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Abstract

Duchenne muscular dystrophy is the most prevalent and severe form of human muscular dystrophy. Investigations into the molecular basis for
Duchenne muscular dystrophy were greatly facilitated by seminal studies in the 1980s that identified the defective gene and its major protein
product, dystrophin. Biochemical studies revealed its tight association with a multi-subunit complex, the so-named dystrophin—glycoprotein
complex. Since its description, the dystrophin—glycoprotein complex has emerged as an important structural unit of muscle and also as a critical
nexus for understanding a diverse array of muscular dystrophies arising from defects in several distinct genes. The dystrophin homologue utrophin
can compensate at the cell/tissue level for dystrophin deficiency, but functions through distinct molecular mechanisms of protein—protein

interaction.
© 2006 Elsevier B.V. All rights reserved.
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1. Dystrophin

Dystrophin is the 427 kDa protein product of the gene
defective in Duchenne muscular dystrophy [1,2]. Dystrophin is
comprised of four major domains [2], three of which are homolo-
gous to domains present in several actin binding cytoskeletal
proteins including a-actinin and (-spectrin (Fig. 1). The amino
terminal domain contains a pair of calponin homology (CH)
modules that together form a functional actin binding domain in
dystrophin and related proteins. The largest domain of dystrophin
consists of 24 triple helical spectrin like repeats interspersed with
4 putative hinge domains [3] that together are thought to give
dystrophin an elongated and flexible rod shape. The third domain
of dystrophin, initially named the cysteine-rich domain, encodes
two EF hand-like modules [2] bounded by WW [4] and ZZ [5]
modules. Finally, the carboxy-terminal domain is unique to
dystrophin and its closest homologues utrophin [6] and the
dystrobrevins [7]. To date, crystal structures have been solved for
the tandem CH domains (ABD1) of dystrophin [8] and utrophin
[9] and also for sequence encoding the WW and EF hand modules
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of the cysteine-rich domain of dystrophin [10], which represents
less than 14% sequence coverage for the entire protein. In addition
to three promoters that regulate expression of full-length dys-
trophin in a tissue-specific fashion, the DMD gene also contains
four internal promoters that drive expression of distinct, serially
truncated proteins (Fig. 1) in non-muscle tissues [11].

Dystrophin is localized to the cytoplasmic face of the muscle
cell plasma membrane, or sarcolemma [12], and particularly within
a cytoskeletal lattice termed costameres [13,14]. Through an ex-
tensive network of interacting proteins [15] costameres physically
couple the sarcolemma with the Z disk of force-generating myo-
fibrils (Fig. 2). The absence of dystrophin in humans and the mdx
mouse leads to costamere disorganization [13,16—19], sarcolem-
mal fragility [20—24], muscle weakness [25,26] and necrosis [27].
Sarcolemmal fragility, muscle weakness and necrosis are all ex-
acerbated by mechanical stress, improved by muscle immobiliza-
tion, and corrected in the mdx mouse by transgenic expression of
full-length dystrophin [22,23,26,28—34]. Taken together, these
studies provide compelling evidence that dystrophin stabilizes the
sarcolemma against mechanical forces experienced during muscle
contraction or stretch.

Identification of the dystrophin domains important for its
function has been elegantly advanced through the characterization
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Fig. 1. Protein products of the DMD gene. Shown is a schematic diagram
illustrating the domain structure of the protein isoforms encoded by the DMD
gene. Dystrophin (DYS) contains an amino-terminal actin binding domain
(ABD1) consisting of tandem CH domains, a spectrin-like triple-helical repeat
(SR) domain with 4 putative hinge modules (H1-H4) interspersed throughout
its length, a cysteine-rich (CR) domain critical for binding 3-dystroglycan, and
a carboxy-terminal domain (CT) important for binding syntrophins and
a-dystrobrevin-2. Acidic spectrin repeats are colored red, basic repeats colored
blue, and a cluster of basic repeats form a second independent actin binding
domain (ABD2). Alternate promoters drive the expression of four truncated non-
muscle isoforms, Dp260, Dp140, Dp116, and Dp71 each with unique amino-
terminal sequences and the indicated domains in common with full-length
dystrophin.

