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Despite expanding global experience with advanced reproductive technologies, the majority of IVF attempts
do not result in a successful pregnancy, foremost as a result of implantation failure. The process of embryo
implantation, a remarkably dynamic and precisely controlled molecular and cellular event, appears ineffi-
cient in humans and is poorly understood. However, insights gained from clinical implantation failure,
early pregnancy loss, and emerging techologies that enable molecular interrogation of endometrial–embryo
interactions are unravelling this major limiting step in human reproduction. We review current molecular
concepts thought to underlie implantation failure, consider the contribution of embryonic and endometrial
factors, and discuss the clinical value of putative markers of impaired endometrial receptivity. Finally we
highlight the nature of the dialogue between the maternal endometrium and the implanting embryo and dis-
cuss the concept of natural embryo selection. This article is part of a Special Issue entitled: Molecular Genetics
of Human Reproductive Failure.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Pregnancy is a unique biological phenomenon. To occur, a competent
embryo must attach to a receptive endometrial lining and then invade
the underlying decidualizing stroma. Although our knowledge of the
molecular mechanisms that govern these early embryo–maternal inter-
actions has increased substantially in recent years, implantation remains
the least understood key rate-limiting step in assisted reproductive
technology (ART). While normal implantation events in human beings
cannot be studied directly, analysis of the factors that contribute to IVF
treatment failure do provide insight into the critical steps that determine
reproductive success. The aim of this review is to outline our current un-
derstanding of embryo implantation failure based on clinical evidence
and emerging concepts.

2. Implantation and implantation failure

Implantation is considered to occur when a blastocyst breaches
the luminal endometrial epithelium. However, determining precisely
when this occurs in the human being is complicated. The only
established clinical marker of implantation is human chorionic go-
nadotrophin (hCG). This glycoprotein hormone, produced by the
cytotrophoblast cells of the human blastocyst, is first detectable in
lar Genetics of Human Repro-
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urine and blood a few days after implantation and then rises expo-
nentially [1–3]. In ART, implantation is defined as a quantitative rise
in hCG level above a threshold level at some point after embryo trans-
fer [4]. The most accurate way to determine the prevalence of implan-
tation events after IVF would be to measure hCG levels in a daily
serum sample after embryo transfer. However, this approach is cum-
bersome and difficult to perform in large numbers of patients. Serial
urine sampling offers a less invasive approach and more practical
approach to study larger populations [5–7]. It has also been shown
to provide data of similar validity as analysis of serum samples [8,9].

The earlier hCG is measured, the more implantation events will be
captured, including transient events. Consequently, more cases of early
post-implantation pregnancy loss will also be detected [5,6,10]. Thus,
the frequency of implantation and implantation failure depends on de-
tection methods and clinical definition.

The clinical definition of ‘recurrent’ implantation failure (RIF) is
equally challenging and arbitrary. The 2005 ESHRE Preimplantation
Genetic Diagnosis (PGD) consortium defined the criteria for RIF as
the absence of implantation after ≥3 embryo transfers with high-
quality embryos or after replacement of a total of 10 or more embryos
in multiple transfers, with the exact numbers to be determined by
each centre [11].

If RIF is a disorder affecting specific patients, implantation rates
should correlate inversely with the number of unsuccessful IVF at-
tempts, reflecting the increasing proportion of true RIF patients. Indeed,
studies in oocyte donation programmes show that the pregnancy rate is
comparable, approximately 36%, during the first 4 treatment cycles [12].
However, in IVF programmes, pregnancy rates already decline in the
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Fig. 1. Treatment outcome after embryo transfer (n=179) based on hCGmeasurement
in serial daily urine samples collected 9–19 days after oocyte retrieval.
Adapted from Boomsma et al. [10], with permission.
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second cycle and this trend continues in subsequent cycles [13,14].
Therefore, a definition of RIF as three failed IVF cycles is inevitably arbi-
trary. Further, the definition should include the number of good-quality
embryos transferred without achieving a pregnancy. This inclusion cri-
terion is increasingly applied in recent studies [15–18].

