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Nuclear receptors (NRs) play a key role in the transcriptional control of critical steps of hepatobiliary transport
and phase I/II metabolism of endo- and xenobiotics such as bile acids and drugs. Apart from these metabolic
roles, NRs may also play a key role in the control of hepatic inflammation. Hereditary and acquired alterations
of NRs contribute to our understanding of the pathogenesis of cholestasis and gallstone disease. Moreover,
NRs may represent attractive drug targets for these disorders. This article is part of a Special Issue entitled:
Translating nuclear receptors from health to disease.
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1. Farnesoid X receptor and other nuclear bile acid receptors

Bile acids (BA) not only serve as physicochemical detergents for
lipid digestion and absorption but also have a broad spectrum of
signaling properties regulating lipid and glucose homeostasis,
thermogenesis, and liver regeneration, and have immunomodulatory
effects [1–4]. Moreover, bile acids are potentially cytotoxic and their
concentration needs to be tightly controlled. This is achieved through
transcriptional programs modulating bile acid homeostasis and
activated through bile acid-activated nuclear receptors.

The farnesoid X receptor (FXR; NR1H4) belongs to the nuclear
receptor super-family of transcription factors and was originally
found to be activated by farnesol derivatives [5,6] but later identified
as a bile acid-activated nuclear receptor [7–9]. In rodents, but not in
human, a second FXR gene was subsequently identified, activated by
lanosterol, and called FXRβ [10]. After bile acid binding to the ligand
binding domain localized in the C terminal part of the protein (Fig. 1),
the DNA binding domain can bind specific FXR response elements
(FXRE) that are usually, but not only, inverted repeat 1 (IR-1) [5,6,11–
16] (Fig. 1). FXR can bind DNA as heterodimer with the retinoid X
receptor alpha (RXRα; NR2B1) even if monomeric sites were also
found [11–14]. In addition, the FXR locus shows two alternative
promoters and one internal splicing site, therefore generating four
isoforms [17,18]. Later, the analysis of FXR-deficient mice revealed the
key role played by FXR in bile synthesis, secretion, and detoxification
[19–24]. However, other nuclear receptors were subsequently
identified as additional bile acids sensors.

Hence, the pregnane X receptor (PXR; NR1I2) was found to be
activated by lithocholic acid (LCA) [25,26] and shown to regulate
genes involved in synthesis, transport, and detoxification of bile acids,
therefore protecting liver from bile toxicity [27]. Interestingly, LCA
activated also the vitamin D receptor (VDR; NR1I1) in the intestine
and liver [28] and thus participated in bile metabolism control [29],
without inducing hypercalcemia [30]. Nevertheless, bile acids do not
always bind to and activate nuclear receptors. The constitutive
androstane receptor (CAR; NR1I3) is not activated by bile acids but
is required to control BA detoxification and transport [31–34].
Furthermore, liver X receptor alpha (LXRα; NR1H3) was found to
be activated by cholestenoic acid, a bile acid derivative from the acidic
pathway, [35] and cholanoic acid methyl esters [36]. Taken together,
redundant nuclear receptors evolved in a network to sense and tightly
control bile homeostasis to prevent cellular damage.

2. General principles of bile secretion

Bile secretion represents the exocrine function of the liver and is
accomplished by hepatocytes and bile duct epithelial cells (cholan-
giocytes) [37]. Bile has several important physiological functions
including lipid digestion and absorption, elimination of various endo-
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Fig. 1. Structural organization of the nuclear receptor FXR. FXR is a nuclear receptor and
contains 5 domains. The A/B domain, or AF-1 domain, is a ligand independent
transactivation domain. The C domain, or DNA binding domain (DBD), contains 2 zinc
fingers interacting with a specific DNA response element. The D domain, or hinge
region, is a structural domain modulating the receptor activity after phosphorylation of
key amino acids. The E domain, or ligand binding domain (LBD), binds to natural bile
acids (CDCA for human FXR and CA for mouse XR) or pharmaceutical ligands such as
GW4064 or INT-747. The F, domain or AF-2 domain, mediates interactions with
cofactors after receptor activation. DBD indicates DNA binding domain; LBD, ligand
binding domain; N, N terminus; C, C terminus.
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and xenobiotics, as well as antibacterial and immunological properties
in the intestine [38].

Excretion of bile acids, the major fraction of organic solutes in bile,
is mediated by ATP-binding cassette (ABC) transporters for bile acids
and non-bile acid organic anions at the canalicular membrane of
hepatocytes and represents the rate limiting step in bile formation
[39]. Bile acids promote canalicular excretion of phospholipids and
cholesterol for subsequent formation of mixed biliary micelles and
osmotically drag water via aquaporins and tight junctions [40].
Canalicular excretion of reduced glutathione and bicarbonate
accounts for the major components of the “bile acid-independent”
fraction of bile flow [41]. “Canalicular bile” is further modified by
secretory and absorptive processes along the bile ductules and ducts
(“ductal bile” secretion) [42–44].

Many biliary compounds such as bile acids undergo an enter-
ohepatic circulation, where they are reabsorbed in the intestine, taken
up again by the liver, and re-secreted into the bile. This reduces the
fecal loss of bile acids to only 3%–5% per day and minimizes the need
for replacement by de novo bile acid synthesis [39,40,45]. Systemic
bile acids, which escape the enterohepatic circulation, are filtered and
excreted into urine and again reabsorbed by transporters in the
proximal convoluted tubule [45,46]. Bile acids may also undergo
“cholehepatic shunting” from the bile duct lumen, via cholangiocytes
and the periductular capillary plexus back to hepatocytes [47]. This
pathway may play a role as escape route under cholestatic conditions
with bile stasis in obstructed ducts [46].

