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Objectives: To evaluate the role of S100A4, a calcium-binding regulator of nonmuscle myosin assembly, for T-cell
responses in rheumatoid arthritis. Methods: Arthritis was induced in the methylated bovine serum albumin
(mBSA)-immunized mice lacking the entire S100A4 protein (S100A4KO0) and in wild-type counterparts treated
with short hairpin ribonucleic acid (shRNA)-lentiviral constructs targeting S100A4 (S100A4-shRNA). The
severity of arthritis was evaluated morphologically. T-cell subsets were characterized by the expression of master
transcription factors, and functionally by proliferation activity and cytokine production. The activity of the

Keywords:
S]ﬁgM Scr-kinases Fyn and Lck was assessed by the autophosphorylation of C-terminal thyrosine and by the phosphor-
Th17 cell ylation of the CD5 cytodomain. The interaction between S100A4 and the CD5 cytodomain was analysed by

TCR nuclear magnetic resonance spectrophotometry. Results: S100A4-deficient mice (S100A4KO and S100A4-
Src-tyrosine kinase shRNA) had significantly alleviated morphological signs of arthritis and joint damage. Leukocyte infiltrates in
Arthritis the arthritic joints of S100A4-deficient mice accumulated Foxp3™ Treg cells, while the number of RORyt ™ and
D5 (pTyr705)STAT3 ™" cells was reduced. S100A4-deficient mice had a limited formation of Th17-cells with low
retinoic acid orphan receptor gamma t (RORyt) mRNA and IL17 production in T-cell cultures. S100A4-deficient
mice had a low expression and activity of T-cell receptor (TCR) inhibitor CD5 and low (pTyr705)STAT3 (signal
transducer and activator of transcription 3), which led to increased (pTyr352)ZAP-70 (theta-chain associated pro-
tein kinase of 70 kDa), lymphocyte proliferation and production of IL2. In vitro experiments showed that S100A4
directly binds Lck and Fyn and reciprocally regulates their kinase activity towards the CD5 cytodomain. Spectrom-
etry demonstrates an interaction between the CD5 cytodomain and EF2-binding sites of S100A4. Conclusion: The
present study demonstrates that S1T00A4 plays an important part in the pathogenesis of arthritis. It controls CD5-

dependent differentiation of Th17 cells by regulating the activity of the Src-family kinases Lck and Fyn.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction dominating cellular component of the inflamed and hyperplastic

synovia in RA [4]. Intervention in T-cell receptor (TCR) activation by

Rheumatoid arthritis (RA) is a progressive debilitating autoimmune
disease, which affects 0.5-1% of the total world population [1-3].
Development of RA is characterized by the inflammatory cell infiltration
and severe damage of the affected joints. Mature T-cells are the
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minimizing co-stimulation is proved as an efficient treatment strategy
in RA [5] and confirms the central role of T-cells in the pathogenesis of
this disease.

Appropriate T-cell responses and the strength of the TCR interaction
are linked to cytoskeleton reorganisation, where filamentous actin and
nonmuscle myosin II (NMMII) play the major part [6,7]. The activation
of TCR recruits effector molecules, where the Src-tyrosine kinases Lck
and Fyn play a central part in transmitting a TCR/CD3 signal by
phosphorylating ITAMs and activating the tyrosine kinase ZAP-70 [8],
and recruits cytoskeletal remodelling factors of the Rho GTPase family
to the inner leaflet of the cell membrane. The Rho GTPases are coupled
to actin and NMMII, and define the duration of TCR activation [6,7]. The
diversion of the NMMII function abolishes the formation of TCR clusters
at the outer edge of the T-cell [9] and reduces the activity of Src-tyrosine
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kinases in T-cells [10]. In the present study, we evaluated the role of
S100A4, a regulator of NMMII assembly and an inhibitor of its ATPase
activity, in TCR-dependent immune responses and differentiation of T
helper subsets.

S100A4 is a small Ca-binding protein known for its metastasis-
promoting properties. It is required for normal cell-to-cell interactions
and cell motility. In normal cells and tissues, including fibroblasts,
macrophages, lymphocytes, and bone marrow-derived haematopoietic
progenitors, the increased expression of S100A4 is observed during
cell differentiation, and in angiogenesis and organogenesis [11,12].
Over-expression of S100A4 is seen in many types of tumour cells and
leads to epithelial-mesenchymal transition and connects S100A4 to its
metastasis promoting properties.

The function of S100A4 is best characterized in interaction with
cytoskeletal proteins NMMII, F-actin, and tropomyosin. The binding of
S100A4 to these proteins occurs in a Ca? "-dependent manner and
inhibits the actin-regulated ATPase activity of myosin II [13,14]. The
disassembly of myosin filaments occurring as a result of S100A4 binding
is viewed as the major impact of SI00A4 in cytoskeletal rearrange-
ments, cell polarization, shape changes, and motility [13,15,16]. Recent
reports suggest that S100A4 forms a complex with rhotekin, an adaptor
molecule to the cytoskeletal remodelling factor RhoA, and is predicted
to regulate RhoGTPase-dependent membrane ruffling [17]. SI00A4
binds tumour suppressor p53 in the in vitro purified system [18] and
in cells [19-22]. Binding of S100A4 to p53 occurs in the cell nucleus
and initiates its degradation.

The binding of S100A4 to calcium drives conformational changes
and permits S100A4 to regulate the activity of its multiple intracellular
protein partners placing S100A4 at the crossroad of several intracellular
transduction mechanisms. Intracellular ST00A4 controls signal trans-
duction through FcyRIIIA by inhibiting the activation of the tyrosine ki-
nase Syk [23]. ST00A4 is described as an essential partner of the JAK/
STAT signal transduction activating receptors to IL7 in chondrocytes
[24] and IL10 in the cells of neuroglia [25]. S100A4 is required for the
IL1 receptor dependent activation of an ERK-p38-]JNK signalling path-
way [26] and for mediating estrogen effects to bone progenitors [27].
S100A4 binds transcription factor Smad3 and enhances TGFy-
mediated effects by promoting cancer invasiveness [28] and autoim-
mune inflammation [29].

