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Amyloid β-protein (Aβ) aggregation is considered to be a critical step in the neurodegeneration of Alzheimer's
disease (AD). In addition to Aβ, many proteins aggregate into the amyloid state, in which they form elongated
fibers with spines comprising stranded β-sheets. However, the cross-seeding effects of other protein aggregates
on Aβ aggregation pathways are not completely clear. To investigate the cross-seeding effects of exogenous and
human non-CNS amyloidogenic proteins on Aβ aggregation pathways, we examinedwhether and how sonicated
fibrils of casein, fibroin, sericin, actin, and islet amyloid polypeptide affected Aβ40 and Aβ42 aggregation path-
ways using the thioflavin T assay and electron microscopy. Interestingly, the fibrillar seeds of all amyloidogenic
proteins functioned as seeds. The cross-seeding effect of actin was stronger but that of fibroin was weaker
than that of other proteins. Furthermore, our nuclear magnetic resonance spectroscopic studies identified the
binding sites of Aβwith the amyloidogenic proteins. Our results indicate that the amyloidogenic proteins, includ-
ing those contained in foods and cosmetics, contribute to Aβ aggregation by binding to Aβ, suggesting their pos-
sible roles in the propagation of Aβ amyloidosis.

© 2014 Published by Elsevier B.V.
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1. Introduction

Alzheimer's disease (AD) is characterized by the accumulation of
amyloid plaques and neurofibrillary tangles. Amyloid β-protein (Aβ)
is the primary component of amyloid plaques. Its aggregation is consid-
ered to be a critical step in the neurodegeneration of AD.

A nucleation-dependent model has been used to explain the mech-
anisms of Aβ aggregation in vitro [1,2]. This model consists of two
phases, i.e., nucleation and extension. Nucleation requires a series of as-
sociation steps of monomers that are thermodynamically unfavorable.
Once the nucleus has been formed or the seed of Aβ fibrils (fAβ) has
been added, further addition of monomers becomes thermodynamical-
ly favorable, resulting in the rapid extension of the amyloid fibrils [2,3].
Recent in vivo studies have reported exogenous induction of Aβ amy-
loidosis through intracerebral or peripheral administration of Aβ seeds
in transgenic mice [4,5].

Other than Aβ, many proteins enter the so-called amyloid state, in
which they form elongated fibers with spines comprising many
64

65

66

67

68

69

70

disease; Act, actin;αS,α-synu-
fAβ, Aβ fibrils; fAct, Act fibrils;
rils; fSer, sericin fibrils; HSQC,
loid polypeptide; NMR, nuclear

81 76 234 4253.
. Yamada).

vier B.V.

nous amyloidogenic proteins
dis.2014.01.002
stranded β-sheets. In some cases, cross-seeding between different
amyloidogenic proteins occurs. We have shown that fibrils and oligo-
mers of Aβ40, Aβ42, and α-synuclein (αS) affect the aggregation path-
ways acting as seeds among all species in vitro [6]. In addition, there are
some reports of in vitro cross-seeding effect of different amyloidogenic
proteins such as non-CNS amyloidogenic protein, islet amyloid poly-
peptide (IAPP), Aβ, αS, and tau [7–9]. Similarly, in vivo cross-seeding
effect among heterologous, amyloidogenic proteins has also been re-
ported [10].

Some of the proteins contained in cosmetics and food have been re-
ported to be amyloidogenic. Through the use of cosmetics and intake of
food, humans have been exposed to such exogenous amyloidogenic
proteins. If the exogenous proteins function as seeds in Aβ aggregation
pathways, they could contribute to the propagation of the Aβ amyloid-
osis and could be a possible risk for AD. Casein (Cas) is commonly found
in mammalian milk, constituting up to 80% of the proteins in cow milk
and between 20% and 45% of the proteins in human milk [11]. Cas also
has a wide range of applications, including in cheese, as food additive,
and a binder for safematches [11]. Cas is natively unfolded in physiolog-
ical conditions [12]. Cas monomers associate with each other to form
colloidal aggregates (casein micelles), whereas, upon long duration of
incubation at 37 °C, Cas, particularly αS2-Cas, forms fibrils [12].