3. Regulation of bile acid synthesis

Bile acids are enzymatically formed in the liver from cholesterol
[48]. Cholesterol 7α-hydroxylase (CYP7A1) is the rate limiting
enzyme of bile acid biosynthesis and is mainly regulated at the
transcriptional level in a feed-forward fashion by cholesterol and
through a negative feedback pathway by bile acids [49,50]. The feed-
forward regulation only exists in rodents. In rodents, the cholesterol
sensor LXRα directly mediates feed-forward regulation of CYP7A1 via
a bile acid response element (BARE I) in the CYP7A1 promoter
resulting in increased bile acid synthesis [51,52]. Rev-erbα indirectly
represses CYP7A1 in mouse by regulating cholesterol synthesis and
therefore oxysterol disposal to activate LXR (Fig. 2) [53]. Since Rev-
erbα requires LXR for regulation of CYP7A1, this pathway only
operates in rodents but not in humans. In addition, this mechanism
provides the molecular basis for the circadian rhythm of CYP7A1 [54–
56]. FXR has a central role in regulating the feedback repression of bile
acid synthesis [60,50,57,58]. As such, bile acid-activated FXR represses
human and rodent CYP7A1 gene transcription by induction of the
nuclear repressor SHP (Fig. 2). In line, CYP7A1 expression is increased
in SHP knockout animals [59]. SHP was suggested to negatively
interact with fetoprotein transcription factor (FTF/NR5A1, also known
as liver receptor homolog-1, LRH-1), which binds to the bile acid
response element (BARE) in the proximal CYP7A1 promoter region
together with HNF4α [61,62]. A similar mechanism has been
proposed for regulation of CYP8B1 [61,63,64], which determines the
relative hydrophobicity of the bile pool. However, recent studies
question the role of LRH-1 in the feedback regulation of CYP7A1
(Fig. 2) [65,66].

Several FXR- and SHP-independent mechanisms for regulation of
CYP7A1 transcription have also been identified. Bile acids can not only
directly decrease HNF4α promoter activity and gene expression [67]
but also impair HNF4α-mediated activation of the CYP7A1 promoter
by blocking the recruitment of co-activators, such as peroxisome
proliferator activated receptor gamma co-activator (PGC-1α) and
cAMP response element binding protein-binding protein (CBP) to
HNF4α [68]. PPARα reduces CYP7A1 transcription via reduced HNF4α
binding, which might contribute to the increased risk of gallstone
formation after treatmentwith fibrates (PPARα activators) [69–75]. In
addition, bile acid-stimulated cytokine release frommacrophages can
decrease CYP7A1 transcription via activation of the c-Jun terminal
kinase (JNK) pathway and reduction of HNF4α binding in primary rat
hepatocytes and HepG2 cells [76,77].

In addition to liver, the terminal ileum also profoundly impacts on
human and rodent CYP7A1 gene regulation. FXR-induced mouse ileal
fibroblast growth factor 15 (FGF15) [78] signals to the liver, where it
binds to FGFR4, a widely distributed receptor with tyrosine kinase
activity [79] and represses CYP7A1 through a JNK-dependent pathway
[78]. The human ortholog FGF19 has recently been shown to be
expressed in both intestine and liver—in contrast to the ileal specific
expression of mouse FGF15—where it is also regulated by FXR [80,81].
The interactions between FGF19 and FGFR4 are mediated via the
membrane bound protein βKlotho [82], which allows a tissue specific
fine-tuning of the ligand–receptor interaction [83–85]. Experiments
with liver and ileum specific FXR-deficient mice suggest that the ileal
route of CYP7A1 repression via the FGF15 pathway dominates over
hepatic negative feedback pathways [20] and involves SHP [78],
indicating that a functional gut–liver signaling may be a prerequisite
for bile acid homeostasis. In addition, patients with bile acid
malabsorption (e.g., in Crohn's disease or short bowel syndrome) may
suffer from excessive fecal bile acid excretion and subsequently bile
acid-induced diarrhea and steatorrhea due to the interrupted ileal
negative feedback regulation of bile acid synthesis. Recently, in a portion
of patients suffering from idiopathic bile acid malabsorption, many of
which are commonly sub-categorized as the diarrhea-type of irritable
bowel syndrome, low levels of serum FGF19 have been found [86]. This
suggests that reduced FGF19 levels may be the primary cause for
excessive bile acid synthesis that exceeds the normal capacity for ileal
reabsorption, producing bile acid diarrhea. Thus, FXR agonists or FGF19
itself could be used therapeutically to interrupt the cycle of excessive
bile acid production in patients with bile acid malabsorption [86,87].