In RA, S100A4 is abundantly expressed in synovial fibroblasts, macro-
phages and vascular endothelial cells of the inflamed joints and may be
measured in synovial fluid and in blood [30,31]. The clinical conse-
quences of the high levels of ST00A4 in RA patients are associated with
resistant joint inflammation and high skeletal damage [32,33]. The cur-
rent view on the function of S100A4 is consistent with its extracellular
regulation of local inflammation by stimulating the production of matrix
metalloproteinases in synovial fibroblasts and in chondrocytes [26,31].

In the present study we show that S100A4 is essential for T-cell
maturation and function controlling TCR-dependent immune
responses. These results are consistent in two independent in vivo
models of S100A4-deficiency, the knock-out mice obtained by the
germ-line inactivation of the S100A4 gene, and the acute inhibition of
the S100A4 gene transcription by specific shRNA-producing constructs.
S100A4 directly binds the Src-kinases Lck and Fyn and reciprocally
regulates their kinase activity. S100A4-deficiency results in a reduced
activity of STAT3 suppressing transcription of RORyt and lineage differ-
entiation of Th17 cells. The immunological events controlled by S100A4
are functionally important for the pathogenesis of arthritis, since the
deficiency in S100A4 alleviates experimental arthritis.

2. Materials and methods
2.1. Mice

S100A4 knockout mice (S100A4KO) were generated on an A/Sn
background by a germ-line inactivation of the S100A4 gene as described

in [34,35]. The breeding pairs of S100A4KO and congenic WT (A/Sn)
mice were kindly provided by Dr. Mariam Grigorian, Institute of Cancer
Biology, Copenhagen. Mice were bred at the animal facility of the
Department of Rheumatology and Inflammation Research, University
of Gothenburg. The mice were housed 8-10 animals/cage witha 12 h
light and dark cycle, and fed with standard laboratory chow and water
ad libitum. All animal experiments are approved by the Animal
Experimental Board of the Gothenburg University (permits 2009-88,
319-2011 and 125-2012).

2.2. Arthritis model

Arthritis was induced by the intra-articular injection of 30 ug
methylated bovine serum albumin (mBSA, Sigma Aldrich) in the left
knee of preimmunised animals as described in [36]. Mice were immu-
nized subcutaneously with mBSA emulsified with the complete Freund's
adjuvant (Sigma Aldrich) on day 0 and day 7. The left knee joint was
injected with mBSA on day 21 and the morphological evaluation was
done on day 28. In total, 33 S100A4KO-mice and 33 WT mice were
used in 3 independent experiments. Each experiment contained
S100A4KO0 and WT male littermates, 6-10 mice/group.

2.3. Down-regulation of S100A4 in vivo

Fifteen WT (A/Sn) mice were treated with the bioconstructs contain-
ing sequences coding for the S100A4 gene targeting shRNA and a
lentiviral vector (Sigma-Aldrich, St. Louis, MO, USA); an additional 7
WT mice received a non-targeting bioconstruct. Mice were treated
with 1 x 107 transduction particles/mouse and the successful inhibition
of the S100A4 gene transcription was proved by Western blot as
described in [37].

2.4. Adoptive transfer

CD4* T cells were purified on the magnetic beads using the mouse
CD4* T cell isolation kit (StemCell Technology). The purity and viability
of the isolated CD4™ T cells were 89% and 98%, respectively. The isolated
CD4* T cells were injected i.v. into the recipient mice (S100A4KO0, n =
7; and WT mice, n = 8). Each mouse obtained 2 x 10° of the CD™ T cells.
S100A4KO0 mice (n = 6) were used as controls. At the same day of CD4™"
T cell transfer, mice were subjected to the arthritis model as above and
sacrificed on day 28.

2.5. Clinical and histological evaluation of arthritis

The histological evaluation of the mBSA-injected knee joints was
done on the paraffin-embedded and haematoxylin and eosin stained
sections. The sections were coded and evaluated for signs of inflamma-
tion and cartilage/bone destruction. Arthritis was evaluated on an
arbitrary scale from 0 to 3 [36]. The representative histological figures
of the arthritis scale are shown in Fig. 1A.

2.6. Immunohistochemisty staining

The paraffin-embedded sections of knee joints were subjected to an-
tigen retrieval as described in [38], and blocked with 0.3% H,0,, serum
solution (Vector laboratories) and Fc-block (BD Pharmingen™). After
incubation with rabbit anti-mouse pSTAT3 (Tyr705, AbCam), IL17
(AbCam), RORYt (eBioscience), and Foxp3 (eBioscience) antibodies or
rabbit gammaglobulins (Jackson) as a negative control, the specimens
were incubated with ImmPRESS anti-rabbit Ig polymer detection
reagent and stained using ImmPACT™ AEC (Vector laboratories), and
Mayer's haematoxylin (Histolab).
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Fig. 1. S100A4 deficiency alleviates mBSA-induced arthritis by changing the composition of Th-cells in the synovial tissue. A. Severity of arthritis was scored in the haematoxilin-eosin
stained section of knee joints using the arbitrary scoring system, where (0) presents normal synovia (Sy). The joint cavity (JC) and cartilage (C) are preserved, no inflammatory cells
are seen. (1) Small clusters of inflammatory cells are found in synovia (arrows). The joint cavity and the cartilage are preserved. (2) Substantial inflammatory cell infiltrates are spread
in the synovial tissue. (3) Inflammatory cells fill the whole joint cavity. Loss of cartilage integrity is indicated as erosions (Er). (M) = meniscus. B. The synovitis index and destruction
index were calculated for S100A4-deficient (S100A4KO, n = 33) and wild-type mice (WT, n = 33). C. Cell composition of the inflamed synovial tissue was assessed by flow cytometry
in ST00A4KO mice (n = 8) and in WT mice (n = 9). D. The effector CD4TCCR7~ cells were analysed in synovial tissue and in the spleen of the mBSA-immunization mice. Dot plots
show the gating strategy used for the analysis. ST00A4KO mice had smaller populations of the effector CD4*CCR7~ cells in the knee synovia and in the spleen. E. The expression of
IL17 in the inflamed synovial tissue correlated with the arthritis index in the joints of ST00A4KO and WT mice. S100A4KO mice had a higher number of FoxP3* cells in the knee synovia