Fibroin (Fibro) and sericin (Ser) are two components of silk. Natural
silk synthesized by the silkworm and spun in the form of a silk cocoon
is originally synthesized in the silk gland. Silk proteins are important
function as seeds in amyloid β-protein aggregation, Biochim. Biophys.
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bio-materials that have been used in the medical and cosmetic fields
such as silk thread, complementary food, and cosmetic solution for ex-
ternal use because they show good compatibility with human tissues,
oxidation resistance, antibacterial properties, and UV resistance [13].
The silk filament is a double strand of Fibro that is held together by a
gummy substance called silk gum or Ser [14]. According to the
nucleation-dependentmodel, Fibro converts to aβ-sheet-enrichedfibril
structure [15]. Ser also easily changes from random coil to β-sheet
structure [14].

Actin (Act) is one of themajor proteins of themuscle system and cy-
toskeleton of non-muscle eukaryote cells such as algae [16]. The struc-
ture of Act is highly conserved. The differences between species are
small; there is only 5% difference between the human and algae Act
[16]. In the physiological state, Act polymerizes, forming the so-calledfi-
brous form F-actin [17]. F-actin forms the backbone of thin filaments in
muscle fibers [17].

IAPP is found in the amyloid deposits in the pancreas of 95% of the
patients with type II diabetes and in a few other mammalian species,
particularly monkeys and cats with diabetes [18]. IAPP is monomeric
in its physiological state but is aggregated in the disease state. IAPP un-
dergoes a multistep misfolding process in which themonomer changes
into various oligomeric forms and ultimately forms fibrils [18].

The purpose of this study was to elucidate whether exogenous (Cas,
Fibro, and Ser) as well as non-CNS amyloidogenic proteins (Act and
IAPP) functioned as seeds in Aβ40 and Aβ42 aggregation pathways
in vitro. Moreover, we analyzed the binding mechanism between Aβ
and the above-described proteins using nuclear magnetic resonance
(NMR) spectroscopy.
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2. Materials and methods

2.1. Preparation of peptides

Aβ solutions were prepared as described previously [19]. Aβ40 and
Aβ42 were purchased from the Peptide Institute Inc. (Osaka, Japan).
Act from bovine muscle, Cas from bovine milk, and human IAPP were
purchased from Sigma–Aldrich Co. LLC (St. Louis, MO). Fibro and Ser
were purchased from Yousilk Ltd. (Kyoto, Japan) andWako Pure Chem-
ical Industries, Ltd. (Osaka, Japan), respectively. Peptide lyophilizates
were dissolved at a concentration of 25 μM in 10% (v/v) 60 mM NaOH
and 90% (v/v) 10 mM phosphate buffer, pH 7.4. After sonication for
1 min using a bath sonicator, the solutions were centrifuged for
20 min at 16,000 ×g.
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The resulting supernatant was incubated at 37 °C for 2 (Aβ42) or 7
(Aβ40, Act, Cas, Fibro, IAPP, and Ser) days. After confirmation of each fi-
bril formation by electronmicroscopy (Fig. 1), freshfibrils were sonicat-
ed on ice with 30 intermittent pulses using an ultrasonic disruptor.
These sonicated Aβ40 fibrils (fAβ40), Aβ42 fibrils (fAβ42), actin fibrils
(fAct), casein fibrils (fCas), fibroin fibrils (fFibro), IAPP fibrils (fIAPP),
and sericin fibrils (fSer) were used for the seeding assays.
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2.3. Thioflavin T (ThT) binding

The reaction mixture contained 5 μM ThT (Wako Chemical Indus-
tries Ltd, Osaka, Japan) and 50 mM glycine–NaOH buffer, pH 8.5. After
vortexing briefly, fluorescence was determined thrice at intervals of
10 s using a Hitachi F-2500 fluorometer. The excitation and emission
wavelengths were 445 nm and 490 nm, respectively. Fluorescence
was determined by averaging the three readings and subtracting the
ThT blank.
Please cite this article as: K. Ono, et al., Exogenous amyloidogenic proteins
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2.4. Seeding activity of the fibrils of Aβ40, Aβ42, Act, Cas, Fibro, IAPP, and Ser

Fibrils of Aβ40, Aβ42, Cas, Fibro, Act, and Ser were prepared at a con-
centration of 25 μM in 10 mM phosphate buffer (pH 7.4). For the
seeding assays, the sonicated fibrils were added to the un-aggregated
peptides at a ratio of 10% (v/v) as seeds. The mixtures were incubated
at 37 °C for 0–7 days.