4. Regulation of phase I and II bile acid metabolism

Phase I hydroxylation and phase II conjugation renders bile acids
more hydrophilic, less toxic, and better amenable for urinary
excretion, which can become the favorable elimination route for
bile acids accumulating under cholestatic conditions [88,89]; CYP3A4
and the rodent homolog CYP3A11 are the main cytochrome P450
enzymes for bile acid metabolism [90,91]. Expression of CYP3A4 is
positively regulated by a battery of transcription factors including PXR
[25,26], VDR [92], CAR [93], and FXR [94] (Fig. 2). Administration of
ligands for these receptors such as xenobiotics, drugs but also bile
acids can induce CYP3A4 expression and phase I detoxification



Fig. 2. Role of nuclear receptors in the transcriptional regulation of hepatocellular bile acid metabolism and transport. Schematic representation of a “model hepatocyte” with key
enzymes of bile acid synthesis and metabolism, as well as critical transport systems in the basolateral/sinusoidal membrane (uptake and alternative export) and canalicular/apical
membrane. 1) Uptake: HNF4α is indirectly the common master regulator of basolateral Na+-dependent (NTCP) and Na+-independent (rodent OATP1A1, 1A4, 1B2, human
OATP1B1) bile acid uptake systems. HNF4α in turn may be under the negative control of the FXR–SHP pathway or directly inhibited by bile acids. NTCP is under direct positive
control of GR and RAR but is regulated in a species specific manner (see text for details). RAR and PXR are additionally involved in the regulation of the rodents OATP1B2 and
OATP1A4, respectively. 2) Canalicular excretion: All canalicular transporters involved in bile formation are positively regulated by FXR—the canalicular bile acid transporter BSEP, the
phospholipid floppaseMDR3 in humans (MDR2 in rodents), the cholesterol transporters ABCG5 and ABCG8, andMRP2 that shares a common response element with PXR and CAR. In
addition, the RARα/RXRα heterodimer positively regulates MRP2 and PPARα up-regulatesMDR2. 3) Alternative export: Except OSTα/βwhich is regulated by FXR, alternative export
systems are independent of FXR. CAR positively regulates bothMRP3 andMRP4, while PXR, VDR, and LRH-1 regulate MRP3 expression. 4) Synthesis: The bile acid-activated FXR–SHP
pathway down-regulates CYP7A1 via negative impact on the binding of the positive regulatory transcription factors HNF4α. In addition, bile acids and PXR can directly inhibit HNF4α
binding to the CYP7A1 promoter. FGF15 in mouse/FGF19 in human, derived from ileal enterocytes (rodent not shown) and hepatocytes (human), strongly represses mouse and
human CYP7A1 transcription (see text for details). Rev-erbα, by controlling oxysterol synthesis that generates activators of LXR, indirectly controls the mouse CYP7A1 expression.
LXR up-regulates mouse CYP7A1 but not human CYP7A1 gene expression. 5) Detoxification: Since bile acid synthesis and detoxification take place in pericentral hepatocytes, it was
represented in boxes.
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reactions [91]. Thus, bile acids—being both activators and substrates
of CYP3A4—can initiate a feed-forward mechanism limiting hepato-
cellular bile acid burden and damage from toxic bile acids.

Besides hydroxylation, conjugation of bile acids with sulfate or
glucuronidate is an additional mechanism of bile acid detoxification.
Dehydroepiandrosterone sulfotransferase (SULT2A1) catalyzes sulfo-
conjugation of a broad range of endogenous compounds including bile
acids, turning their substrates into more water soluble and less toxic
products, which are subsequently amenable for renal elimination
[95,96]. In humans, bile acid sulfation predominantly occurs under
cholestatic conditions as reflected by the appearance of sulfated bile
acids in serum and in urine of patients with cholestatic liver diseases
[97–99]. Nuclear receptors involved in the positive regulation of
SULT2A1 expression include FXR, PXR, VDR, CAR, and PPARα [100–
106]. CAR appears to play a central role in regulating bile acid sulfation,
since it was proposed to orchestrate bile acid sulfation and subsequent
basolateral export via CAR-induced over-expression of the basolateral
export pump MRP4, which transports steroid sulfates [33,103].

In addition to sulfation, bile acids can also be detoxified through
glucuronidation [107,108]. This step is catalyzed by the UDP-
glucuronosyltransferases UGT2B4, UGT2B7, and UGT1A3 which
again renders bile acids more water soluble and facilitates their renal
elimination [13,109,110]. However, hydroxylation at the 6αposition is
required before glucuronidation in most cases [111,112]. In humans,
the combined hydroxylation/glucuronidation detoxification pathway
can be stimulated by the PXR ligand rifampicin [113]. Bile acids
themselves can induce human UGT2B4 via activation of FXR [13]. The
UGT2B4 gene promoter contains also a PPAR response element and is
activated by the PPARα agonist fenofibrate [109]. Furthermore,
UGT2B7 can be repressed by hydrophobic bile acids through a
negative FXR response element in the UGT2B7 promoter [14].

5. Regulation of hepatocellular transport

5.1. Basolateral hepatocellular bile acid uptake

Hepatic uptake of bile acids is mediated by an Na+-dependent bile
acid transporter NTCP (SLC10A1) and a family of multi-specific
organic anion transporters (OATPs; SLC21A) that mediate Na+-
independent uptake of mostly amphipathic organic compounds,
including conjugated or unconjugated bile acids, as well as bilirubin.
Na+-independent bile acid uptake is quantitatively less important
than Na+-dependent uptake and is largely mediated by facilitated
exchange with intracellular anions (e.g., GSH, HCO3−) [39].