compared to WT mice.

2.7. Western blotting

Total protein was prepared from spleen tissue in the presence of
protease and phosphatase inhibitors (Complete Mini and Phospho
Stop; Roche Diagnostics GmbH, Mannheim, Germany). Protein concen-
trations were measured using the bicinchoninic protein assay kit

(Pierce, Thermo Scientific, Rockford, Illinois). Proteins were separated
on SDS-PAGE 4%-12% Bis-Tris gels (NuPAGE; Life technologies Ltd.,
Paisley, United Kingdom) and transferred to polyvinyl difluoride
membranes (Life Technologies). Membranes were blocked with 5%
BSA and incubated with antibodies against S100A4 (Dako; A5112),
PSTAT3 (Abcam; ab76315), or actin (Sigma; A2066) at 4 °C overnight.
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Detection was performed with peroxidase-conjugated anti-rabbit
secondary antibody (NA934VS; GE Healthcare, Uppsala, Sweden) and
ECL substrate (Amersham Biosciences, Uppsala, Sweden). Chemilumi-
nescent signals were quantified by the Chemidoc gel documentation
system using Quantity-One software (Bio-Rad Laboratories, Hercules,
California).

2.8. Stimulation of spleen and synovial cell cultures

Cells cultures of spleen and synovial tissue were prepared as previ-
ously described [36] and resuspended to the concentration 2 x 108
cells/ml in Iscove's complete medium (10% fetal calf serum, 4 mM L-glu-
tamine, 50 UM B,-mercaptoethanol, and 20 pg/ml gentamicin). Cultures
were stimulated with anti-CD3 antibodies (1 pg/ml, R&D Systems), or
LPS (10 pg/ml, Sigma-Aldrich). The supernatants were collected for
cytokine analysis after 48 and 72 h. For the intracellular phosphorylation
analysis cells were rested for 24 h and stimulated with anti-CD3 (2 pg/
ml). Stimulation was stopped after 2 min, 5 min, and 10 min by the
addition of PFA (1.5%/v).

2.9. Splenocyte proliferation

The cells were labelled with a cell trace Violet dye binding to intra-
cellular amines (InVitrogene) prior to stimulation. The reduction in
the dye indicates the lymphocyte proliferation rate. The alternative
read-out system included the incorporation of *H-thymidine (Perkin
Elmer, Boston, MA, USA) added to the cell cultures 12 h before cell
harvest, as previously described [38].

2.10. Flow cytometry

Cells were incubated with F.-block (BD Pharmingen) and stained
with primary antibodies against CD4 (GK1.5), CCR7 (4B12), CD5
(53-7.3), B220 (RA3-6B2), CD11b (M1/70), CD11c (HL3), F4/80
(BM8) (all from BD Biosciences) and CD62L (MEL-14) (Biolegend).
For the intracellular phosphorylation analysis cells were stained with
rabbit anti-CD5 (pTyr453, Antibodies-online, Atlanta, GA, USA), or
ZAP-70 (pTyr319/Syk pTyr352, Thermo Scientific, Rockford, IL, USA),
or Fyn (pTyr530, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
visualised by Alexafluor647-conjugated goat-anti-rabbit antibody
(Molecular Probes, LifeTechnologies, Stockholm, Sweden). For intracel-
lular RORt staining clone B2D, and clone eBRG1 as IgG1 isotype control
(eBioscience, San Diego, CA, USA) were used.

Cells were collected 5 x 10° events/spleen sample, and 1 x 10*
events/synovial sample using a FACSCantoll (BD Bioscience) equipped
with FACSDiva software. The analysis was performed using Flow]Jo
software (version 10.0.6, Tree Star, Inc., Ashland, OR). The fluorochrome
compensation was done on CompBeads (BD Bioscience).

2.11. Cytokine analyses

Cytokines were measured in supernatants of splenocyte cultures
diluted 1:2 by flow cytometry using a CBA kit (BD Bioscience). The
lower detection limits for IL2, IL4, IL6, IFN<y, TNFc, IL17A, and IL10
were 0.1 pg/ml, 0.03 pg/ml, 1.4 pg/ml, 0.5 pg/ml, 0.9 pg/ml, 0.8 pg/ml
and 16.8 pg/ml, respectively.

2.12. Gene expression analysis

Total RNA was extracted from splenocytes using an RNeasy Mini Kit
(Qiagen, Valencia, CA). The quality of RNA samples was evaluated with
Experion (Bio-Rad Laboratories Inc., USA). Real-time amplification was
performed with RT? SYBR® Green qPCR Mastermix (Qiagen) using a
ViiA™ 7 Real-Time PCR System (Applied Biosystems) as previously
described [37]. The expression of the following genes was measured
(S100A4 (Mts-1), Foxp3, Gata3, Tbx21, RORt, IRF4, IL21, Ki67, CD5,

Bcl6 and Blimp1) and normalised to the reference genes Gapdh and
Ppia. The sequences of primers and probes used in the qPCR are
available from Applied Biosystems. The results were expressed as the
fold change (relative quantification (RQ)) compared with the expression
levels in the WT control cells with the ddCt-method.