17 1920 24

of transgenic mdx mice expressing dystrophin constructs bearing
deletions in different domains. The severe phenotype of mdx mice
expressing a dystrophin deleted in the cysteine-rich domain [35]
suggested it is necessary for dystrophin function. Expression of
Dp71 also resulted in a severe phenotype [36,37], thus indicating
that the cysteine-rich domain was not sufficient for dystrophin
function. Intriguingly, transgenic mdx mice expressing dystrophin
constructs deleted for the amino-terminal tandem CH domain or
carboxy-terminal domain presented with a very mild or no phe-
notype suggesting neither is essential for dystrophin function
[38,39]. Specific deletion of the large rod domain was well toler-
ated to the extent that only 4 of 24 spectrin repeats were necessary
to largely retain function [40]. In contrast, substitution with the 4
homologous spectrin repeats of a-actinin-2 was not tolerated [41].
Finally, co-expression of Dp71 and the cysteine-rich domain
deleted construct failed to rescue the dystrophic phenotypes of
mdx muscle [42]. These studies demonstrated that the cysteine-
rich domain present in cis with either the amino-terminal domain
or portions of the rod domain are minimally required for dys-
trophin function.

2. The dystrophin—glycoprotein complex

Shortly after identification of the DMD gene and dystrophin, it
was shown that dystrophin could be dramatically enriched from
detergent-solubilized skeletal muscle membranes using wheat
germ agglutinin chromatography [43]. The dystrophin-enriched
fraction was further purified by serial anion exchange chroma-
tography and sucrose gradient centrifugation to identify 10 tightly
associated proteins of 156 kDa, 88 kDa, a triplet of 59 kDa,
50kDa, a doublet 0f43 kDa, a singlet of 35 kDa present at a molar

ratio of 2:1 relative to dystrophin, and 25 kDa [44]. The 156, 50,
43, and 35 kDa proteins were shown to be glycosylated with the
156 kDa protein so extensively glycosylated that it stained poorly
with Coomassie blue [44]. Since these proteins co-localized with
dystrophin at the sarcolemma, co-purified with dystrophin in
stoichiometric amounts through several purification steps, and
were diminished in biopsies from DMD patients and muscle of
the dystrophin-deficient mdx mouse [44,45], it was concluded
that dystrophin functioned as part of a larger, hetero-oligomeric
glycoprotein complex (Fig. 2) that may serve to stabilize the
sarcolemma against the repetitive stress imposed during muscle
contraction. Dystrophin and its tightly associated proteins were
collectively named the dystrophin—glycoprotein complex.

The genes encoding all core components of the dystrophin—
glycoprotein complex have been characterized and their
interactions with dystrophin and each other better defined
(Fig. 2). The 156 kDa and one of the 43 kDa dystrophin-
associated glycoproteins are encoded by a single transcript and
the propeptide is proteolytically processed into extracellular
156 kDa and single-pass transmembrane 43 kDa subunits which
remain non-covalently associated [46]. Based on the extensive
glycosylation of the 156 kDa subunit [45] and tight association
of both proteins with dystrophin [44,45], the 156 kDa and
43 kDa subunits were renamed o- and P-dystroglycan,
respectively. Using limited proteolysis, wheat germ agglutinin
chromatography and an array of site-specific dystrophin
antibodies, Ozawa and colleagues demonstrated that the
cysteine-rich and first half of the C-terminal domains of
dystrophin were important for its binding to the glycoprotein
complex [47]. By blot overlay assay, they further showed that 3-
dystroglycan, and the 88 kDa and 59 kDa dystrophin-associated
proteins directly bound the cysteine-rich and/or C-terminal
domains of dystrophin [48]. Several biochemical studies have
since refined the sites of molecular contact between dystrophin
and P-dystroglycan [49-52] with the most recent work
demonstrating that the WW, EF hand and ZZ domains are all
required for dystrophin binding to P-dystroglycan [53].
Interestingly, a DMD-causing missense mutation (C3340Y)
results in loss of B-dystroglycan binding activity [53], which
reinforces the importance of dystrophin/p-dystroglycan inter-
action in normal muscle function. While no human muscle
disease has been linked with mutations in the dystroglycan gene,
its protein products are clearly essential to the function of the
dystrophin—glycoprotein complex because muscle-specific
ablation of dystroglycan in mice causes muscular dystrophy
[54,55].