2.5. Electron microscopy (EM)

A 10-μl aliquot of each sample was spotted onto a glow-discharged,
carbon-coated formvar grid (Okenshoji Co. Ltd, Tokyo, Japan) and incu-
bated for 20 min. The droplet was displaced with an equal volume of
2.5% (v/v) glutaraldehyde in water and incubated for an additional
5 min. Finally, the peptide was stained with 8 μl of 1% (v/v) uranyl ace-
tate in water (Wako Chemical Industries Ltd). This solution was wicked
off and then the grid was air-dried. The samples were examined using a
JEM-1210 transmission electron microscope.

2.6. NMR spectroscopy

Lyophilized 15N-labeled Aβ40 was dissolved in 50mMNaOH on ice.
The stock solution of Aβ40 was prepared by 10-fold dilution of the Aβ
solution with 100 mM Tris-d11, 1 mM NaN3, and 10% D2O (pH 7.4).
NMR samples were prepared by 10-fold dilution of the stock Aβ40 solu-
tion with seeds solutions containing 10 mM phosphate and 10% D2O
(pH 7.0). The NMR sample of Aβ alone was prepared in the same man-
ner without seeds. The final concentrations of Aβ40 and seeds were 60
μM and 45 μM, respectively. Spectra were obtained at 10 °C with a
Bruker Avance 800 MHz spectrometer equipped with a cryoprobe
(Bruker BioSpin, Rheinstetten, Germany). NMR data were processed
with NMRPipe [20] and analyzed with NMRView [21]. The chemical
shift perturbation (Δδ) was calculated by the equation,

Δδ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:17Δ15N
� �2 þ Δ1H

� �2q
; ð1Þ

in which Δ15N represents the change in the chemical shift of the amide
nitrogen and Δ1H represents the change in the chemical shift of the
amide proton [22].

2.7. Structural model of Aβ40

The atomic coordinate of Aβ40 was obtained from the Protein Data
Bank (PDB ID: 2LFM) [23]. The regions of the structure showing a Δδ
greater than 0.01 ppm and peak broadening were revealed on the
model using the PyMol program (http://www.pymol.org/). These
(backbone) regions were labeled in red.

2.8. Statistical analysis

One-way factorial analysis of variance (ANOVA) followed by the
Tukey–Kramer post hoc comparisons were used to determine the statis-
tical significance among the data sets. These tests were implemented
within the GraphPad Prism software (version 4.0a, GraphPad Software,
La Jolla, CA). Significance was defined as p b 0.05.

3. Results

3.1. ThT binding

To determine the effects of the fibrillar seeds on the peptide assem-
bly, we used awell-characterized assay of fibril formation, the thioflavin
dye binding [24]. As shown in Fig. 2A,when fresh Aβ40was incubated at
37 °C, the ThT fluorescence followed a sigmoidal curve characterized by
approximately 1-day lag time, approximately 5-day period of increasing
function as seeds in amyloid β-protein aggregation, Biochim. Biophys.
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Fig. 1. EMmorphologies of the fibrils of Aβ40 (fAβ40), Aβ42 (fAβ42), actin (fAct), casein (fCas), fibroin (fFibro), islet amyloid polypeptide (fIAPP), and sericin (fSer). The reaction
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bars indicate 100 nm.
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ThT binding, and a plateau occurring after approximately 6 days. This
curve is consistent with the nucleation-dependent polymerization
model [1,19]. When fresh Aβ40 was incubated with fAβ40 at 37 °C,
the fluorescence increased hyperbolically without a lag phase, and a
plateauwas reached after approximately 3 h (Fig. 2A). This curve is con-
sistent with a first-order kinetic model [19]. The growth rate of fAβ40
was 59.2 FU/h. When fresh Aβ40 was incubated with fAct at 37 °C, the
fluorescence also increased hyperbolically without a lag phase, and a
plateau was reached after approximately 2 h (Fig. 2A). Similar seeding
effects were observed after the addition of fCas, fFibro, fIAPP, or fSer,
and the growth rates of fAct, fCas, fFibro, fIAPP, and fSer were 67.2,
49.0, 32.6, 51.7, and 54.0, respectively. The growth rate of fAct was big-
ger than the other rates (p b 0.05), whereas that of fFibro was smaller
than the others (p b 0.05).

