent epigenetic
analysis revealed the underlying chromatin as the key determinant of
cell type specific FOXA1 binding. While FOXAT1 preferentially bound
regions marked with H3K4me2, inactive enhancer regions were
marked by H3K9me2 [49,50]. Both of these marks are expected to
influence chromatin accessibility. Indeed, FOXAT1 sites with increases
in H3K9ac and H3K4me?2 are high in accessibility as determined by
FAIRE (formaldehyde-assisted isolation of regulatory elements) while
H3K9me1l and H3K9me2 increases correlate with low accessibility
regions [51].

The importance of the H3K4me2 marked chromatin regions
was further exemplified by showing that the presence of this
mark at 2 nucleosomes spaced around nuclear receptor consensus
motifs directs FOXA1 binding and subsequent receptor recruitment
[52]. These results show that histone marks, in conjunction with
(pioneering) transcription factors, represent a mechanism for
determining cell-specific binding of nuclear receptors to DNA
and regulating chromatin accessibility during lineage commitment
(Fig. 1).

The fact that cells undergo epigenomic programming during
lineage commitment to encode cell-specific hormonal responses
could be further substantiated by other studies. ChIP-chip analysis
revealed that DNAsel hypersensitive sites (DHS) were found at a wide
spectrum of regulatory regions such as promoters, enhancers, and
locus control regions [53] and that these sites recruited glucocorticoid
receptor (GR). Interestingly, binding of GR was observed both at
constitutive as well as hormone induced accessible sites, which were
enriched with the histone variant H2A.z. This study emphasized that
the DHS profile is highly cell type specific and again implicated the
chromatin landscape as a critical determinant of tissue-selective
receptor function.
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8. The cancer epigenome

The interplay of chromatin with nuclear receptors has important
consequences in disease. Alterations at the chromatin level can
influence nuclear receptor signaling while aberrant nuclear receptor
regulation can severely impact the chromatin environment. This is
illustrated by two recent studies on oncofusion proteins associated
with specific types of cancer. The first one examined the genome-
wide actions of an aberrantly regulated retinoic acid receptor in acute
promyelocytic leukemia (APL). In this leukemia, a chromosomal
translocation involving the PML gene on chromosome 15 and the
retinoic acid receptor alpha (RARa) on chromosome 17 results in the
expression of the PML-RARa oncofusion gene in hematopoietic
myeloid cells [54-56]. Expression of PML-RARa was shown to distort
normal all-trans retinoic acid (ATRA) signaling at multiple levels
(Fig. 2); the fusion protein deregulated RARo:RXR target genes by
occupying their binding sites and, in addition, it also bound the genes
encoding RARq, 3, and v, thereby influencing expression of the genes
that transduce the ATRA signal [57]. In addition to deregulation of
RAR signaling, genome-wide epigenetic studies revealed that PML-
RARa/RXR functioned as a local chromatin modulator, regulating
levels of H3 acetylation, but not H3K27me3, H3K9me3, and DNA
methylation, identifying the acetylome as a prime target for the
oncofusion protein. Furthermore, this study also uncovered that many
genes bound by PML-RARa encode epigenetic enzymes. Through
modulation of their expression, PML-RARa could significantly impact
many other epigenetic modifications at the global level.

In an alternative study, the genome-wide actions of the prostate
cancer associated oncofusion protein TMPRSS2-ERG, which accounts
for 40%-80% of prostate cancers [58,59], was analyzed. Although AR
was found to activate genes involved in prostate differentiation,
TMPRSS2-ERG was found to disrupt AR signaling via binding to AR
itself as well as to many AR target genes (Fig. 2)[60]. Interestingly,
TMPRSS2-ERG expression also activated the PcG protein and H3K27
histone methyltransferase EZH2. In conjunction with increased EZH2
expression, EZH2 target genes were repressed, thus supporting a role
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Fig. 1. The interplay of chromatin and nuclear receptors. Cell type specific marking of
nucleosomes with H3K4me2 (top) identifies DNA response elements that can be bound
by pioneering factors such as FOXA1 (middle). Subsequently, these pioneering factors
direct the recruitment of nuclear receptors, resulting in alterations in chromatin state
and transcriptional activity (bottom).
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Fig. 2. Aberrant nuclear receptor activity. PML-RARc, in conjunction with RXR, binds
specific DNA sequences and recruits repressor complexes resulting in histone
hypoacetylation and transcriptional silencing of target genes such as RARq, (3, and v,
the hematopoietic key regulator PU.1, and many genes that encode proteins that
modulate chromatin structure (top). TMPRSS2-ERG disrupts AR signaling through
binding of AR as well as to AR target genes (bottom). In the process, expression of the
histone methyltransferase EZH2 is upregulated.

for TMPRSS2-ERG activation of EZH2-mediated epigenetic silencing in
prostate cancer.

9. Concluding remarks

Although the role of the epigenome in nuclear receptor signaling
has only been examined for a small number of nuclear receptors and
has mostly been restricted to cell line models, the importance of the
interplay between nuclear receptors, chromatin modifications, and
accessibility has become a mainstay in understanding nuclear
receptor signaling. It is becoming exceedingly clear that nuclear
receptors are not the only responsible factors in altering the
epigenetic environment but that also the epigenome itself is a main
contributor in directing the nuclear receptor response. With the
current technology rapidly progressing, the knowledge of genome-
wide nuclear receptor action and its interplay with chromatin will
undoubtedly increase further and will allow the extension of many of
the important findings from cell lines into more relevant tissues and
to many other nuclear receptors. These studies are expected to shed
further light on the general mechanisms and genome-wide con-
sequences that underlie nuclear receptor action, both in health and
disease.
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