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In recent decades, several types of persistent substances are detected in the aquatic

environment at very low concentrations. Unfortunately, conventional water treatment

processes are not able to remove these micropollutants. As such, advanced treatment

methods are required to meet both current and anticipated maximally allowed concen-

trations. Plasma discharge in contact with water is a promising new technology, since it

produces a wide spectrum of oxidizing species. In this study, a new type of reactor is

tested, in which decomposition by atmospheric pulsed direct barrier discharge (pDBD)

plasma is combined with micropollutant adsorption on a nanofiber polyamide membrane.

Atrazine is chosen as model micropollutant with an initial concentration of 30 mg/L. While

the H2O2 and O3 production in the reactor is not influenced by the presence of the mem-

brane, there is a significant increase in atrazine decomposition when the membrane is

added. With membrane, 85% atrazine removal can be obtained in comparison to only 61%

removal without membrane, at the same experimental parameters. The by-products of

atrazine decomposition identified by HPLC-MS are deethylatrazine and ammelide. For-

mation of these by-products is more pronounced when the membrane is added. These

results indicate the synergetic effect of plasma discharge and pollutant adsorption, which

is attractive for future applications of water treatment.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout the EU, effluents of wastewater treatment plants

deteriorate the chemical and biological status of surface wa-

ters (Schwarzenbach et al., 2006). New and largely unknown

persistent substances, including pharmaceuticals, pesticides

and compounds that disrupt the hormonal balance in

humans, appear in the aquatic environment (Bolong et al.,

2009; Ternes et al., 2004). In spite of their low concentra-

tions, they have a high impact on water quality. The European

Water Framework Directive is extending the scope of pollu-

tion control measures to protect surface water (EC, 2000). The

recent report, ‘European waters e assessment of status and

pressures’, published by the European Environment Agency

(EEA, 2012), concludes that the actual ecological status with

respect to persistent micropollutants is worse than desired.

Due to the chemical properties of some pesticides and phar-

maceuticals, their removal in wastewater treatment plants is

often incomplete (Sunka, 2001; Bruggeman and Leys, 2009;

Grymonpre et al., 2004). This causes micropollutants to find

their way into natural water and eventually drinking water.

Therefore, novel treatment technologies have to be developed

if current and anticipated criteria for effluent and drinking

water are to be met. Among the different advanced oxidation

processes (AOP) that are under investigation, the use of low

temperature plasma may prove to be a sustainable approach

(UKWIR, 2009). Within the field of applied plasma science,

electrical discharges in contact with water, in literature also

referred to as “liquid plasmas”, have received a lot of attention

during the last decade (Sunka, 2001; Bruggeman and Leys,

2009), with water treatment as one of the main possible ap-

plications. Liquid plasma is a source of oxidizing species (OH,

H2O2, O3, atomic O, singlet O2, and UV/VUV photons) that can

initiate decomposition of organic pollutants dissolved in

water (Grymonpre et al., 2004). Among various plasma reactor

concepts that have been investigated (Nikiforov and Leys,

2006; Lukes et al., 2013; Sugiarto et al., 2003), pulsed power

systems have been found to be the most efficient. By applying

high voltage pulses, non-equilibrium plasmas with a rela-

tively large active volume and a low gas temperature can be

generated in the gas phase above liquid (Lukes et al., 2005).

Despite the progress that has beenmade in the engineering

of liquid plasma systems, important research questions need

to be answered to more deeply understand and optimize the

oxidation mechanisms. First of all, up to now, only plasma

initiated decomposition of a few very simple compounds have

been studied in detail, e.g. phenol (Grabowski et al., 2006),

sulfonol (Bobkova et al., 2012) and textile dyes (Benetoli et al.,

2012). Moreover, when decomposition of common micro-

pollutants in a plasma reactor is investigated, high concen-

trations in mg/L range are used for simplicity in many cases.

Since their concentration in wastewater and natural water

typically ranges up to mg/L only,more research is required that

focusses onmicropollutant removal in this lower range, as for

example in the present study.

Secondly, degradation efficiency can be increased by

enlarging the surface of the plasmaeliquid interface by

dispersion of micro-drops in the discharge (Locke and

Thagard, 2009) or by forming a thin layer of liquid on one of
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the electrodes (Dojcinovic et al., 2011; Magureanu et al., 2008).