Regulation of NTCP by bile acids is complex and differs consider-
ably among humans, mice, and rats [114] The rat NTCP promoter is
trans-activated by several positive regulating elements including
RARα/RXRα heterodimer as well as the signal transducer and trans-
activator 5 (Stat 5) [115] (Fig. 2). Negative feedback inhibition of
mouse and rat NTCP is mediated via FXR–SHP-dependent and
independent mechanisms and limits hepatocellular bile acid uptake
[116,117]. Induction of SHP by bile acid-activated FXR interferes with
RXRα/RARα mediated activation of the rat NTCP promoter [118]. In
addition, SHP reduces NTCP expression via a complex pathway
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involving repression of HNF4α and HNF1 [67,119]. Potential SHP-
independent mechanisms involve activation of the JNK signaling
pathway by bile acids [120], which leads to RXRα phosphorylation
and subsequently reduced binding of RXRα/RARα to the rat NTCP
promoter [121]. In humans, SHP acts mainly by suppressing GR-
mediated activation of human NTCP [122], which might account for
NTCP down-regulation in cholestatic liver diseases [88,123–125].
Similar to NTCP, repression of the predominant sodium-independent
bile acid uptake system in humans, OATP1B1, is also mediated by FXR,
involving SHP, HNF4α, and HNF1α [126]. In contrast, OATP1B3, a
multi-specific uptake system for organic anions, xenobiotics, and
potentially bile acids, is positively trans-activated by FXR [127]. Taken
together, bile acids regulate their hepatocellular levels via negative
feedback regulation of bile acid uptake transporters, which critically
involves the bile acid receptor, FXR.

5.2. Canalicular bile acid excretion

Canalicular excretion of bile acids and non-bile acid organic anions
viaATP-binding cassette (ABC) transporters represents the rate limiting
step in bile formation.Monovalent bile acids such as glycine- or taurine-
amidates of cholic acid (CA), chenodeoxycholic acid (CDCA), and
ursodeoxycholic acid (UDCA) are excreted into the bile canaliculus via
the bile salt export pumpBSEP (ABCB11) (Fig. 2) [128,129]. Divalent bile
acids with two negative charges such as sulfated tauro- or glycolitho-
cholate are transported by multidrug resistance-associated protein
MRP2 (ABCC2) (Fig. 2) [130]. MRP2 also mediates the excretion of a
broad range of other non-bile acid organic anions, mostly conjugates
with glutathione, glucuronidate, and sulfate formed by phase II
conjugation in the hepatocyte and of reduced glutathione (GSH)
[130–133]. Additional transport systems in the canalicular membrane
include a multidrug export pump (MDR1) for amphipathic organic
cations [134,135] (e.g., various drugs), a phospholipid floppase (MDR3/
MDR2 in rodents) for phosphatidylcholine translocation [136,137], the
cholesterol two half-transporters ABCG5/8 for sitosterol and cholesterol
export [138–140] (Fig. 2), a P-type ATPase (FIC1; ATP8B1) mutated in
hereditary cholestasis [141,142], and an Cl−/HCO3− anion exchanger 2
(SLC4A2, AE2) [143,144], all of them involved in bile formation.

Bile acids can promote their own biliary elimination by stimulating
both BSEP and MRP2 expression in a feed-forward manner [22,145]
(Fig. 2). Human, rat, and mouse BSEP promoters are transcriptionally
activated by FXR [146–148] and mouse BSEP baseline-expression
largely depends on the presence of FXR and thus is reduced in FXR
knockout mice [19,22,149]. A role for VDR in BSEP repression via
direct VDR–FXR interaction has been postulated in vitro [150], but
given the rather low levels of VDR expression in hepatocytes [151], a
major contribution to negative feedback regulation of BSEP via this
mechanism appears unlikely.

In contrast to BSEP, transcriptional feed-forward regulation of
MRP2 involves several overlapping sets of NRs, reflecting the diverse
substrate spectrum of MRP2. FXR binds with high affinity to response
elements in the human and rodent MRP2 promoters that are also
shared with CAR and PXR [152] (Fig. 2). Thus, bile acids, as well as
several CAR and PXR ligands, induce human and rodent MRP2
expression [126]. In addition, the rat MRP2 promoter contains a
response element for RXRα/RARα, which mediates MRP2 induction
by retinoids [153]. FXR also enhances human MDR3 transcription,
while PPARα stimulates the expression of rodent MDR2 [154–156].
Collectively, these data indicate that orthograde canalicular bile acid
efflux is mainly mediated via feed-forward regulation, again involving
FXR as the critical key transcription factor.

5.3. Alternative basolateral bile acid export

While bile acids are excreted into canalicular bile under normal
conditions, basolateral bile acid transport back into portal blood may
represent an alternative elimination route for accumulating hepatic
bile acid during cholestasis when canalicular excretion is impaired
[157,158]. Alternative basolateral bile acid and bilirubin export is
mediated by members of the MRP family (e.g., MRP3 mainly for
bilirubin andMRP4mainly for bile acids) and the heteromeric organic
solute transporter (Fig. 2) (OSTα/β) [159–161]. These export systems
are normally expressed only at very low levels at the basolateral
membrane under normal conditions but can be significantly up-
regulated in cholestasis [46,126]. Since MRP3, MRP4, and OSTα/OSTβ
can transport sulfated as well as glucuronidated bile acids, the
induction of these transporters may explain the shift towards renal
excretion of these bile acids as a major route for bile acid elimination
in patients with chronic long-standing cholestasis [126]. Induction of
both rodent MRP3 and MRP4 is independent of the classical bile acid
receptor FXR [22,23,149,162], while PXR and VDR are able to induce
human and mouse MRP3 expression [163,164] (Fig. 2). In addition,
CAR ligands induce both human and rodent MRP3 and MRP4
[32,33,103,165,166]. FXR induces human OSTα/β through binding to
response elements in the respective promoter regions (Fig. 2) [167–
169]. Collectively, a complex picture emerges where multiple nuclear
receptors (including FXR, PXR, VDR, and CAR) are required for
coordination of adaptive basolateral bile acid efflux under bile acid
load and cholestatic conditions (Fig. 2).