Elucidation of the genes encoding isoforms of the 88 kDa
and 59 kDa dystrophin-associated proteins (named dystro-
brevins and syntrophins, respectively) greatly benefited from
comparative investigations into the molecular composition of
the mammalian neuromuscular junction and electric organ of
Torpedo californica that preceeded the discovery of dystro-
phin [7,56,57]. Dystrobrevins and syntrophins are cytoplasmic
proteins that bind directly to each other and to sequences
within the carboxy-terminal domain of dystrophin [57]. While
syntrophins are thought to function as modular adaptors that
anchor ion channels and signaling molecules to the
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Fig. 2. The dystrophin—glycoprotein complex network. Shown in red are the
constituents of the core dystrophin—glycoprotein complex, which co-purify as a
highly stable complex from skeletal muscle and which show greatly decreased
abundance in dystrophin-deficient muscle. «-Dystroglycan and p-dystro-
glycan (a-DG, PB-DG); the sarcoglycan complex (SGC); sarcospan (SPN);
a-dystrobrevin-2 (a-Db 2); syntrophin (SYN). Also shown are structural proteins
that interact directly with components of the dystrophin—glycoprotein complex,
their direct binding partners, and their location within striated muscle cells.
Cytokeratins 8 and 19 (K8K19). Proteins highlighted in blue are present at
increased levels when dystrophin is absent.

dystrophin—glycoprotein complex, no myopathy is associated
with syntrophin ablation in mice [58—60]. In contrast,
knockout of a-dystrobrevin results in a progressive myopathy
[61], suggesting an important role in dystrophin—glycoprotein
complex function.

Distinct but related genes encode the 50 kDa subunit [62], the
second 43 kDa protein [63], and two different 35 kDa proteins
[64,65] of the dystrophin—glycoprotein complex, which were
renamed «-, 3-, y- and 6-sarcoglycan. The sarcoglycans are all
single pass transmembrane proteins that co-assemble into a
stable tetrameric complex [66]. While its function is not fully
understood, the sarcoglycan complex appears to strengthen
interaction of p-dystroglycan with a-dystroglycan and dystro-
phin [66]. Importantly, mutations in individual sarcoglycan
genes lead to loss of the entire sarcoglycan complex resulting in
forms of limb-girdle muscular dystrophy in humans and
progressive muscular dystrophy when knocked out in mice
[66]. The 25 kDa dystrophin associated protein, named
sarcospan [67], is also stably associated with the sarcoglycan
complex. However, no human myopathy has been linked to
mutations in the sarcospan gene and ablation of sarcospan in
mice caused no muscle phenotype [68]. Finally, a-dystrobrevin
has been shown to directly interact with the sarcoglycan
complex [69], which raises the possibility that the myopathy
accompanying a-dystrobrevin ablation may arise from destabi-

lization of an indirect linkage between dystrophin and the
sarcoglycan complex.