2.13. In vitro kinase assays and precipitation of phosphorylated CD5
peptide

Kinase assays were performed as previously described [39]. When
indicated, S100A4 or BSA as control was included in the kinase reaction.
Antibodies used for immunoprecipitation and immunoblotting were
polyclonal anti-Fyn (BL90) and anti-Lck (DA3), kind gifts from M. G.
Tomlinson (University of Birmingham), and anti-Csk (Santa Cruz
Biotechnology). Densitometric quantitation of the autoradiographs
was done on a GS-800 densitometer (Bio-Rad) using the Quantity One
software (Bio-Rad). Densitometric values are expressed in arbitrary
units calculated from background non-saturated signals.

A biotinylated peptide containing the rat CD5 ITAM-like sequence
(Biot-AASHVDNEYSQPPRNSRLSAYPALE-OH, purchased from New
England Peptide) was also included as a Fyn or Lck substrate in the
reaction mix at a final concentration of 0.5 pg/ul. For the precipitation
of the biotin-labelled CD5 peptide, the beads containing the immune
complexes were boiled for 5 min in 2% SDS and diluted 8-fold with
lysis buffer. After centrifugation, supernatants were recovered and
pre-cleared for 30 min with 100 pl protein A Sepharose beads. The
CD5-peptide was recovered using neutravidin beads (Thermo Scientific)
and the incorporated [y->2P]-ATP was measured in a Beckman liquid
scintillation counter.

2.14. Nuclear magnetic resonance spectroscopy

5N-labelled S100A4 was expressed and purified as described in [15].
Synthetic peptide NEYSQPPRNSHLSAYPALEGALHRSSTQPDNSSDSDYDL
corresponding to residues 450-488 aa of CD5 was purchased from
ChinaPeptides (Shanghai); the peptide was purified by HPLC to >95%,
and sequence was confirmed by mass spectrometry. NMR experiments
were conducted in 20 MES, 40 NaCl, 5 CaCl,, pH 6.1 buffer at 40 °C.
100 uM S100A4 was titrated with a 5 mM CD5 peptide solution. The
concentrations of S100A4 and CD5 peptide were determined from the
UV absorbance at 280 nm. 'H,'>N-HSQC spectra were recorded on a
Bruker AVANCE-II 600 MHz spectrometer equipped with CryoProbe.
Proton chemical shifts were referenced to external DSS. Spectra were
processed with TopSpin (Bruker) and analysed using ANALYSIS [40].

2.15. Statistical analysis

Values are reported as median and inter-quartile range [IQR].
Comparisons between groups were performed using the Mann-Whitney
U test. A p value < 0.05 was considered significant.

3. Results
3.1. Arthritis and bone destruction are decreased in S100A4K0 mice

Arthritis was induced in the mBSA-immunized S100A4KO and WT
mice by an injection of mBSA into the left knee joint. Histological
evaluation of the injected joints was performed 7 days later by a semi-
quantitative scoring (Fig. 1A). The arthritis scoring included the mononu-
clear cell infiltration (synovitis), synovial growth forming above the
cartilage (pannus) and the loss of bone integrity (erosion). The histo-
logical analysis revealed that ST00A4KO mice had a low synovitis
index (p = 0.04), and a low destruction index (p = 0.003)
compared with WT mice (Fig. 1B).

Flow cytometry of the inflamed synovia of S100A4KO mice revealed
a higher proportion of CD4™ T cells and a lower proportion of



M. Brisslert et al. / Biochimica et Biophysica Acta 1842 (2014) 2049-2059 2053

macrophages (B220~CD4~CD11b*) and B-cells (B220") compared to S100A4KO mice were enriched with Foxp3™ cells compared to WT
WT mice (Fig. 1C). S100A4KO0 mice had a reduced number of effector (Fig. 1E). The number of RORyt™ cells was low in the synovia of
CD4™ T-cells in the inflamed synovial tissue (CCR7 ", p = 0.008) and S100A4KO0 mice, while IL17 staining was similar between S100A4KO
in the spleens (CCR7~, p = 0.008) (Fig. 1D). The synovial infiltrates in and WT mice and correlated to the arthritis severity.
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Fig. 2. S100A4 deficiency limits the formation of Th17-cells. A. Inhibition of ST00A4 was achieved by an intra-peritoneal injection (1 x 107 transduction particles/mouse) of a specific
lentiviral construct targeting the gene of S100A4 (S100A4-shRNA) in WT mice. Control mice were injected with non-targeting (NT)-RNA. Protein levels of S100A4 were assessed in
shRNA-treated and NT mice by Western blot and quantified in relation to actin. Each line represents an individual mouse. B. Levels of IL17 and IFNy were measured in supernatants of
spleen cell cultures stimulated with aCD3 (3 ug/ml) by a CBA-kit. Levels of transcription factors RORyt and IRF4 mRNA in the spleen were assessed by RT-PCR. The mRNA levels in
S100A4KO and S100A4-shRNA treated mice are quantified as the fold difference (RQ) compared with WT and NT-RNA cells with the ddCt-method. C. Synovial tissue of WT mice treated
with S100A4-shRNA and NT-shRNA was stained for the presence of cells expressing active STAT3 (pTyr705), RORyt, and FoxP3. The area of higher magnification is gated. The positive cells
are stained orange, and cell nuclei are stained with haematoxylin. D. The levels of active (pTyr705)STAT3 are quantified as a ratio to actin in spleens of ST00A4KO and S100A4-shRNA
treated mice and compared with control WT mice and NT-shRNA treated mice. Each line in the Western blot represents an individual mouse. Statistical evaluation was performed
using the Mann-Whitney analysis and p-values equal or below 0.05 were considered significant.
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3.2. S100A4 deficiency alters maturation of the effector Th17 cells

To prove the role of S100A4 in the changes observed in the T-cell
phenotype, we induced an acute inhibition of the S100A4 gene by a spe-
cific shRNA-lentiviral construct (S100A4-shRNA). The intra-peritoneal
injection of WT mice with the S100A4-shRNA resulted in a significant
reduction of S100A4 protein in spleen (Fig. 2A).