6. Nuclear receptor regulation of cholangiocellular function

Cholangiocytes account for less than 3%–5% of normal liver cells
but play an important role in bile formation [170,171] and contain
several transport systems for absorptive and secretory processes
[44,172,173]. However, under cholestatic conditions, cholangiocytes
can proliferate, thus leading to a considerable expansion of this cell
fraction [170,171,174]. Unconjugated bile acids may passively enter
cholangiocytes, while amidated bile acids are reabsorbed by the apical
sodium-dependent bile acid transporter ASBT, which is also respon-
sible for bile acid uptake in the terminal ileum [175,176]. After uptake,
bile acids are effluxed via the basolateral membrane of cholangiocytes
into the peribiliary plexus not only by OSTα/β but also by MRP3 and
potentially by a truncated version of ASBT (tASBT) [159,176–178].
Cholangiocyte bile acid uptake may contribute in part to the
conservation of bile acids and the generation of a hypercholeretic
bile flow [39,45]. This pathway probably plays a minor role under
normal physiological conditions, but “cholehepatic shunting” of bile
acids may become an escape route for bile acids under cholestatic
conditions when the bile duct epithelium proliferates. Under
pathologic, cholestatic conditions with disruption of the enterohepa-
tic circulation, these pathways may be “alternatively” used by biliary
compounds normally not excreted into urine.

Although the nuclear bile acid receptors FXR and VDR and their
heterodimer partner RXR as well as SHP have been found in rodent
and human gallbladder and bile duct epithelial cells, their role in
regulating cholangiocellular bile formation has so far not been
addressed in detail [151,179,180]. Moreover, specific roles of other
nuclear receptors, such as PXR, CAR, LRH-1, LXRs, PPARα, PPARγ, GR,
as well as HNF4α, which are all expressed in significant amounts, at
least in the gallbladder epithelia, remains elusive (for tissue
expression profile of nuclear receptors and transcription factors,
please visit www.nursa.org/10.1621/datasets.02001). Most of our
current knowledge about NR regulation of cholangiocellular trans-
porters such as ASBT, OSTα/β, and MRP3 is derived from extrapola-
tion of studies performed in hepatocytes or ileum.

The data on regulation of ASBT by bile acids are conflicting [181–
183] and some of the divergent results can be attributed to species
differences [126]. Negative feedback regulation of murine ASBT by bile
acids is mediated by FXR via SHP-dependent repression of LRH-1
activation of the ASBT promoter [184]. In humans, bile acids exert
their negative effects on ASBT via an FXR- and SHP-dependent
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mechanism upon RXRα/RARα activation of ASBT [185]. Transcription
factors, which positively trans-activate human ASBT, include PPARα,
GR, RXRα/RARα, and HNF1α [185–187]. Enhanced cholangiocellular
ASBT expression may facilitate removal of bile acids from stagnant
bile in the biliary lumen during bile duct obstruction in human and
rodent. The same applies for the basolateral export systemsMRP3 and
OSTα/OSTβ, which are also over-expressed under cholestatic
conditions [167,177].

In addition to bile acid transporters, cholangiocytes harbor a
battery of ion channels and exchangers (including the cystic fibrosis
trans-membrane regulator, CFTR, and the anion exchanger, AE2),
glucose transporters, and water channels, which modulate bile acid-
independent bile flow [188,189]. These processes are, however,
mostly regulated at post-transcriptional levels and a direct involve-
ment of NRs in the regulation of these transporter systems seems to be
rather the exception (for review, see references 44, 172, and 173). As
such, in humans, the AE2 promoter can be trans-activated by the
concerted interaction of HNF1 and GR resulting in enhanced
transcriptional expression of alternative mRNA isoforms of AE2 and
enhanced AE2 activity [190].

7. Role of nuclear receptors for pathogenesis and treatment
of cholestasis

Cholestasis may result either from a defect in hepatocellular bile
formation or from impairment in bile secretion and flow at the bile
duct level [191–194]. Reduced expression and function of transport
systems and their regulatory NRs play an important role in the
pathogenesis of cholestasis.

Transport defects may be primary due to hereditary genetic
defects (e.g., progressive familial intrahepatic cholestasis (PFIC)-1,2,
and 3, benign recurrent intrahepatic cholestasis (BRIC)-1,2) or
secondary acquired as a result of accumulating cholephiles and pro-
inflammatory cytokines which can alter transporter expression via
modulation of NR signaling [195]. The acquired changes in transporter
expression in human cholestatic liver diseases are consistent with
concepts derived from the findings in experimental animal models of
cholestasis [196–198]. While some of these (e.g., cytokine-mediated)
alterations contribute to cholestasis [198], other (e.g., bile acid-
induced) changes may represent compensatory (“anti-cholestatic”)
defense mechanisms which provide alternative excretory routes for
accumulating cholephiles in cholestasis.