3. Molecular partners of the dystrophin—glycoprotein
complex

A screen of known extracellular matrix molecules for skeletal
muscle a-dystroglycan binding activity identified laminin as the
first extracellular ligand for a-dystroglycan [46,70]. Laminin-
Sepharose pull-down of the entire dystrophin complex defini-
tively demonstrated that a-dystroglycan was a stoichiometric
component of the complex [70]. Agrins, neurexins and perlecan
all contain modules homologous to the a-dystroglycan bind-
ing G-domain of laminin [71], and all have been shown to bind
a-dystroglycan with high affinity [72,73]. Like laminins, these
proteins all bind to a-dystroglycan in a manner dependent on its
oligosaccharide modifications [72,73]. In contrast, the chondroi-
tin sulfate chains of the proteoglycan biglycan have been shown to
mediate its binding to the core protein of a-dystroglycan [72,73].
While the physiologic significance of a-dystroglycan binding to
such a wide variety of extracellular matrix molecules is not clear,
the functional role of the dystroglycan complex may depend
on which extracellular ligand is locally available. O-linked oli-
gosaccharides of unknown structure are clearly important for
a-dystroglycan binding to extracellular ligands as well as its
function in vivo because mutations in glycosyltransferases that
post-translationally modify a-dystroglycan result in hypoglyco-
sylation, loss of extracellular ligand binding, and several forms of
congenital muscular dystrophy in humans and mice [72,73].

As noted earlier, sequence similarity of the dystrophin amino-
terminal domain with the tandem CH actin binding domains of
B-spectrin and a-actinin suggested that it may bind actin filaments.
Recombinant proteins encoding the first 246 amino acids of
dystrophin or the first 261 amino acids of its homologue utrophin
have been shown by several groups to bind actin filaments in vitro
with a Kq of ~12 pM and 1:1 stoichiometry (summarized in [74]).
Electron microscopy and image reconstruction analysis suggested
substantial plasticity in the modes of actin filament binding dis-
played by the utrophin amino-terminal tandem CH domain [75—
78]. However, all of these studies assumed that the actin binding
function of dystrophin and utrophin is restricted to the amino-
terminal, tandem CH domain, which exhibits 25-fold lower affinity
for actin compared to purified dystrophin—glycoprotein complex
[79]. Furthermore, the stoichiometry of dystrophin—glycoprotein
complex binding to actin filaments (1 dystrophin/24 actin mono-
mers) demonstrated a more extensive lateral association between
dystrophin and actin than could be explained by the amino-terminal
domain alone [79]. Limited proteolysis experiments led to the
identification of a second actin binding site (ABD2, Fig. 1) situated
in the middle third of the dystrophin rod domain [79]. Five of seven
spectrin repeats in the second site were rich in basic amino acid
residues (Fig. 1) and the cluster of basic repeats was shown to
independently bind acidic actin filaments through electrostatic
attraction [80,81]. Moreover, the dystrophin—glycoprotein com-
plex was shown to slow depolymerization of actin filaments in vitro
but neither the amino-terminal, nor middle rod domain alone or
present in trans had any effect on actin filament depolymerization
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[79,82]. Although separated by ~ 1200 amino acids, the two sites
were proposed to act in concert to effect an extended lateral as-
sociation that could account for the measured 1:24 stoichiometry of
binding [79,82]. The redundancy of two actin binding domains also
provided a molecular basis to explain why neither the amino-
terminal nor middle rod domain are essential for dystrophin func-
tion [38,40], yet expression of the cysteine-rich and carboxy-
terminal domains alone (and recovery of dystrophin-associated
proteins) was insufficient to correct the dystrophic phenotype
[36,37].