The idea within this study is to further improve the latter

concept with an additional step of adsorption of micro-

pollutants on a nanofiber membrane placed on the electrode

surface. The extremely high surface area of the nanofiber

membrane, as described in Section 2.2, allows to reach higher

micropollutant concentration at its surface, close to the active

plasma region (Toth, 2002). There, reaction with active plasma

species can take place and remove the micropollutants. This

explains the expected synergy of plasma combined with

pollutant adsorption.

In the presentwork, the pesticide atrazine is used asmodel

micropollutant, since it is a good representative of persistent

micropollution in water and stated in EU protocol as a

dangerous pollutant. The applied concentration (30 mg/L) is

one order of magnitude higher than the maximally allowed

concentration in drinking water as defined by the United

States Environmental Protection Agency (U.S. EPA, 2007), and

the World Health Organization (WHO, 2008) and two orders of

magnitude higher than the limit defined by the European

Parliament and the Council (EC, 2006). In the first part of this

work, the kinetics of H2O2 and O3 production under plasma

action is investigated, as they are well known to be respon-

sible for atrazine oxidation in AOPs. The second part of the

paper deals with investigation of atrazine removal by the

combination of non-thermal plasma and adsorption on

nanofiber membrane and investigation of the by-products of

atrazine oxidation.
2. Materials and methods

2.1. DBD reactor for water treatment

The atrazine solution was treated in pulsed dielectric barrier

discharge (pDBD) generated above the solution. The scheme of

the setup is presented on Fig. 1. The discharge was generated

in between the high voltage electrode (HV) covered by a layer

of dielectric material with thickness of about 360 mm and a

0.3 mm thick water film formed on the surface of nanofiber

membrane. The membrane was placed on the support made

from porous Robu glass which was used to distribute water

uniformly on the membrane surface. The distance between

the HV electrode and water surface can be controlled with

micro-screw. The radius of HV electrode is 11 mm and the

radius of Robu porous glass is 20 mm. In the present study we

used HV pulse duration of 400 ns in order to generate the

discharge. The pulsed system was based on solid state switch

technology from Behlke. The HV switch was connected to

positive output of DC high voltage power supply IO BRAN-

DENBURG. The main parameters of the system are presented

in Table 1.

The voltagewasmeasuredwith a Tektronix P6015HVprobe

and the current was measured with a Pearson model 2877

current probe. The short duration of HV pulses is favorable to

generate a uniform discharge and to keep the gas temperature

low. In all our experiments the water temperature never

exceeded 35 �C which means that the pDBD plasma has a low

gas temperature and can be used for water treatment. The

discharge was generated in dry air which is continuously
on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/
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Fig. 1 e The scheme of the pDBD reactor and diagnostics used to control the performance of the process.
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pumped through the systemat a flow rate of 0.5 SLM (Standard

Liter per Minute). The gas outlet was connected to the ozone

monitor. The water solution was pumped in a closed circuit

through thepolyamidemembrane, onwhicha thinwater layer

is formed. Atrazine, a persistent and hazardous pesticide, was

chosen as amodelmicropollutant in our experiments, with an

initial concentration of 30 mg/L. Initial conductivity was set by

addition of NaH2PO4$2H2O. The solution was pumped through

the system with a 2-channel peristaltic pump at a flow rate of

18 mL/min and 2 mL of solution is taken during the experi-

ments for analysis by means of GCeMS, HPLC-MS and to

measure H2O2 production. Additionally, emission spectra of

the discharge are measured with OceanOptics spectrometer

S1000 in the range of 250e900 nm in order to identify themain

active species produced in the pDBD.
Table 1 e The experimental parameters used in this
work.

Experimental parameter Value/Description

Discharge voltage 23 kV

HV Polarity positive

Discharge power 1.7 W

Inter-electrode distance 2.75 mm

Pulsed frequency 300 Hz

Robu glass porosity 0.42

Porous glass thickness 3 mm

Treated volume 100 mL

Initial atrazine concentration 30 mg/L

Initial conductivity 350 mS/cm

Initial pH 5.06

Treatment time 45 min
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2.2. Nanofiber membrane

The membrane is made on the setup with a scaled up multi

nozzle system, developed at Ghent University, which is

described in details by Decostere et al. (2009) and Daels et al.