In addition to transporter defects, polymorphisms in NRs contrib-
ute to cholestasis development and outcome. Intrahepatic cholestasis
of pregnancy (ICP) is a disorder appearing during the second half of
pregnancy and characterized by abnormal liver enzymes, high serum
bile acid levels, pruritus, and fetal stress but resolving spontaneously
after delivery [199]. FXR polymorphisms [200], perhaps by lowering
the expression of downstream targets such as SHP and OATP1B3
[201], were shown to predispose to ICP. Moreover, combined
polymorphisms on FXR and BSEP can result in short cholestasis
episode early in life and ICP [202]. During ICP, CA levels—a good FXR
ligand—are increased and the ratio CA/CDCA was identified as ICP
indicator [203–205]. It is therefore plausible that ICP might represent
a disease in a population where FXR, or FXR cofactors, and/or FXR
target genes polymorphisms contribute to abnormal FXR activation. In
line with this hypothesis, FXR was also identified as a candidate gene
for the cholesterol gallstone locus Lith7, even if other modifiers are
likely to explain the discrepancies between populations [206]. In
addition, a deficiency in the P-type adenosine triphosphatase ATP8B1
was identified as the cause of PFIC-1 (also known as Byler's disease)
and its more benign variant BRIC-1 (also known as Summerskill
syndrome) [141]. ATP8B1 mutations were shown to lower FXR
activity in liver [207], intestine [208], and HepG2 cells [209], perhaps
by interfering with FXR phosphorylation and translocation into the
nucleus [210]. Subsequent localization and expression study estab-
lished that ATP8B1 is primarily expressed in cholangiocytes [211].
Interestingly, ATP8B1 defects in patients drastically reduce CFTR
expression and therefore could impair the cholangiocyte contribution
to bile secretion [211]. However, in vitro repression of ATP8B1 in rat
and human hepatocytes only disrupt the canalicular membrane but
does not change FXR expression or activity [212]. Therefore, the low
FXR expression and activity found in ATP8B1 mutated patients could
be a secondary consequence of the cholestasis. Interestingly,
polymorphisms in PXR were also shown to determine the survival
of PSC patients [213], while PBC patients were found to display a
tendency to have reduced levels of a broad range of NRs (FXR, RXR,
SHP, PXR, CAR, HNF1α, and HNF4α) [214].

Under cholestatic conditions, when intrahepatic and systemic
bile acid levels rise, an orchestrated adaptive response, which is
mainly coordinated by a complex interplay of bile acid and bilirubin-
activated NRs (mainly FXR, VDR, PXR, and CAR), attempts to
counteract cholestatic liver injury [215]. As a result of this transcrip-
tional program, basolateral bile acid uptake and bile acid synthe-
sis are markedly reduced, while phase I and phase II detoxification
and alternative basolateral bile acid export are increased (the read-
er is referred to several recent in depth reviews on alterations
of NR signaling in experimental animal models of cholestasis
[126,157,158,198,215–217]). These adaptive modulations in response
to cholestasis are not only restricted to the liver but also occur in the
intestine, kidney, and bile duct epithelia (for review see references 126
and 158). Bile acid reabsorption in the intestine is adapted to local bile
acid load due to altered transporter expression [22,218,219]. In
proximal renal tubular cells, bile acid export is induced whereas
tubular bile acid reabsorption is reduced resulting in enhanced urinary
bile acid excretion [22,24,219,220]. Unfortunately, this armamentar-
ium of intrinsic NR-mediated adaptive responses is apparently too
weak in order to fully prevent cholestatic injury.

Several therapeutic strategies are aimed at NRs and their target
genes which affect not only “orthograde” biliary excretory routes and
bile acid phase I and II detoxification systems but also “retrograde”
alternative/basolateral overflow and renal elimination systems. So far,
the only approved drug for treatment of cholestatic disorders is a
hydrophilic bile acid ursodeoxycholic acid (UDCA) [221]. The effects
of UDCA are to most extent mediated by post-transcriptional and
therefore non-NR-mediated mechanisms (for reviews, see references
222–224), since UDCA only weakly activates GR [225], FXR [7,9], and
possibly PXR non-directly via LCA generation after bacterial modifi-
cation [25,26]. Alternatively, FXR agonists are promising treatment
options for cholestasis, and phase II studies (e.g., 6-ECDCA) in PBC
showed improvement of biochemical cholestasis parameters, despite
itching at higher doses, in patients with incomplete response to UDCA
[226]. Since these PBC patients had a combination of 6-ECDCA and
UDCA, it will be of interest to determine whether FXR agonists per se
or the combination of UDCA and FXR agonist at high dose is involved
in itching, perhaps by impacting on lysophosphatidic acid metabolism
[227]. FXR agonists could overcome the reduction of bile flow in
cholestasis via stimulation of BSEP (increasing bile acid-dependent
bile flow) and MRP2 (increasing bile acid-independent bile flow)
[228–230]. In addition, FXR agonists also support adaptive reactions of
the cholestatic hepatocyte which would be predicted to limit the
hepatocellular bile acid burden, such as down-regulation of bile acid
import, inducing alternative export (via OST), as well as reducing
endogenous bile acid synthesis [46,126,198]. In addition, stimulation
of the canalicular phospholipid floppase MDR2/MDR3 is predicted to
change the intrabiliary bile composition rendering bile less aggressive
[154,231]. Since FXR also regulates the expression of several genes
involved in xenobiotic detoxification such as SULT2A1 and UGT2B4,
highly specific FXR modulators will have to be developed in order to
limit drug interactions. However, it is also important to consider that
UDCA aggravated bile infarcts by disrupting cholangioles in a mouse
model of obstructive cholestasis [145] and that conversely FXR-
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deficiency reduced bile infarcts in bile duct ligated mice by lowering
bile flow and pressure [149]. Therefore, extra-hepatic cholestasis and/
or obstructive cholestasis in human could constitute conditions in
which FXR agonists would be detrimental. The same concerns may
apply to advanced stages of PBC or PSC with dominant strictures prior
to endoscopic management [232].