The analysis of T helper (Th)-cells in spleen cultures of S100A4-
deficient (S100A4-shRNA treated and S100A4KO) mice revealed a low
production of IL17A following aCD3-stimulation, while the levels of
IFNg was low in S100A4KO mice (Fig. 2B). Expression of the Th17
specific transcription factor RORyt mRNA was also reduced in
S100A4KO and in S100A4-shRNA treated mice (Fig. 2B), while the Th1
transcription factor T-bet was similar to WT and NT-shRNA treated
controls (not shown). The leukocyte infiltrates of the arthritic synovia
of S100A4-shRNA treated mice was enriched with Foxp3™ cells and had
a lower number of RORyt™ cells (Fig. 2C). This confirmed that the
impaired formation of Th17 effector T-cells was dependent on S100A4.

3.3. S100A4-deficient mice display an impaired transcriptional control over
lineage differentiation of Th17 cells

The initial lineage commitment of Th17 cells is controlled by
transcription factors IRF4 and STAT3 [41]. Assessment of these
transcriptional factors in spleens of S100A4-deficient mice revealed a
significant increase of IRF4 mRNA both in S100A4KO mice and in
S100A4-shRNA-treated mice (Fig. 2B). Splenocytes of S100A4-shRNA-
treated mice had high Blimp-1 mRNA (p = 0.02). The active STAT3
was measured by the phosphorylated (p)Tyr705-STAT3 in spleen
cells. Western blot analysis showed that ST00A4KO and S100A4-
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shRNA-treated mice had reduced levels of pTyr705-STAT3 (p = 0.056
and p = 0.03, respectively, Fig. 2D). Additionally, the low number of
PSTAT3™ cells was present in the inflamed joints of S100A4KO and
S100A4-shRNA-treated mice (Fig. 2C). These findings suggest that the
low activity of STAT3 may be responsible for the low transcription of
RORyt in S100A4-deficient mice.

3.4. S100A4 deficiency increases lymphocyte proliferative response

STAT3-deficient T cells have a high proliferation and high production
of IL2 [44]. Consistent with the low pTyr705-STAT, S100A4KO mice had
an increased lymphocyte proliferation response to stimulation with
aCD3 (p = 0.029, Fig. 3A), LPS (B-cell ratio, 4.58 [3.8-5.1] vs. 1.9 [1.7-
2.3], p = 0.028) and mBSA (p = 0.0003). S100A4-shRNA treated mice
had a similar increase in the proliferation response (Fig. 3B). To prove
the role of S100A4 for T cell function, we performed a transfer of CD4 ™
T cells of WT mice to ST00A4KO recipients. The proliferative response
assessed in ST00A4KO recipients 28 days after the transfer showed a
reduction compared to non-transferred S100A4KO mice (Fig. 3A).

The increased proliferative ability in S100A4-deficient mice was
combined with higher levels of Ki-67 mRNA (Fig. 3C) and IL2 protein
levels (Fig. 3D). The adoptive transfer of WT CD4" T cells into
S100A4KO mice increased the population of RORyt*CD4™ T cells in
the recipient mice (Fig. 3E).

3.5. S100A4-deficiency reduces surface expression and activity of CD5
Modulation of TCR signalling is attributed to major functional effects

of CD5 [43]. S100A4-deficient mice had a smaller population of
CD57CD4™ T cells compared to WT controls (Fig. 4A). The adoptive
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Fig. 3. S100A4 deficiency increases lymphocyte proliferation. A. Lymfocyte proliferation was assessed in aCD3 (3 pg/ml) stimulated spleen cultures of ST00A4KO mice (n = 6), ST00A4KO
recipients of CD4™ WT cells (2 x 10° cells/mouse, n = 7), or WT recipients of CD4™ WT cells (n = 8) using the membrane CellTracer™ violet staining. A representative dot plot shows the
distribution of the cell tracer in proliferating CD4" cells. The histogram shows proliferating T cells of ST00A4KO mice (black solid line), STO0A4KO mouse recipients of WT cells (black
dashed line), and WT mouse recipients of WT cells (grey filled) after 72 h of aCD3 stimulation. Cells are gated on CD4 " cells. The box plot shows the proliferative response within each
group. B. The proliferative response was assessed in S100A4-shRNA and NT-shRNA treated mice by *[H]-thymidine incorporation following 72 h of aCD3 stimulation. C. Ki67 mRNA levels
were measured in aCD3-stimulated spleen cells of ST00A4-shRNA or NT-shRNA treated mice by RT-PCR. The results are expressed as the fold difference (RQ) compared with WT control
cells with the ddCt-method. D. IL2 levels were measured in the supernatants of aCD3-stimulated spleen cultures of S100A4KO and WT mice using a CBA-kit. The results are as the ratio of
IL2 levels in the stimulated/unstimulated supernatant. E. The population of RORyt*CD4 ™" T-cells was quantified in the spleen of mBSA-immunized S100A4KO mice, S100A4KO mouse re-
cipients of CD4TWT cells, and WT mouse recipients of CD4"WT cells using flow cytometry. Statistical evaluation was performed using the Mann-Whitney analysis and p-values equal or

below 0.05 were considered significant.
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transfer of WT CD4™ T cells to S100A4KO recipients showed an increase
in CD5™ T cell population of the recipients (Fig. 4B). S100A4KO mice
displayed low CD5 mRNA (p = 0.05), which suggested that the
transcription and cell surface expression of CD5 is dependent to
S100A4. The S100A4-deficient spleen cultures had low levels of active
pTyr453-CD5 (Fig. 4C). Since functional CD5 has been reported as
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essential for the activation of STAT3 [42], these findings provide a link
to the low levels of pSTAT3 in S100A4-deficient mice.