While dystrophin exhibits no preferential binding to cytoplas-
mic actin over sarcomeric a-actin in vitro [83], it co-immuno-
precipitated with cytoplasmic y-actin [84] even though this isoform
represents only 1/4000th of the total actin expressed in adult
skeletal muscle [85]. Immunofluorescence analysis of mech-
anically peeled sarcolemma demonstrated that dystrophin is tightly
attached to the sarcolemma [14] and was closely co-localized with
cytoplasmic y-actin filaments [86]. Importantly, y-actin filaments
were absent from all sarcolemma peeled from muscle fibers of the
dystrophin-deficient mdx mouse [86]. Transgenic expression of
utrophin [87], or dystrophin constructs retaining the B-dystrogly-
can binding site plus either the amino-terminal [85] or middle rod
actin binding domain [88] was sufficient to restore coupling
between the sarcolemma and vy-actin in mdx muscle. These data
demonstrate that dystrophin functions to mechanically anchor
cytoplasmic +y-actin filaments of the cortical cytoskeleton to the
sarcolemma (Fig. 2) and that utrophin can compensate in this role
when dystrophin is absent.

Two-hybrid screens using a-dystrobrevin as bait have identified
several novel interacting proteins [89—91]. Two of these proteins,
synemin [91] and syncoilin [89,92], are structurally related to
intermediate filament proteins and interact with the intermediate
filament protein desmin (Fig. 2). Synemin also directly binds to
a-actinin [93] and vinculin [94] to provide additional mechanical
linkages between the dystrophin—glycoprotein complex and mus-
cle cytoskeleton (Fig. 2). Mice null for either a-dystrobrevin [61]
or desmin [95,96] exhibit skeletal and cardiomyopathy, which
suggests that mechanical coupling of the dystrophin—glycoprotein
complex to the intermediate filament cytoskeleton is necessary
for normal muscle function. Curiously, the skeletal myopathies of
a-dystrobrevin null and desmin null mice manifests in the absence
of sarcolemmal fragility [61,95,96] and the sarcolemma of desmin
null muscle is actually protected from stress-induced injury
[97,98]. Reiterative two-hybrid screens with a third a-dystrobrevin
binding protein, dysbindin [90], led to the identification of a novel
413 kDa muscle protein named myospryn [99]. Interestingly, the
myospryn gene was recently identified as a downstream target for
the MEF2A transcription factor and myospryn protein binds
directly to a-actinin-2 [100]. Two hybrid screens also led to the
identification of +y-filamin as a sarcoglycan interacting protein
[101]. Like dystrophin, filamin contains an amino-terminal tandem
CH actin binding domain, but in combination with a large number
of Ig motifs instead of spectrin repeats [102]. Thus, the a-dys-
trobrevin/dysbindin/a-actinin-2 and sarcoglycan/y-filamin/actin
axes provide additional structural linkages between the sarcolem-
mal dystrophin—glycoprotein complex and myofibrillar apparatus
(Fig. 2). Finally, dystrophin has been shown to co-immunoprecip-

itate with cytokeratins 8 and 19 [84] through a direct interaction of
dystrophin’s amino-terminal tandem CH domain with cytokeratin
19 [103]. Thus, many of the proteins found to interact with the
dystrophin—glycoprotein complex couple it with other structural
elements of muscle (Fig. 2) suggesting it plays an essential
structural/mechanical role in striated muscle.

4. Costamere remodeling in dystrophin-deficient muscle

Mounting evidence suggests that dystrophin-deficient mus-
cle may sense the underlying structural defect in sarcolemmal
integrity and partially adapts through activation of a compen-
satory cytoskeletal remodeling program. Cytoplasmic <y-actin
protein levels are elevated 10-fold within dystrophin-deficient
mdx muscle fibers (Fig. 2) while its mRNA is increased 2-
fold [85]. In contrast, cytoplasmic 3-actin mRNA and protein
were elevated only 2-fold in mdx muscle and p-actin was
undetectable within muscle fibers (L.M. Hanft and J.M. Ervasti,
unpublished results). Besides y-actin, several costameric actin
binding proteins are also upregulated in mdx muscle (Fig. 2)
including y-filamin [101], the cytolinker plectin [104], talin and
vinculin [105]. Furthermore, dysbindin [90] and syncoilin [89]
expression are increased in dystrophin-deficient muscle, as is
a7B1 integrin [106,107], which can form a parallel mechanical
linkage between laminin-2, the sarcolemma, and the myofibril-
lar Z disk (Fig. 2). While normally expressed at very low levels
in normal postnatal muscle (Table 1), utrophin shows increased
expression in dystrophin-deficient muscle and is targeted to
costameres [86,87]. Thus, it seems likely that dystrophin-de-
ficient muscle attempts to compensate for the absence of dys-
trophin through upregulation of available structural proteins. In
fact, transgenic overexpression of either utrophin [108] or a7
integrin [109] has been shown to further compensate for dys-
trophin deficiency. Thus, many of the proteins upregulated in
dystrophin’s absence are capable of forming parallel mechani-
cal links between the sarcolemma and myofibrillar apparatus.
As such, these findings further reinforce an important mech-
anical function for the dystrophin—glycoprotein complex.