To determine the rate of implantation failure in a given patient co-
hort, it is necessary to first establish the frequency of implantation.
This represents the sum of the number of clinical pregnancies and
pre-clinical pregnancy losses per embryo transfer [10]. Based on the
most recent international datasets from Europe, America and Australia/
New Zealand, the clinical pregnancy per transfer is 30–35% [19–21].
This is based on amean transfer of 2 embryos (range: 1–4). These clinical
pregnancy rates are comparable with the 32% reported by Boomsma
et al. [10]. In this study, the total implantation rate was 51%, which
included a pre-clinical pregnancy loss rate of 19%. Thus, while half of all
transferred embryos resulted in a detectable implantation event, half of
these were subsequently lost (Fig. 1) [10]. In the absence of consensus
criteria, the incidence of RIF is difficult to determine.

In our unit in Utrecht, 10% of patients fail to achieve a clinical
pregnancy after 3 IVF/ICSI attempts. Excluding patients over 38 years
of age and those with poor ovarian response, the incidence of RIF fell
to 4%. If defined by failure to achieve a clinical pregnancy after cumula-
tive transfer of 10 or more good quality embryos, the incidence of RIF
would be even lower.

3. Mother or embryo?

Whether the primary cause of implantation failure lies with the
mother or the embryo is a longstanding and as yet unresolved ques-
tion. This reflects the difficulties of interrogating the early stages of
nidation in humans. Because of this, our understanding of the mech-
anisms that control early implantation events comes primarily from
animal models, particularly from gene deletion studies in mice
[22,23]. While these models provide important clues, the degree to
which these data can be extrapolated to human implantation events
is limited. For instance, endometrial receptivity in the mouse uterus
is associated with a decrease in mucin expression [24] whereas the
opposite reportedly occurs during the window of implantation in
humans [25]. Another case in point is leukaemia inhibitory factor
(LIF), which is indispensible for implantation in the mouse [23].
Whether or not this is also true in humans remains controversial
[26,27].

In addition to animal models, several in vitro models have been
established to study embryo–endometrial interactions [28–30].
These models have yielded some unexpected observations regarding
the nature of endometrial–embryonic interactions that seems specific
to the human situation. For example, emerging evidence suggests
that decidualizing stromal cells are adapted to selectively recognize
developmentally impaired human embryos. Furthermore, defects in
this process of maternal biosensoring of embryo quality are thought
to facilitate implantation of poor quality embryos and compromise
the development of normal embryos, thus causing recurrent miscar-
riages [31,32,17,33].

4. The embryo in implantation failure

Poor embryo quality is considered to be the major cause of implan-
tation failure [34], and by and large reflects the high incidence of chro-
mosomal abnormalities reported for human embryos [35–37]. The
frequency of embryonic genetic abnormality increases with age [38,39]
but also appears higher among infertile couples than in the general pop-
ulation [35]. These abnormalities may arise from an error during meiosis,
resulting in a uniform abnormality present in all cells, or from segregation
errors occurring during the first mitotic divisions, resulting in chromo-
somal mosaicism. Mosaicism has been reported to affect up to 91% of
human embryos in the early stages of pre-implantation development
[40,41,37]. However, the incidence of mosaicism is significantly
lower when the embryo reaches the blastocyst stage [42], which
could be explained by the developmental arrest of a significant
proportion of mosaic day 4 embryos and/or reduced proliferation
or selective apoptosis of aneuploid blastomeres within a mosaic em-
bryo [42]. At the blastocyst stage, a majority of embryos are thought
to be uniformly euploid [43].

Studies on couples experiencing RIF show that the proportion of
chaotic mosaic embryos may be considerably higher than in unselect-
ed IVF patients [41,44]. Theoretically then, pre-implantation genetic
screening (PGS) could possibly help to choose the right embryo to
transfer and improve outcomes in these patients. However, a ran-
domized controlled trial including 139 RIF patients showed no in-
crease in implantation rate after PGS using FISH technique [15].
Further, studies using the genome-wide array comparative genome
hybridization (CGH) screening have reported exceptional high rates
of mosaicism in human embryos [37], raising doubts as to whether
preimplantation genetic screening (PGS), with either CGH or single
nucleotide polymorphism (SNP) arrays, will improve live birth
rates. Additional randomised controlled trials (RCTs) are needed be-
fore these new technologies can be introduced in clinical manage-
ment [45].