We obtained similar results with the assembly of Aβ42. As shown in
Fig. 2B, when fresh Aβ42 was incubated at 37 °C, the ThT fluorescence
followed a sigmoidal curve characterized by approximately 2-h lag
Please cite this article as: K. Ono, et al., Exogenous amyloidogenic proteins
Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.01.002
time, approximately 10-h period of increasing ThT binding, and a pla-
teau after approximately 12 h. When fresh Aβ42 was incubated with
fAβ42 at 37 °C, the fluorescence increased hyperbolically without a lag
phase, and the binding plateau occurred after approximately 2 h
(Fig. 2B). The growth rate of fAβ42 was 59.7 FU/h. When fresh Aβ42
was incubatedwith fAct at 37 °C, the fluorescence also increased hyper-
bolically without a lag phase, and a plateau was reached after approxi-
mately 1 h (Fig. 2B). Similar seeding effects were observed after the
addition of fCas, fFibro, fIAPP, or fSer, and the growth rates of fAct,
fCas, fFibro, fIAPP, and fSer were 94.8, 60.8, 36.3, 61.9, and 72.4, respec-
tively. The growth rate of fActwas bigger than the other rates (p b 0.05),
whereas that of fFibro was smaller than the others (p b 0.05).

3.2. EM

We examined the fibrilsmorphologically. As shown in Fig. 1A, fAβ40
formed after the incubation of a fresh Aβ40 solution that assumed a
function as seeds in amyloid β-protein aggregation, Biochim. Biophys.
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Rnonbranched, helical filament structure approximately 7-nm wide and
exhibited a helical periodicity of approximately 220 nm, as described
previously [19,25]. When Aβ40 was incubated with fAβ40 seeds
(Fig. 3A), the typical fibrillar structure was also observed (Fig. 3B). Sim-
ilarly, when Aβ40 was incubated with the seeds of fAct, fCas, fFibro,
fIAPP, or fSer (Fig. 4A,D,G,J, andM), typical fibrillar structurewas detect-
ed (Fig. 4B,E,H,K, and N). As shown in Fig. 1B, fresh Aβ42 solution
formed a nonbranched filament of approximately 8 nm in width and
with varying degrees of helicity, as described previously [19,25]. In ad-
dition, thicker, straight, non-branched filaments of approximately
12 nm width were observed. When Aβ42 was incubated with fAβ42
seeds (Fig. 3C), the typical fibrillar structure was observed (Fig. 3D).
Similarly, when Aβ42 was incubated with the seeds of fAct, fCas, fFibro,
fIAPP, or fSer (Fig. 4A,D,G,J, and M), the typical fibrillar structure was
also detected (Fig. 4C,F,I,L, and O).

3.3. NMR studies

The binding between Aβ40 and the seeds was explored using NMR
spectroscopy, a well-accepted tool for obtaining atomic-level informa-
tion of protein–protein interactions. The low concentration of Aβ40
(60 μM) and low experimental temperature (10 °C) ensured that the
Aβ40 remained monomeric during the entire data acquisition period
Please cite this article as: K. Ono, et al., Exogenous amyloidogenic proteins
Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.01.002
[26]. Standard heteronuclear single quantum coherence (HSQC) spectra
were obtained with uniformly 15N-labeled Aβ40. The Aβ40:seeds ratio
was maintained at a 1.3:1 molar ratio. The HSQC experiment detects
1H signals that are directly bonded to the 15N atoms, and thus provides
afingerprint of the amide-NHbackbone atoms. The observed crosspeaks
arise solely from monomeric Aβ40 [26].