5. Dystrophin versus utrophin

Utrophin is a widely expressed autosomal gene product [6] with
significant homology to dystrophin (Fig. 3). Utrophin is distributed
throughout the sarcolemma in fetal and regenerating muscle, but is
down-regulated at birth and restricted to the myotendinous and
neuromuscular junctions in normal adult muscle [11]. Because
utrophin and dystrophin bind the same complement of proteins
[110,111], it was hypothesized that utrophin may be capable of
compensating for dystrophin deficiency. Indeed, continued
utrophin expression in adult mdx mice partially attenuates the
phenotype associated with dystrophin deficiency as mice lacking
both proteins exhibit a severe phenotype more similar to that seen
in DMD patients [112,113]. Moreover, transgenic overexpression
of full length utrophin rescued all known phenotypic parameters of
dystrophin deficiency in mdx mice [87,108]. Based on the original
quantitative estimate of dystrophin abundance in normal muscle
[1] and the measured abundance of utrophin in a line of transgenic
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Table 1
Utrophin abundance in WT, mdx, and transgenically rescued mdx muscle

Line % Total protein® % WT DYS=0.002° % WT DYS=0.026°
WT 0.0006 30 2
mdx 0.0013 65 5
Fiona/mdx 0.014 700 54

? Values in this column taken from [87].
® Value for dystrophin abundance (% of total muscle protein) from [1].
¢ Value for dystrophin abundance (% of total muscle protein) from [114].

mice fully corrected for the mdx phenotype [87], it is widely
perceived that 7-fold higher levels of utrophin may be necessary to
compensate for dystrophin deficiency (Table 1). However, new
quantitative measurements using full-length recombinant mouse
dystrophin as standard [114] indicate that the abundance of dys-
trophin in normal muscle is 13-fold higher (Table 1) than pre-
viously reported [1]. Thus, utrophin upregulation can fully rescue
all known parameters of the mdx phenotype [108] even when
expressed at one-half the measured abundance of dystrophin in
normal muscle (Table 1).

While the studies of dystrophin-deficient mdx and transgenic
mice provide compelling evidence that utrophin over-expression
can compensate for the absence of dystrophin, biochemical data
suggest that utrophin differs from dystrophin in its mode of
binding to actin filaments and B-dystroglycan. Utrophin lacks
the cluster of basic, actin binding spectrin repeats present in the
middle rod domain of dystrophin [81]. However, full-length
recombinant utrophin bound actin filaments with high affinity
and a stoichiometry of 1 utrophin per 14 actin monomers [87],
implying a stronger and more extensive lateral association with
actin filaments than anticipated from studies with isolated
utrophin fragments [74,81]. Interestingly, utrophin constructs
encoding the amino-terminal tandem CH domain plus 10 spec-
trin repeats bound actin filaments with the same properties as
full-length utrophin, while constructs encoding the tandem CH
domain plus 9, 6, 3 or no spectrin repeats each bound actin
filaments with progressively lower affinity and stoichiometry
[115]. Thus, the amino-terminal CH domain and first 10 spectrin
repeats encode the complete actin binding domain of utrophin
(Fig. 3), which may provide a molecular explanation for the
greater effectiveness of full-length utrophin in rescuing dystro-
phin-deficient muscle [108] compared to a utrophin mini-gene
deleted for spectrin repeats 4—19 [116,117].