Consistent with the increased proliferation, S100A4-deficient T-cells
had increased levels of pTyr352 ZAP-70 compared with WT (Fig. 4D).
Importantly, the activity of ZAP-70 was lower in CD5" T-cells, the
population affected in S100A4KO mice. Also, CD5™" cells displayed an
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Fig. 4. S100A4 deficiency limits CD5 expression and reduces ZAP-70, Fyn and Lck activity. A. The population of CD5"CD4™" T-cells was assessed in the spleen of ST00A4KO and S100A4-
shRNA treated mice and their controls by flow cytometry. B. The box plots shows CD5*CD4 " T-cells within splenocytes of S100A4KO mice, S100A4KO mouse recipients of CD4"WT cells,
and WT mouse recipients of CD4+WT cells. C. Phosphorylated (p)Tyr453 CD5 on CD4 ™ T cells was measured by flow cytometry following anti-CD3 (3 pg/ml) stimulation, and presented as
the mean fluorescent intensity (MFI). D. Phosphorylated (p)Tyr532 Zap-70 on the CD4TCD5™ T-cells of S100A4 KO and WT mice was measured following aCD3 stimulation by flow cy-
tometry. E. Phosphorylated (p)Tyr530 at C-terminal of Fyn was measured on CD4*CD5™ and CD4"CD5 ™~ T-cells by flow cytometry, and presented as the mean fluorescent intensity (MFI).
F. Lck and Fyn were immunoprecipitated from lysates of non-stimulated Jurkat cells. Effect of S100A4 (0-0.2-0.5 mg/ml) on the kinase activity of Lck and Fyn was assessed using a 25 aa-
long peptide of CD5 containing tyrosines 453 and 465. Control experiments were performed in the presence of BSA. [y->2P]-ATP was used as source of the phosphate groups. After the
kinase reactions, the peptide was pulled down with neutravidin beads and the radioactivity incorporated into the peptide was measured in a liquid scintillation counter. The experiments
performed in Ca-free and CaCl, enriched buffers gained similar results. The line plots present scintillation counts obtained in 3 independent experiments. Mean + SEM. G. Changes in the
kinase activity with the increasing concentrations of recombinant (r)S100A4 were assessed by autophosphorylation of kinases. The immunoprecipitated Lck and Fyn kinases were sub-
jected to SDS-PAGE and autoradiography. The densitometry values are indicated under each line. H. Lck and Fyn were immunoprecipitated from lysates of Jurkat cells in the presence
of rIS100A4 (0.1 mg/ml). Antibodies against S100A4 and C-terminal src-kinase (Csk) were used as positive and negative controls, respectively. Immunoblotting of the immunoprecipitates
with an anti-S100A4 antibody confirmed that S100A4 was included in the Lck and Fyn immunoprecipitates (upper panel). Fyn was visible in S100A4 immunoprecipitates (lower panel).
No Lck could be detected in S100A4 immune complexes (middle panel).
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increased activity of pTyr530 Fyn as compared to CD5~ cells in both WT
and S100A4KO mice (Fig. 4E).

3.6. S100A4 associates with, and affects the kinase activity of, the
Src-tyrosine kinases Lck and Fyn

Lck, and to a lesser extent Fyn, are protein tyrosine kinases which, in
parallel with the initiation of a TCR-mediated signal, are involved in the
phosphorylation of the inhibitory receptor CD5 [45]. As S100A4
deficiency is translated into the insufficient CD5 and the increase in
T-cell proliferation, we asked whether the S100A4 protein could directly
obstruct the activity of the Src-tyrosine kinases in vitro.

Lck and Fyn were immunoprecipitated from lysates of non-
stimulated Jurkat cells (a human T-cell line) and, using [y->2P]-ATP as
a source of the phosphate groups, their kinase activities were assessed
in the presence or absence of recombinant S100A4. A synthetic biotinyl-
ated peptide corresponding to the C-terminal part of the CD5 cytoplas-
mic domain and containing two tyrosine residues (Tyr453 and Tyr465)
was used as a phosphorylation substrate. After the kinase reaction, the
peptide was pulled down with neutravidin beads and the radioactivity
incorporated into the peptide was measured in a liquid scintillation
counter. Recombinant S100A4 induced a remarkable decrease of
peptide phosphorylation mediated by Lck, while it provoked an increase
in the phosphorylation regulated by Fyn (Fig. 4F). This effect of S100A4
was calcium-independent, since the addition of CaCl, had only a
marginal effect of the phosphorylation of the peptides. Replacement of
S100A4 by control BSA restored completely (for Fyn) or most (for Lck)
of the peptide phosphorylation.

To clarify whether these effects were due to changes in the kinases'
activities by S100A4 or to a possible block/interference of the phosphor-
ylation sites by S100A4 binding to the peptide, we immunoprecipitated
the kinases directly from the reactions and assessed their autophos-
phorylation capacity. As seen by SDS-PAGE and autoradiography,
S100A4 at 0.5 mg/ml provoked a marked decrease of the Lck activity
(by 55%), while the activity of Fyn was simultaneously increased by
over 30%, as indicated by the densitometry values under each lane
(Fig. 4G). Substitution of S100A4 by BSA reverted the activity of the
kinases to their original levels.