Shown in Fig. 5 are the superimposed HSQC spectra of the Aβ40
(black crosspeaks) and the Aβ40 in the presence of seeds (Fig. 5, red
crosspeaks). Because most of the crosspeaks of the superimposed spec-
tra in Fig. 5 coincide, this indicates that the seeds do not affect the over-
all conformation of monomeric Aβ40. However, several crosspeaks in
the presence of seeds showed small but significant NH chemical shift
perturbation (labeled peaks in Fig. 5) indicative of binding. The signifi-
cant movements (Δδ N 0.01 ppm) corresponded to the E3, R5, H13,
H14, Q15, K16, and L17 residues. Besides movements, NH peak broad-
ening occurred with N27 in the presence of Aβ40 and actin seeds, sug-
gesting that the N27 residue may be involved in the interaction with
Aβ40 and actin seeds.

Highlighted in Fig. 6 are themolecularmodels of Aβ40 that show the
binding locations in the presence of various seeds. In solution, the mo-
nomeric Aβ40 adopts a rapidly equilibrating ensemble of conformations
that are predominately unstructured [27]. It is obvious that the seeds
cause similar chemical shift changes in limited regions of Aβ40.
function as seeds in amyloid β-protein aggregation, Biochim. Biophys.
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In this study, we focused on whether and how the fibrils of exoge-
nous or non-CNS amyloidogenic proteins such as Act, Cas, Fibro, IAPP,
and Ser influenced both Aβ40 and Aβ42 aggregation pathways as
seeds in vitro. In the Aβ40 aggregation pathway, fAct, fCas, fFibro,
fIAPP, and fSer as well as fAβ40 functioned as seeds. The activity of var-
ious seeds on the Aβ40 assembly was in the order of: fAβ40 =
fAct N fCas = fIAPP = fSer N fFibro. Similarly, in Aβ42 aggregation
pathway, fAct, fCas, fFibro, fIAPP, and fSer as well as fAβ42 functioned
as seeds. Similarly, the activity of various seeds on the Aβ42 assembly
was in the order of: fAβ42 = fAct N fCas = fIAPP = fSer N fFibro.

The molecular mechanism of the interaction between Aβ40, Aβ42,
Act, Cas, Fibro, IAPP, and Ser needs to be considered. Previously, Naiki's
group analyzed the interaction of Aβ40 and Aβ42 in the kinetics of the
formation of fAβs in vitro using the ThT assay [28]. When fresh Aβ40
was incubated with fAβ42, the aggregation was accelerated by adding
fAβ42 although the effect was much smaller than when fAβ40 was
added to Aβ40 [28]. The fluorescence increased hyperbolically without
a lag phase when Aβ42 was incubated with fAβ40, and proceeded to
the equilibriummore rapidly thanwithout fAβ40 [28]. The hydrophobic
core of Aβ, i.e., residues 17–21, is reported to play an important role in
the formation and stabilization of amyloid fibrils [29]. Remarkably, the
sequences of IAPP and Aβ show 25% identity and 50% similarity [7]. It
was reported that IAPP functions as seed in the aggregation of Aβ at
the similar degree as 25–35 residues of Aβ although the seeding effi-
ciency of IAPP was weaker than Aβ40 [7]. Beside the difference of the
ratio of IAPP seed in the reaction, we could not have the appropriate ex-
planation for this difference in the results. However, in our study, other
proteins that do not have similar sequences exhibited the same seeding
Please cite this article as: K. Ono, et al., Exogenous amyloidogenic proteins
Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.01.002
activity as IAPP in Aβ40 and Aβ42 aggregation. Interestingly, our NMR
studies revealed that E3, R5, H13, H14, andQ15 of Aβ are common bind-
ing regions between the Aβ monomer and the fibrillar seeds of other
proteins such as Act, Cas, IAPP, and Ser. These residues may electrostat-
ically interact with other molecules. It was reported that a cluster of
basic amino acids at the N-terminus (residues 13–16, HHQK), particu-
larly H13, is critical for the interaction with glycosaminoglycan [30].
Similarly, it was reported that the HHQK region may bind to the
membrane-associated heparin sulfate and microglial surfaces with
high affinity [31,32]. We suggest that the common binding regions of
Aβ may also recognize and interact with similar surface structures of
different amyloidogenic protein seeds. Moreover, Act, which has the
strongest seeding effect, and Aβ seeds bind with the same regions of
the monomeric Aβ. Fibro, which has the weakest seeding effect, binds
with fewer regions of the monomeric Aβ. The number of binding sites
may also be an important factor for the seeding activity in the Aβ aggre-
gation pathway.