Metabolic profiling has been employed to determine amino acid
turnover in embryo culturemedium [46,47]. A lowmetabolic rate, char-
acteristic of so-called ‘silent embryos’, is associatedwith developmental
competence, whereas poor quality embryos operate at higher metabo-
lite or nutrient turnover rates ('noisy embryos') [48,49]. Proteomic
studies indicated that the embryonic secretome may differ between
those that implant and those that fail, although prospective validation
studies are as yet lacking [50,51].

In some cases RIF may be linked to an inability of the embryo to
hatch out of its zona pellucida [52]. The zona pellucida is a glycopro-
tein layer, which after fertilization, compresses and shapes the em-
bryo. The zona facilitates the active transport of the embryo trough
the Fallopian tubes and protects it from micro-organisms and im-
mune cells [53]. At the blastocyst stage, the embryo needs to break
out of the zona to enable invasion of the luminal endometrial epithe-
lium [54]. Failure of this process could be caused by zona hardening
arising from IVF culture conditions [55] or cryopreservation [56]. Fur-
ther, advanced endometrial development caused by ovarian stimula-
tion [57] combined with delayed development of embryos in vitro
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[58] could cause a synchronization problem, which requires the em-
bryo to hatch out of the zona prematurely.

Assisted hatching is the artificial rupture of the zona pellucida,
which might assist implantation of fresh or cryopreserved IVF embry-
os [52]. A systematic review of 28 studies showed that assisted
hatching significantly increases the clinical pregnancy rate of
frozen-thawed embryos in patients with repeated treatment failure.
However, assisted hatching also increases multiple pregnancy rates,
including monozygotic twinning [59]. A Cochrane review in 2009
showed similar results in the RIF subgroup and concluded that
while the clinical pregnancy rate may improve, there is insufficient
data on live birth rates and a concerning increase in multiple preg-
nancies [60].

5. Endometrial factors in implantation failure

The endometrium is a multi-layered, dynamic mucosa that over-
lays the myometrium of the uterus. It comprises a variety of cells, in-
cluding luminal and glandular epithelial cells, stromal fibroblasts, and
vascular and immune cells. During a menstrual cycle, dramatic
changes occur in both the phenotype and abundance of many of
these cells, especially in the superficial endometrial layer [61]. Endo-
metrial growth is dependent on oestrogen stimulation whereas the
postovulatory rise in progesterone levels triggers a coordinated pro-
gramme of differentiation, characterized by proliferative arrest and
secretory transformation of the epithelial cells, transient oedema, in-
flux of uterine natural cells (uNK), vascular remodelling, and differen-
tiation of stromal fibroblasts into specialized decidual cells [61,62]. A
functional consequence of this coordinated remodelling of the endo-
metrium is that it transiently becomes receptive to embryo implanta-
tion. This phenomenon is referred to as the ‘window of implantation’
(WOI) [63]. It starts approximately 6 days after ovulation and thought
to last for ~4 days [64]. The end of the implantation window, the
refractory phase, coincides with the morphological differentiation of
endometrial fibroblasts into secretory, epitheloid decidual cells [65].
The decidual process is indispensable for pregnancy in all species
with an invasive placenta, as it establishes maternal immunologic
tolerance to foetal antigens, ensures tissue integrity and haemostasis
during the process of trophoblast invasion, and, importantly, protects
the conceptus from environmental insults [65]. In the vast majority of
species, decidualization of the endometrial stromal compartment is
triggered by signals from the implanting embryo. However, this is
not the case in human beings or Old World Monkeys [66,67]. In
these species, decidualization occurs in each cycle and, in the absence
of pregnancy, this process is responsible for menstrual shedding of
the superficial endometrium [61].

5.1. Morphological markers of endometrial receptivity

A restricted ‘window of implantation’ is thought to coordinate em-
bryonic and endometrial development, thus minimizing the risk of
late implantation of non-viable embryos. However, failure of the en-
dometrium to become receptive is widely thought to be major
cause of implantation failure. For over half a century, histological
dating was the gold standard to detect defects in the differentiation
responses of the endometrium [68,69]. However, this approach is
marred by high levels of inter- and intra-observer variation [70],
poor inter-cycle association, and tissue fixation artefacts, which all
limit the clinical usefulness of histological dating [71].