A direct interaction of S100A4 with both Lck and Fyn was confirmed
by co-precipitation of Lck and Fyn with recombinant S100A4 (at
0.1 mg/ml) from lysates of Jurkat cells. Antibodies against S100A4 and
Csk (a tyrosine kinase that phosphorylates the inhibitory C-terminal
tyrosine residue of Lck and Fyn) were used as positive and negative
controls, respectively. Immunoblotting of the immunoprecipitates
with an anti-S100A4 antibody confirmed that S100A4 was included in
the Lck and Fyn immunoprecipitates (Fig. 4H, upper panel). Reciprocal-
ly, Fyn was visible in S100A4 immunoprecipitates (Fig. 4H, lower
panel). However, no Lck could be detected in S100A4 immune
complexes (Fig. 4H, middle panel). Given that recombinant S100A4 is
present in large excess relatively to endogenous proteins in this assay,
and that in Jurkat cells Fyn is expressed at much lower levels than Lck,
these combined results suggest that the interaction of S100A4 with
Fyn is significantly stronger than that of S100A4 with Lck.

3.7. CD5 binds to the EF2 pocket of S100A4

S100A4 changed the activity of Lck and Fyn in the presence of the
CD5 peptide. This suggested that S100A4 could bind CD5 directly and
therefore block, at least partly, the interaction between S100A4 and
the kinases. To ascertain the interaction of S100A4 with the
C-terminal region of CD5, NMR binding studies were performed as
described in [15]. The addition of a CD5 peptide (aa 450-488) to
S100A4 caused a specific chemical shift change in the spectra of Ca®*-
bound S100A4 (Fig. 5A), but had no effect on the spectra of apo-S100A4
(not shown). The chemical shifts changed progressively with the increase
of the CD5 peptide concentration. No resonance broadening was detected

and at 2-fold excess of the CD5 peptide (100 uM S100A4) chemical shift
changes did not reached saturation, indicating a relatively weak binding
with the dissociation constant Kp >100 pM. The significant chemical
shift change map to two continuous adjacent patches in the Ca*-
dependent EF2 binding sites in the S100A4 dimer (Fig. 5B) overlapping
with the consensus ligand binding sites of S100 proteins [15]. Based on
the localized changes in the NMR spectra, Ca®*-dependence and
mapping to the continuous regions, we concluded that the C-terminal
region of CD5 specifically interacts with the EF2 sites of S100A4.

To test whether the interaction of S100A4 with CD5 could have any
functional effect, CD5 was immunoprecipitated from resting E6.1 Jurkat
cells and the kinase assays with the immune complexes were per-
formed in the presence or absence of recombinant S100A4. The proteins
that co-precipitated with CD5 had decreased phosphorylation in the
presence of increasing concentrations of S100A4 (Supplementary
Fig. S1). This suggests that S100A4 is able to disrupt CD5 complexes at
the cell surface that could modify some of the receptor's effects, thus
establishing S100A4 as a regulator of CD5 function.

4. Discussion

We show that metastasin S100A4 participates in the decision mak-
ing for the proliferation and differentiation of antigen-exposed T-cells.
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Fig. 5. Interaction between C100A4 and CD5 cytodomain was analysed by nuclear magnet-
ic resonance spectrophotometry. A. Interaction of CD5 peptide with the Ca?"-form of
S100A4. Superposition of the 'H,'>N-HSQC spectra (600 MHz) of 0.1 mM Ca®"-S100A4
free in solution (red) and in the presence of 0.2 mM CD5 (aa 450-488) peptide (blue).
Assignments of the cross-peaks corresponding to the significant chemical shift changes
are marked in the spectrum of the free protein. B. Chemical shift changes induced by the
CD5 peptide (aa 450-488) mapped on the structure of Ca>*-S100A4 in complex with a
myosin peptide (PDB ID: 2LNK) in cartoon (left) and surface (right) representation.
Subunits of the ST00A4 dimer are coloured in grey and light cyan, myosin peptide in
orange. Residues corresponding to the significant chemical shift changes of (A) are
highlighted in red. Ca®>*-dependent EF2 sites are marked.
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S100A4KO mice showed an enhanced TCR-dependent proliferation
capacity and increased IL2 production. This was combined with a
reduced formation of effector T-cell populations and insufficient
differentiation of Th17-cells recognized by the low synthesis of signa-
ture cytokine IL17A and low expression of the master transcription
factor RORyt. Specificity of S100A4 inhibition for the acquisition of the
described T-cell phenotype was demonstrated by the acute inhibition
of the S100A4 gene transcription in WT mice by the specific ShRNA-
encoding construct, which yielded concordant results. The adoptive
transfer of CD4" T cells from WT to S100A4KO mice resulted in a
partially rescued phenotype of ST00A4KO recipients and increased the
population of RORyt* T-cells. The synthesis of the master transcription
factor RORt is critical for the formation of Th17 cells [46,47] and is
controlled by a net of transcription factors consisting of Blimp-1-IRF4-
STAT3 [41]. Both S100A4KO and S100A4-shRNA-treated mice had high
levels of Blimp-1 and IRF4 mRNA, while the activity of STAT3 measured
by pTyr705 was reduced.