The seeded proliferation of misfolded proteins that arose in prion
disease holds considerable explanation for the pathogenesis of AD and
other amyloidoses. Jucker's group showed that the phenotype of the in-
duced Aβ deposits mirrors that of the deposits in the donor, suggesting
an Aβ-templating mechanism [4,5]. Increasing evidence implicates the
templated corruption of disease-specific proteins in other protein-
misfolding diseases. A seeding-like process of αS lesions is bolstered
by the observation that fetal dopaminergic neural transplants in the stri-
atum of Parkinson's disease patients can eventually exhibit αS-positive
Lewy bodies in some cells, implying that αS seeds propagate from the
host to the graft [33,34]. Similarly, the induction of other protein aggre-
gates such as superoxide dismutase 1 [35] and polyglutamine [36] has
also been demonstrated in cell experiments.
function as seeds in amyloid β-protein aggregation, Biochim. Biophys.
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NBesides the in vitro cross-seeding of IAPP and Aβ [7], protein

misfolding and aggregation can be initiated by heterologous, β-
sheet-rich protein aggregates [8,9,37]. It was reported thatαS aggrega-
tion was accelerated markedly by fibrillar seeds of the Escherichia coli
chaperone in GroES, lysozyme, and insulin in vitro [8]. Furthermore, it
was also reported that tau aggregation was promoted by the fibrillar
seeds ofαS in tau-expressing cells [9]. At the in vivo level, it was report-
ed that the amyloid protein A amyloidosis was accelerated by the injec-
tion of synthetic fibrils of IAPP or transthyretin fragments in a mouse
model [10]. At the human level, there was a report that a 28-year-old
patient with iatrogenic Creutzfeldt–Jakob disease after dural grafting
showed AD-type neuropathology such as senile plaques and cerebral
amyloid angiopathy in widespread areas of the brain [38]. Plaque-type
and vascular amyloid was immunohistochemically identified as de-
posits of Aβ [38], suggesting that Aβ pathology may be induced by the
Please cite this article as: K. Ono, et al., Exogenous amyloidogenic proteins
Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.01.002
duramater graft contaminated by prion or Aβ itself. Our results indicat-
ed that the seeds of exogenous amyloidogenic proteins, such as milk
and silk proteins as well as non-CNS amyloidogenic proteins accelerate
the Aβ aggregation pathway. These cross-seeding effects are generally
less potent than homologous seeding. There have been no reports that
the seeds of exogenous non-human, non-CNS amyloidogenic proteins,
or their aggregates, enhance the Aβ burden in brain parenchyma of
humans. Previously, we reported no significant correlations in amyloid
deposition between the brain and non-CNS organs such as pancreas and
heart in an autopsy series of AD and non-AD patients [39]. However,
taken together with our results, the potential propagation of proteins
by exogenous non-human nanoscalematerials, some of whichmay fea-
ture amyloid-like structural properties [40,41], should be considered for
careful evaluation. Further studies in vivo and in humans, including
pathological investigations, are essential for clarifying the possible role
function as seeds in amyloid β-protein aggregation, Biochim. Biophys.
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propagation of cerebral Aβ amyloidosis.
In conclusion, the fibrils of amyloidogenic proteins, including exoge-

nous proteins contained in food and cosmetics or non-CNS proteins,
functioned as seeds in the Aβ aggregation pathway by binding to com-
mon regions of Aβ. Our results may provide new insights into the mo-
lecular mechanism of propagation of Aβ and other amyloidoses.
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