Electron microscopy allows assessment of endometrial ultrastruc-
tures, such as the epithelial cell membrane projections called
‘pinopodes’, which were considered to play a role in endometrial re-
ceptivity [72,73]. However, these enigmatic structures have now
been found throughout the entire luteal phase and in early pregnancy
[74] and their role remains unclear [75].
5.2. Molecular markers of endometrial receptivity

Several gene- and protein expression profiles of pre-receptive
and receptive endometrium in natural [76–83] and ovarian stimula-
tion cycles [84,82,85] have been performed in the last decade. Al-
though all studies have identified numerous biomarkers, overlap in
genes between studies is low because of different methods, tech-
niques, patient characteristics and timing [86]. These studies sug-
gest that endometrial receptivity is governed by expression of an
evolutionarily conserved network of mediators. Thus far, it has
been difficult to associate these factors with reproductive failure
in women or to develop them as therapeutic targets. However
within studies significant different expression profiles have been
identified.

5.2.1. Gene expression
RIF patients show deregulated gene expression during the recep-

tive phase compared to controls [16]. Pathways of cell cycle, Wnt sig-
nalling and cellular adhesion, are involved [16]. A recent study
comparing implantation failures (IF), recurrent miscarriers (RM)
and fertile controls (FC) showed different expression of 2126, 2477
and 2363 genes (IF vs. FC, RM vs. FC, IF vs RM resp.) [17]. Shared
deregulated pathways involved DNA transcription and factors in the
haematological system. IF showed high-deregulated gene expression
in cell mediated immune response and nervous system development,
while RM showed abbarent expression in humeral immune response
and organ and muscle development [17]. Diaz-Gimeno et al. developed
a predictor set of biomarkers for endometrial receptivity which was
sensitive and specific for endometrial dating, but had a low specificity
for detecting pathological classifications like RIF [83].

Studies focusing on p53 tumour suppressor gene, which regulates
cell apoptosis, angiogenesis and is a potential mediator of pregnancy
show significantly more homozygous genotypes in RIF patients
[87–89].

MSX homeobox gene deletion in mice inhibits blastocyst implanta-
tion [90]. Micro-array analysis shows that these genes are down-
regulated during the receptive window in humans [77,78,91], similar
to what occurs in implantation in mice. These facts, together with fail-
ure to initiate implantation in uteri of MSX knock-out animals with a
diapause (delayed implantation till favourable conditions are reached),
suggest that theMSX genes play a role in the initiation of thewindow of
implantation.

MicroRNA (miRNA) has a function in post-transcriptional regulation
of gene expression by targeting mRNAs for degradation and/or transla-
tional repression [92,93], and thus have a role in the repression of
protein expression. Recent findings suggest a role for miRNA in down
regulating the expression of some cell cycle genes in secretory‐phase en-
dometrium [94]. In RIF patients 13 miRNAs were differently expressed,
the genes involved play a role inWnt signalling and cell cycle pathways
and the formation of adhesion molecules [95].

5.2.2. Prostaglandins (PGs)
PGs are demonstrated to be crucial for successful embryo implan-

tation [96,97]. Cyclooxygenases (COX-1 and COX-2) are the enzymes
responsible for the synthesis of a variety of PGs, which are up-
regulated by progesterone [98]. In a recent study, patients presenting
with RIF expressed reduced levels of cPLA2α and COX-2 compared
with controls. In response to this deficiency, sPLA2-IIA was found to
be overexpressed [99]. Prostaglandin synthesis therefore appears to
be disrupted in patients with repeated IVF failure compared with fertile
controls. Reduced levels of COX-2 and several prostaglandins were
also detected in patients with unexplained recurrent miscarriage
together with a lower level of VEGF [100]. The COX-derived signalling
pathway possibly plays an important role in the successful embryo
implantation.
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5.2.3. Cell adhesion molecules (CAM)
The CAM family is composed of four members: integrins, selectins,

cadherins, and immunoglobulins. These surface ligands, usually car-
bohydrate glycoproteins, mediate cell-to-cell adhesion. Expression
of αVβ3 integrin and its ligand osteopontin coincides with the open-
ing of the WOI, was detected by immunohistochemistry on the endo-
metrial luminal epithelial surface and is the first to interact with the
trophoblast [101]. Aberrant αVβ3 integrin expression pattern has
been associated with unexplained infertility [102–104], and other
gynaecological disorders like endometriosis [103] and polycystic
ovarian syndrome [105]. Lower integrin mRNA level on day 21 is
associated with a 50% lower implantation rate than normal levels
[106,107].