FXR agonists may also target inflammation and fibrosis [233]
helping to counteract the consequences of cholestatic liver injury.
Inflammation plays a key role during cholestasis but requires control
to limit further liver damage. FXR, like RXR [234], is a negative acute
phase gene [235]. Since CYP7A1 and CYP27A1 are also repressed
during acute phase [236,237], FXR and its ligands are therefore
depleted during endotoxemia. Interestingly, FXR activation in mice
counteracted the LPS-induced serum amyloid P component and
serum amyloid A3 hepatic gene expression [238], whereas FXR-
deficient mice had higher hepatic inflammatory marker expression,
such as iNOS, COX-2, or INFγ, after LPS challenge [239]. These data are
in line with the observation that FXR-deficient mice displayed
prominent hepatic inflammation and subsequently liver tumors
[240,241], while FXR agonists attenuated hepatic fibrosis and
inflammation in a chronic mouse model of fatty liver [242] and in
acute hepatitis [243]. Furthermore, the hepatic re-expression of a
constitutively active FXR lowered liver inflammation after LPS
challenge, probably by interfering with NFκB signaling [239].
Altogether, FXR agonists may therefore constitute a new treatment
in chronic and acute liver inflammation. However, since the acute
phase response, by lowering cholesterol catabolism into bile acids and
by repressing FXR expression, favors hypertriglyceridemia probably
to neutralize bacterial components, viruses, or parasites and to
redirect nutrients to immune cells and to injured tissues, a careful
evaluation of FXR agonists will be required to not interfere with the
beneficial effects of the basic immune response. Finally, FXR agonists
via SHP and/or PPARγ dependent pathways might be able to inhibit
hepatic stellate cells activation and therefore fibrosis [244,245].
However, the relevance of these findings is now highly questionable
since FXR-deficiency in several mouse models reduced liver fibrosis
and since FXR protein was barely detectable in human hepatic stellate
cells and myofibroblasts [246].

In addition, FXR is not the only NR playing an important role in bile
acid detoxification, since FXR-deficient mice were shown to better
tolerate cholestasis than their wild-type littermates due to constitu-
tive PXR and CAR activation leading to enhanced detoxification
[23,149] and urinary excretion of bile acids [24,247].

Therefore, PXR and CAR may represent additional therapeutic
targets due to their broad involvement in the regulation of bile acid
and bilirubin detoxification enzymes and transporters [31]. In
common bile duct ligated mice, a model for obstructive cholestasis,
pre-treatment with rodent PXR and CAR ligands led to a significant
reduction of elevated serum bilirubin and bile acid levels, which were
accompanied by increased levels of polyhydroxylated bile acids in
serum and urine [33]. These findings may be explained by a
coordinated stimulation of phase I (e.g., CYP2B10, CYP3A11) and
phase II (e.g., SULT2A1, UGT1A1) detoxification enzymes together
with alternative basolateral overflow systems (e.g., MRP3, MRP4),
while classical orthograde bile acid and organic anion transporters
(NTCP, OATP1A1, OATP1A2, BSEP) remained unaffected [33]. A study
exploring cholic acid toxicity (the major retained bile acid species in
cholestasis) in FXR- and PXR-knockout mice revealed that CAR
agonists can mitigate bile acid toxicity, even when both classical
bile acid receptors are knocked-out, strengthening the fundamental
role of CAR in bile acid detoxification [31]. In humans, administration
of the “old-fashioned” PXR agonist rifampicin to healthy volunteers
significantly induced CYP3A4, UGT1A1, and MRP2 expression, result-
ing in increased bile acid hydroxylation and reduced serum bilirubin
levels [248] which may explain the beneficial effects in treatment of
pruritus. A decoction of Yin Chin (Artemisia capellaris), which is
widely used in Asia for the treatment of neonatal jaundice, contains a
powerful CAR agonist, which is capable to sufficiently reduce bilirubin
by transactivation of enzymes and transporters of bilirubin metabo-
lism [249].

PPARα agonists such as fibrates showed beneficial effects on
biochemical and histological parameters of cholestasis in PBC patients
[250]. A potential mode of action of PPARα agonists in rodent
cholestasis was linked to the stimulation of the canalicular phospho-
lipid floppase MDR2, thus protecting the bile duct epithelium by
counteracting the detergent effects of bile acids via enhanced biliary
phospholipid excretion [155,251–254]. Moreover, in humans, bile
acid glucuronidation via UGT2B7 and UGT1A3 is enhanced by PPARα,
rendering bile acids more hydrophilic for urinary excretion. Finally,
the PPARγ agonist rosiglitazone reversed LPS-mediated down-
regulation of hepatic transporters, implying a role for its potential
use in inflammation-mediated liver diseases [255].