Expression of STAT3 has recently emerged as an important molecu-
lar mechanism controlling the formation of Th17 cells [48] and their
local accumulation in the inflamed RA synovia [49]. S100A4-deficient
mice had the reduced synovial expression of pTyr705-STAT3 and
reduced severity of arthritis. The spleen populations and the lymphocyte
infiltrates in the synovial tissue of S100A4-deficient mice had a low num-
ber of RORYt™ cells while the number of Foxp3™ cells was increased.
Th17 cells play an important role in the pathogenesis of RA mediating a
link between the immune system and joints. Th17 cells produce high
levels of the NF-yB dependent pro-inflammatory cytokines essential
mediators of pathological processes in arthritis. Additionally Th17 cells
are the cells supporting the formation of bone-resorbing osteoclasts and
enhancing arthritic joint destruction [50,51]. We have recently
reported impaired osteoclatogenesis with poor multinucleation, skewed
expression of integrins and the low content of proteolytic enzymes in
S100A4KO mice [37]. Thus, suppressing the formation of Th17 cells
followed by the impaired osteoclastogenesis provides a plausible expla-
nation to the alleviated joint damage observed in S100A4-deficient mice.

Herewith we asked which sequence of intracellular events could
explain a connection between S100A4 and low STAT3 activity?

The activity of STAT3 is modulated through the pathway connecting
integrins and the cytoskeletal remodelling protein RhoA [52,53] (see
Graphical abstract). The activity of RhoA is promoted by the Src-kinase
Fyn. The recruitment of Fyn to the inner leaflet of cellular membrane
is coordinated by integrins [54-56]. We have previously shown that
S100A4-deficient mice have impaired expression and stability of
integrins on the surface of lymphocytes mobilised to the inflamed
synovia [57] and on the bone marrow osteoclast progenitors [37].
Also, a potential interference of S1T00A4 in the RhoA system has been
recently suggested to occur through its interaction with the scaffold
protein rhotekin [17]. Thus, we searched for a potential functional
coherence between S100A4 and Fyn and found that Fyn was shown to
promote Th17 differentiation and functions as an upstream regulator
of IRF4, RORvt, and IL17A [58].

The major function of Fyn in T-cells is the regulation of signalling
through TCR where it works in synergy with the Src-tyrosine kinase
Lck [59]. Lck and Fyn are known to control TCR signalling through the
lymphocyte receptor CD5 (reviewed in [43,60]). The C-terminal phos-
phorylation of CD5 by Fyn has been recognized as a mechanism
required for CD5-dependent regulation of Fyn [61]. Additionally, T-cell
costimulation via the CD5 lymphocyte receptor has recently been
shown to be critical for the activation of STAT3 and the initiation of
Th17 development [48]. We observed, that the deficiency in S100A4
was associated with a smaller CD57CD4 " T-cell population, which
also had low levels of the phosphorylated pTyr453 CD5 expression on
the surface of T-cells. A functional consequence of insufficient CD5 in
S100A4-deficient mice may be found in the enhanced lymphocyte
proliferative capacity observed both in ST00A4KO and S100A4-shRNA-
treated mice. Importantly, the transfer of CD4™ T cells from WT mice

enlarged the CD5™ population and limited the lymphocyte proliferation
of the ST00A4KO recipients. Analogously to the S100A4-deficient mice,
functional CD5 is shown to be essential for the differentiation of naive T
cells into Th2 and Th17-cells [42,48].

The interaction between S100A4 and its target proteins, NMMII,
beta-liprin and recently the cytoplasmic domain of FcyRIIIA, occurs
within the PKC or CK2 sensitive region of the target protein [13,14,16,
23]. The cytoplasmic tail of CD5 contains the PKC-sensitive regions at
Ser427 and the CK2 phosphorylation site at its C-terminal region [62].
A deletion of the C-terminal fragment of CD5 containing the CK2-
phosphorylation site resulted in a failure to produce Th2 and Th17-cell
subsets [63]. The binding assay revealed an interaction between
S100A4 and a CD5 peptide containing the CK2-sensitive sequence
resembling the affinity of smaller myosin peptides [64]. The results of
the NMR spectra analysis provided an evidence for the physical interac-
tion between the C-terminal-region of the CD5 cytoplasmic domain and
the EF2 sites of S100A4. A dimerization of the CD5 receptor on the cell
surface is expected to bring two S100A4 binding sites in each monomer
close together and enhance the affinity between CD5 and S100A4.

In in vitro experiments we show that S100A4 co-precipitates with
both Lck and Fyn from the cell lysates indicating a direct binding
between these proteins. Moreover, this binding had a reciprocal effect
on the kinase activity of Fyn and Lck. S100A4 reduced the Lck-
dependent phosphorylation of CD5 to a degree comparable with the
increase in the kinase activity of Fyn. This provides experimental
evidence that S100A4 is able to disrupt CD5 complexes at the cell sur-
face that could modify some of the receptor's effects, thus establishing
S100A4 as a regulator of CD5 function. Thus, the absence of S100A4
corresponded to highest kinase activity of Lck, which is in agreement
with the hyper-proliferation state observed in S100A4-deficient
lymphocytes and predicted a disruption of Fyn activity. Insufficient for-
mation of Th17 cells due to the reduced activity of STAT3 and the poor
production of RoRyt is consistent with a Fyn-deficient phenotype [58].
These results suggest that S100A4 is essential for controlling a balance
between the activities of Lck and Fyn tyrosine kinases. We hypothesised
that S100A4 controls Lck-dependent T-cell proliferation and
Fyn-dependent differentiation of T helper subsets through a CD5-
dependent mechanism.

5. Conclusion

The present study demonstrates that the regulator of NMMII activity,
metastasin S100A4 coordinates a balance between the proliferation and
differentiation of antigen-exposed T-cells promoting CD5-Fyn-STAT3
dependent effects (Graphical abstract). S100A4-deficiency results in
an impaired lineage differentiation of the Th17 subset of T helper cells.
The reduced ability to form Th17 cells decreased the severity of arthritis
in S100A4KO mice and reduced joint damage.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.07.003.
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