Full-length recombinant dystrophin bound actin filaments with
properties [114] remarkably similar to those previously measured
for purified dystrophin—glycoprotein complex [79], suggesting that
neither a1-syntrophin [118], nor any other dystrophin-associated
protein contributes to dystrophin—glycoprotein complex binding to
actin filaments. In direct comparison, dystrophin and utrophin
differed in their extent of lateral association with actin filaments, in
sensitivity of actin binding to increasing ionic strength, and in the
spectrin repeat modules necessary for actin filament binding [114].
In stark contrast to utrophin, spectrin repeats 1—-10 of dystrophin
play no direct role in actin binding other than to link the two distinct
and spatially separated actin binding modules residing within the
amino-terminal CH domain and spectrin repeats 11-17 (Fig. 3).
Furthermore, their modes of contact differ to the extent that

dystrophin and utrophin do not compete for binding sites on actin
filaments [114].

Given their similar affinities for actin filaments [114] and
efficacies in maintaining normal muscle function in vivo [87,114],
dystrophin and utrophin are likely to bind B-dystroglycan with
similar affinities. Ozawa and colleagues have recently reported
that utrophin was less effective than dystrophin in competitively
inhibiting dystrophin binding to B-dystroglycan[53]. However,
my group’s quantitative comparison of actin binding properties
shows that dystrophin and utrophin can bind a common molecular
partner with similar affinities yet not compete due to distinct
modes of contact [114]. Following this theme, mutagenesis ex-
periments performed by Ozawa’s group demonstrated that
dystrophin and utrophin also exhibit different modes of contact
with 3-dystroglycan [53].

6. Unsolved mysteries

Based on its association with several proteins implicated in
signal transduction, the dystrophin—glycoprotein complex is also
hypothesized to play a role in cellular signaling [119,120]. For
example, a-syntrophin interacts with neuronal nitric oxide syn-
thase [121], which in turn regulates vasodilation during exercise
[122,123]. MAP kinase signaling is also altered in dystrophic
muscle [124—126]. However, it remains to be demonstrated that the
dystrophin—glycoprotein complex actively participates in a signal
transduction pathway or that altered signaling initiates the patho-
logies observed in dystrophic muscle. In fact, a recent study aimed
at revealing putative signaling functions for the dystrophin—
glycoprotein complex instead concluded that mechanical destabi-
lization is the primary cause of muscle necrosis in dystrophin-
deficient muscle [127].

The Lisanti laboratory recently reported that the proteasome
inhibitor MG-132 rescued dystrophin expression in mdx muscle

Full-length
50% Id.
60% Sim.

NT R1-R10 R11-CT CR/CT
73% Id. 43% Id. 51% Id. 72% Id.
79% Sim. 54% Sim. 62% Sim. 78% Sim.

ABD1 H1 H2 ABD2 H3 H4 CRCT
DYS
SR1 3 4 11 17 1920 24
H1 H2 H3 H4 CRCT
UTR
| SR1 3 4 }] 1718 22
sl R11-16/17  R17/18CT
1% Id. 54% Id.
54% Sim.  64% Sim.