Other luminal moieties include oligosaccharide ligands present on
the luminal epithelial cells that attach to the embryonal L-selectin
[108,109]. It appears that selectins contribute to the early events of
embryo–maternal interactions [110]. E-cadherin is the most studied
cadherin, with function of cell-to-cell adhesion. It is progesterone
depended via calcitonin expression and down-regulation probably
plays a role in embryo invasion [110]. To date, the role of selectins
or cadherin expression linked to (recurrent) implantation failure is
poorly defined.

5.2.4. Mucins
In the endometrium, MUC-1-glycoprotein extends beyond the

glycocalyx on the luminal epithelial endometrial layer and acts as a
barrier for implantation. Human in vitro implantation models indi-
cate that MUC-1 expression is increased during the receptive window
[25] and lost at the site of embryo attachment [111]. Women with
recurrent pregnancy loss (RPL) were shown to express reduced
endometrial MUC-1, as compared with a normal group of patients
[112–114]. MUC-1 is a highly polymorphic gene. An association be-
tween the allele size of MUC-1 and implantation failure was shown
in 2001 [115]. Patients with implantation failure had significantly
shorter extracellular chains that could make embryo apposition to
the destined place in the endometrial lining difficult. In contrast, in
2004 a study compared the MUC-1 genotype of 10 fertile and 10
women with implantation failure and proposed that there was no as-
sociation [116]. Also, in patients with a history of recurrent miscar-
riage no association was found [117].

5.2.5. Cytokines
Uterine Natural Killer cells (uNK) are the most abundant immune

cells present in the endometrium. They secrete various cytokines im-
portant for adequate local immune regulation, angiogenesis, placental
development, and establishment of pregnancy [33,118].

The autocrine and paracrine effects of the cytokine LIF, such as
proliferation, differentiation and cell survival, made researchers in-
vestigate its role in implantation. In RIF patients a presumed role of
LIF gene mutations has been investigated [119]. LIF secretion by
human endometrial cells only weakly increased from the proliferative
to secretory phase in patients with RIF and unexplained infertility
[120]. However, a first randomized controlled clinical trial performed
in 2009, in which recombinant LIF has been administered to patients
with at least two failed ART cycles failed to demonstrate higher im-
plantation rates in the intervention group [27].

Relevance of the IL-1 system in the implantation process was
established by mouse experiments. Surprisingly, although IL-1 defi-
cient mice were able to reach pregnancy, an intraperitoneal injection
of IL-1ra at the appropriate time was enough to prevent blastocyst
implantation. This was attributed to the down-regulation of critical
integrins at the luminal epithelial surface [121]. Such a phenomenon
appears to also occur in human. Indeed, supplementation of IL-1 in
the culture media of endometrial epithelial cells (EECs) leads to the
increase of integrin β3 expression and thereby to enhanced blastocyst
implantation [122].
Expression of IL-15 and IL-18 has been shown to be different in
patients with failed implantation after IVF/ICSI compared with fertile
controls and both correlate with local uNK recruitment and angiogen-
esis [18].

IL-6 deficient mice showed reduced implantation sites and re-
duced fertility. Abnormal expression of IL-6 in late secretory phase
was reported in patients with RM [123].

Studies on IL-11 and IL-11rα revealed that expression of these
markers were lower in the endometrial biopsies of RM patients com-
pared to fertile controls [124], suggesting a role in endometrial
decidualization.