Glucocorticoids, which activate GR, may either directly improve
cholestasis via transactivation of several transporters in human (e.g.,
ASBT, NTCP, MRP2, AE2, BSEP) and/or indirectly via their anti-
inflammatory properties [126]. In addition, GR may expand its anti-
cholestatic spectrum via a response element in the promoter of CAR,
thereby activating CAR and CAR-dependent genes [256]. Of interest,
UDCA was reported to activate GR [257–260]. Moreover, a combina-
tion of UDCA and dexamethasone enhanced transcriptional expres-
sion and activity of cholangiocellular AE2 and may thus explain some
of the beneficial effects of the combination of UDCA and glucocorti-
coids in PBC patients with inadequate response to UDCAmonotherapy
[190].

8. Nuclear receptors in gallstone disease

Gallstones have high prevalence rates of 8%–22% in the Western
world as assessed by cross-sectional ultrasound studies [261].
Formation of gallstones may occur if the amounts of cholesterol or
bilirubin exceed their solubility (for the development of bilirubin
pigment stones, see reference 262). Since biliary cholesterol is kept in
solution in vesicles with phospholipids or in mixed micelles with bile
acids and phospholipids, the relative composition of bile acids,
phospholipids, and cholesterol determines the solubility of choles-
terol in bile. Bile becomes supersaturated with cholesterol when the
biliary concentration of cholesterol is increased or the concentration
of bile acids and phospholipids is decreased [262]. Therefore, it was
suggested that enzymes, transporters, and NRs involved in bile acid,
phospholipid, and cholesterol metabolism could play a role in
cholesterol gallstone formation. As such, patients with MDR3
mutations typically develop cholelithiasis [263–265]. Genetic variants
of BSEP and polymorphisms in the key enzyme of bile acid
biosynthesis, CYP7A1 are at significantly higher risk for cholesterol
gallstone disease [266]. Surprisingly, no association with LXRα and
BSEP polymorphisms has been found in symptomatic but otherwise
normal gallstone patients [267].

Quantitative trait locus analysis identified FXR, its target gene SHP,
and the heterodimer cholesterol exporter ABCG5/ABCG8 as possible
determinants of cholesterol gallstone formation in human and
susceptible mice [206,268]. Subsequently, FXR knockout mice fed a
lithogenic diet were shown to display more supersaturated bile, a sine
qua non condition for gallstone formation, although gallstone
development was not shown in this model [231]. Moschetta et al.
[231] subsequently extrapolated that low expression of mouse BSEP
and MDR2 could result in an increased cholesterol saturation index
and therefore in gallstone formation. Vice versa, treatment with a
potent FXR agonist prevents bile supersaturation in the susceptible
strain, a result which may be due to FXR induction of target genes
BSEP and MDR2 with a subsequent increase in the transport of bile
acids and phospholipids in the lithogenic bile [231]. Oral administra-
tion of the endogenous FXR activator CDCA had been used in the past
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to dissolve gallstones in human butwas later replaced by the less toxic
UDCA. UDCA, however, is a weak FXR activator and suffers from low
efficacy, a long treatment period, and a high rate of stone recurrence.
Using more potent synthetic FXR agonists could potentially overcome
these shortcomings [269]. Nevertheless, it should be emphasized that
highly potent FXR agonist may result in a smaller bile acid pool and
therefore could impact on the bile composition and saturation index.
More importantly, patients with a contracted bile pool also are at
higher risk to develop cholesterol gallstones [270–272].

The picture involving FXR in gallstone formation is becomingmore
complex since mice lacking βKlotho are resistant to gallstone
formation [82]. βKlotho knockout mice have markedly increased
CYP7A1 levels and consequently enhanced bile acid synthesis rate,
which is likely to contribute to gallstone prevention [82]. It has been
speculated that, in the terminal ileum, FXR-activated FGF15/19 is
requiring βKlotho as co-receptor to be targeted to the corresponding
FGFR4 receptor in the liver (see above), finally resulting in repression
of CYP7A1 [273]. Absence of βKlotho would be predicted to disrupt
the FXR–FGF15/19 mediated gut liver signaling, the most relevant
pathway for FXR-dependent CYP7A1 down-regulation [20], leading to
increased CYP7A1 levels. Thus, inhibition of βKlotho could improve
current (i.e., UDCA) and potential future therapies (i.e., synthetic FXR
agonists) for gallstone disease by increasing cholesterol breakdown
via increasing CYP7A1, which is typically reduced in treatment with
FXR agonists.

Obesity and metabolic syndrome are well known risk factors
associated with gallstone formation [274,275]. Obese individuals
display a higher ratio of cholesterol to phospholipids and bile acids
that makes their bile susceptible for gallstone formation. Insulin-
resistance [276] and high sucrose consumption [277] are associated
with gallstones formation and are preeminent features of the
metabolic syndrome. The role of hepatic insulin-resistance was
therefore assessed in a mouse model of insulin receptor deficiency
in hepatocytes [278]. Activation of FOXO1 in this model leads to
induction of ABCG5/ABCG8 gene expression and increased cholesterol
secretion into the bile and thus generated gallstones, while FXR
negative feedback of bile synthesis was partially lost [278]. Thus,
correction of insulin-resistance could contribute to lowering gallstone
prevalence in obese subjects.

9. Summary and conclusions

Hereditary and acquired alterations in NR function are keys for
understanding the physiology of bile formation and pathophysiolog-
ical changes leading to cholestasis and gallstone disease. Targeting
NRs therefore represents an attractive therapeutic approach for these
disorders. As such, several drugs already used to treat cholestatic liver
diseases and gallstone diseases modulate NR function. The future
should bring well defined and more specific NR ligands for restoring
and/or adapting defective NR function in these disorders.
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