(2010). Polyamide 6 (PA-6) proves to be most suitable for elec-

trospinning, since it can be electrospun under steady state

conditions. In the membrane production process, formic acid

andacetic acid in1:1 concentration ratio isusedas solventwith

16 wt% PA-6 concentration. The injection flow rate during the

electrospinning process is 2 mL/h, the applied voltage is 20 kV

and the distance between needle and collector is 10 cm. The

resulting membrane consists of nanofibres with an average

diameter of 140 nm. It has a thickness of 120 mm, a mean pore

size of 0.4 mm and a density of 10 g/m2. PA-6 mass density is

1.14 g/cm3 (Van De Velde and De Baets, 1997; Pashaei et al.,

2011), which gives a surface area of 25 m2/g, about one order

of magnitude less than surface area of activated carbon. In

previous research, the membrane was shown to have adsorp-

tive properties towards water pollution, where slightly more

adsorption occurs for thinnermembranes (Daels et al., 2014). A

typical SEM image is presented in Fig. 2. Recently, tensile

properties of themembranewere evaluated, resulting in strain

to failure of 36.6 ± 5.7%, stress at failure of 31.3 ± 3.8 MPa and

Young's modulus of 111.4 ± 5.9 MPa (De Schoenmaker, 2013).
2.3. Ozone and H2O2 measurements

Ozone in gas phase is measured with ozone monitor Envitec

model 450. The detection principle is based on absorption of
on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/
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Fig. 2 e SEM image of nanofiber membrane of polyamide

deposited on aluminum foil.
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light at 253 nm in the absorption cell of the instrument. The

monitor's limit of detection is 2 ppmor 4.3 mg/Lwith error of O3

measurements not higher than 5%. The concentration of

hydrogen peroxide is determined by photometric method

with metavanadate ammonium, as described by Nogueira

et al. (2005). After adding 2.0 mL of sample to 0.8 mL of

vanadate solution in acid medium, red-orange peroxovana-

dium cation is formed:

VO�
3 þ 4Hþ þH2O2/VO3þ

2 þ 3H2O (1)

The product of reaction (1) has an absorption maximum at

450 nm. Hydrogen peroxide concentration can be estimated

as:

CH2O2
¼ �log10

�
Isample

Itest

�
V2

283V1
½mol=L� (2)

where Isample and Itest are the light intensities at a wavelength

of 450 nm passing through the solution of metavanadate

ammonium with and without adding the plasma-treated

sample respectively. V1 is the volume of the aliquot used for

analysis (mL) andV2 is the final volume towhich the aliquotV1

is diluted (mL) before the absorbance measurement. The sta-

tistic error of measurements is estimated about 5% for H2O2

concentration higher than 5 mmoL/L and 10% for lower con-

centration range.

2.4. Micropollutant analysis

2.4.1. GCeMS technique
Atrazine was extracted with an MPS-2 XYZ autosampler

equipped with a headspace-solid phase microextraction

unit (multi-PurposeSampler® or MPS®, Gerstel®, Mülheim

and der Ruhr, Germany). For extraction, 19.00 g of the
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analyzed solution was hermetically sealed in 20 mL vials

and incubated for 1 min at 50 �C using agitation. Extraction

of dissolved atrazine from the water matrix was done for

60 min at 50 �C using an SPME fiber (100 mm Poly-

dimethylsiloxane (PDMS), fused silica fiber core, Supelco,

USA). Organic molecules that adsorbed onto the fiber were

separated and identified using an Agilent GCeMS (HP 6890

Series GC System, 5973 Mass Selective Detector) equipped

with a cross-linked methyl silicone column (HP-PONA,

50 m � 0.20 mm, 0.5 mm film thickness; Agilent Technology).

For qualitative and quantitative measurements, the com-

pounds were separated using Helium as the carrier gas (flow

rate 1 mL min�1). The temperature gradient was 60 �C
(6 min) to 280 �C at 15 �C min�1, held 11 min. The injector

and transfer lines were maintained isothermally at 250 �C
and 280 �C, respectively. The total ion current (70 eV) was

recorded in the mass range from 40 to 250 amu (scan mode)

and an analysis time of 60 min. Volatile compounds were

identified by comparing the mass spectra obtained with the

Wiley 275 library. Calibration of the detector was made with

atrazine solutions of know concentration, from 1 to 100 mg/

L. The integrated atrazine peak was found to be linear with

atrazine concentration in this range. All samples were

measured in duplicate.