5.2.6. Others
Recent analysis of mid-secretory endometrial samples revealed

that increased serum- and glucocorticoid- inducible kinase SGK1, a
kinase involved in epithelial ion transport and cell survival, interferes
with embryo implantation in endometrial surface epithelium, leading
to infertility [125,126]. However, implantation was not impaired in
Sgk1-deficient mice, although there was evidence of bleeding and in-
flammation at the feto-maternal interface in early pregnancy and
subsequent foetal demise [126]. Another recent study showed endo-
metrial placental growth factor (PLGF) expression corresponded to
the hysteroscopic appearance of the endometrium, and showed a
lower expression in patients with implantation failure [127].

6. Clinical challenges

While there has been progress in our knowledge of the aetiologies
of implantation failure, a full understanding of in-vivo determinants
of human implantation has been hampered by a lack of appropriate
models. However, recent developments in diagnostic techniques
and molecular tools are now opening the ‘black box’ of implantation
failure. A key step has been the development of less invasive means
of assessing of endometrial receptivity. Non-disruptive analysis of
the endometrial environment at the moment of embryo replacement
can be performed by analysis of endometrial secretions [10]. Endome-
trial secretion aspiration can be carried out immediately prior to em-
bryo transfer without affecting implantation rates [128]. Proteomic
analysis by mass spectrometry showed different protein expression
patterns during the prereceptive and receptive phases [129]. A multi-
plex immunoassay for 17 regulators of implantation showed a cyto-
kine profile conducive to clinical pregnancy [10]. While 2D-DiGE
analysis of the human endometrial secretome revealed differences
between receptive states in fertile and infertile women [130].

In favour of endometrial biopsy a number of studies showed that
endometrial local injury in a cycle prior to IVF/ICSI treatment resulted
in increased implantation and pregnancy rates [131–133]. Possible
explanation could be induced decidualisation and/or the wound
healing effect, accompanied with influx of immune cells, secretion
of inflammatory mediators and growth factors, including LIF, IL-11
and HB-EGF [134].

7. Mother and embryo

The technical and ethical obstacles to study human implantation
in vivo have necessitated the development of in vitro models to ex-
amine embryo–endometrial interactions [30,28,29]. These models
can provide a key role in elucidating role of the embryo or the endo-
metrium in initiating or indeed terminating the preimplantation dia-
logue. Using a human co-culture model, soluble implantation factors
where determined in case of developing and arrested embryos by
multiplex immunoassay [135]. The model consisted of decidualizing
endometrial stromal cells (ESCs) and single hatched blastocysts.
Over a 3-day co-culture period, 25% of embryos showed development
and the remainder arrested. Surprisingly, the presence of a develop-
ing embryo had no significant effect on decidual secretions while an
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arresting embryo triggered a strong response (selective inhibition of
IL-1b, -6, -10, -17, -18, eotaxin, and HB-EGF secretion). Co-cultures
with undifferentiated ESCs showed no effect by the presence of a
developing or arresting embryo [135]. These results suggest that the
differentiated endometrium can differentiate between good and bad
quality embryos and reject the latter; a phenomenon which has
been termed natural embryo selection (Fig. 2) [32].

It has been proposed that RPL could be caused by failure of natural
embryo quality control [136] whereas RIF patients have a selection
mechanism that inappropriately rejects good quality embryos. These
mechanisms need further attention in new developed models.
8. Conclusion

Successful implantation of a good quality human embryo in a re-
ceptive endometrium requires a remarkable and complex collabora-
tion of factors.

Studies on gene- and protein expression profiles using mRNA
micro arrays have led to the identification of numerous putative en-
dometrial biomarkers of both successful and unsuccessful implanta-
tions (Fig. 3; factors associated with RIF). With the development of
bioinformatics technologies and emerging databases it should be-
come possible to identify genes and proteins that are predictors of en-
dometrial receptivity and pregnancy outcome of clinical value.

Studies using in vitro models suggest that the decidualized endo-
metrium is capable of selecting good quality embryos and, more im-
portantly, reject the incompetent embryos. It has been proposed
that this process could be impaired in patients with RPL and RIF.

To conclude future research should focus on integrating data from
gene and protein expression studies in endometrial biopsies and
secretions to determine markers with clinical significance. Next to this,
in vitro models appear a promising mode of interrogating embryo–
endometrial interactions to investigate possible interventions designed
to reduce RIF and pregnancy failure.
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