Fig. 3. Dystrophin and utrophin are the same only different. Shown is a
schematic diagram comparing the domain structures and sequence identity/
similarity of murine dystrophin and utrophin. Shaded regions are important for
binding actin filaments and P-dystroglycan. Utrophin lacks modules
corresponding to spectrin repeats 15 and 19 in dystrophin and also the cluster
of basic actin binding spectrin repeats present in dystrophin (ABD2). Spectrin
repeats 1—-10 of utrophin are important in actin filament binding, but the
corresponding repeats of dystrophin play no direct role in actin binding.
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Fig. 4. Dystrophin as a molecular shock absorber. Shown is a hypothetical model
for how dystrophin may function to dampen elastic extension during muscle
stretch. (I) relaxed muscle. (II) Muscle stretch imposes forces that uncoil spring-
like elements within repeats 1-10 and 18-24. (III) Electrostatic interaction of
basic actin binding repeats 11—17 with acidic actin filaments dampens extension
of the spring-like elements. The “non-specific” electrostatic interaction between
the basic spectrin repeats and actin filaments is optimal because it does not
require a specific orientation for interaction and would allow sliding between
dystrophin and actin. As muscle rapidly shortens during contraction, the
electrostatic interaction of the basic actin binding repeats with acidic actin
filaments would also serve to dampen elastic recoil.

and restored the dystrophin—glycoprotein complex to the sarco-
lemma [128]. Despite compelling evidence that both actin fila-
ment and B-dystroglycan binding activities are necessary for
normal dystrophin function, the dystrophin molecule credited
with effecting these outcomes incredibly lacked the carboxy-
terminal two thirds of sequence, including the cysteine-rich
domain important for dystrophin binding to B-dystroglycan.
Alternatively, it seems more logical that MG-132 inhibition of
protein degradation caused increased utrophin levels as is the
case in a mechanistically diverse array of therapeutic strategies
[129-132].

The accumulated data [87,108,114] strongly suggest that
utrophin can functionally compensate for dystrophin-deficien-
cy in vivo. However, the clear differences between dystrophin
and utrophin with respect to molecular mechanisms of actin
filament [87,114,115] and P-dystroglycan binding [53]
support the possibility of distinct in vivo functions that
remain to be identified. We recently hypothesized [114] that
the cluster of basic actin binding spectrin repeats could act as

the long speculated molecular “shock absorber” to dampen
elastic extension and recoil during rapid changes in muscle
length (Fig. 4). In this role, the “non-specific” electrostatic
binding of the dystrophin middle rod domain to actin
filaments would be attractive because it would be less
affected by changes in conformation and/or binding interface
orientation that may occur with mechanical distortion. The
availability of full-length dystrophin through expression in the
baculovirus system [114] makes immediately possible studies
to test such mechanical hypotheses at the level of single
molecules [133,134] while tests in vivo promise to be more
daunting. In contrast to the two site design of dystrophin, the
actin binding interface of utrophin functions as a single
contiguous unit [115] and probably lacks the capacity to
function as a molecular shock absorber. Instead, utrophin may
normally function to stabilize newly polymerized actin
filaments during costamere development. It is also interesting
to speculate that their non-competitive binding [114] would
allow utrophin and dystrophin to simultaneously bind and
stabilize costameric filaments during the downregulation of
utrophin and upregulation of dystrophin that occurs shortly
after birth.

The large size and multi-domain structure of dystrophin and
utrophin suggest that additional interacting proteins remain to be
identified. In support of this hypothesis, Chamberlain and col-
leagues [88] demonstrated that Dp260 (Fig. 1) restored costameric
actin on mechanically peeled sarcolemma and sarcolemmal in-
tegrity when transgenically expressed in mdx muscle. However,
muscle weakness and necrosis were not markedly improved. Be-
cause Dp260 lacks the amino-terminal actin binding domain and
spectrin repeats 1—10, but retains the basic middle rod actin binding
site (Fig. 1), it is possible that sequences absent from Dp260 encode
binding sites for unidentified dystrophin-interacting proteins.
Furthermore, dystrophin and utrophin exhibit marked differences
in amino acid sequence, particularly within the large rod domain
(Fig. 3). Thus, it is possible that proteins with unique specificity for
dystrophin or utrophin remain to be identified. Toward addressing
these possibilities, the availability of biochemical amounts of re-
combinant dystrophin and utrophin should prove valuable.
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