2.4.2. HPLC-MS technique
In order to determine the by-products of atrazine decom-

position, solution samples before and after plasma treat-

ment of 60 min were also analyzed with high-performance

liquid chromatography-coupled to diode array UV detec-

tion and time of flight mass spectrometry (HPLC-MS). Before

analysis, liquideliquid extraction of 50 mL water samples

was made in 5 mL CH2Cl2 solvent with addition of 5 mL

acetone and 1.2 g NaCl in a similar way as described by Gong

and Ye (1998). Separation of 3.2 mL was followed by evapo-

ration to end volume of 1 mL. For analysis, the procedure is

similar to the one used by Boelaert et al. (2014) with an

Agilent HPLC 1290 system consisting of a binary pump

(Agilent Technologies, Waldbronn, Germany), a diode array

detector (DAD) with a micro flow cell (volume: 1 mL, path

length: 10 mm) and a 6230 time-of-flight mass spectrometer

(TOF-MS) equipped with a Jetstream Electrospray Ionization

source (ESI). Separations were performed on a Zorbax C18

HPLC column (15 cm � 2.1 mm � 5 mm) equipped with a

2 mm C18 pre-column (SecurityGuard cartridge, Phenom-

enex). The mobile phase composition has been prepared as

follows: A: H2O þ 0.1% formic acid and B: Acetonitrile þ0.1%

formic acid. A flow rate of 200 mL/min was used whereby

initial conditions containing 2% B were held constant during

5 min, followed by a gradient up to 100% B in 50 min, a

plateau of 100% during 10 min and back to initial in 2 min. In

between analyses, the column was conditioned during

15 min.

The system was operated with the Agilent Masshunter

software for instrument control and data acquisition. UV

absorbance values were measured at 254 nm with a data

acquisition rate of 20 Hz. The injection volumewas 5 mL and all

experiments were conducted at a temperature of 20 �C. TOF-

MS detection was performed in the positive ionization

mode. Mass ranges from 50 to 1000 amu were scanned. All
on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/
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tests were carried out in duplicate with a regular blank solvent

analysis to ensure absence of cross contamination.
3. Experimental results and discussion

3.1. Power calculation

Typical waveforms of the applied voltage and current of the

pulsed DBD plasma are shown in Fig. 3. The applied voltage

Va and current Ion in Fig. 3 are measured during plasma

generation. The displacement current Ioff is obtained at the

same applied voltage when plasma is off. It does not

represent a current of moving charges, as it is only caused

by a time-varying electric field. Since the displacement

current does not contribute to the part of the energy dissi-

pated in the discharge, the actual discharge current Idis in

the plasma is obtained by subtracting the displacement

current Ioff from the total current Ion. In Fig. 3, a discharge

current pulse of 7 A with duration of 20 ns occurs 20 ns after

rise of the voltage to its maximum. Discharge power is

calculated as
R
tVaðtÞIdisðtÞdt whereas total input power of the

pulsed generator is given by
R
tVaðtÞIonðtÞdt. This way, applied
Fig. 3 e a) Waveform of the applied voltage Va and current

Ion in the case of plasma generation and displacement

current Ioff in the case without plasma generation. b)

Waveform of the applied voltage and discharge current Idis
after subtracting the displacement current.
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power and discharged power are determined to be

2.0 ± 0.1 W and 1.7 ± 0.1 W respectively.
3.2. Spectral analysis

As seen in Fig. 4, the emission spectrum of the discharge is

dominated by radiative relaxation of excited vibrational states

of the N2 molecule, indicating the presence of metastable N2

molecules. As pointed out by Choi et al. (2006), metastable

states of N2 formed in air plasma are involved in formation of

O and O3. First, oxygen atoms are formed through the

following reactions:

N2 þ e/N�
2 þ e (3)

N*
2 þO2/N2 þ 2O (4)

N*
2 þO2/N2OþO (5)

Next, ozone is generated from a three body reaction as:

OþO2 þM/O3 þM (6)

where M ¼ O2 or N2 is a third collision partner. Atomic oxygen

can also be generated by electron impact on an oxygen

molecule:

O2 þ e*/OþOþ e (7)

Despite the presence of atomic oxygen in the plasma,

emission lines of excited oxygen atoms are very small, such as

the OI triplet at 777.5 nm for example. The OH(A-X) (0,0) Q-

band head around 309 nm and the OH(A-X) (1,1) band around

315 nm are overlapped with the N2* bands and are therefore

not observed in the spectrum. Nevertheless, the small OH(A-

X) (0,0) R-band head around 307 nm indicates the presence

of excited OH radicals. OH radicals can be formed in plasma

throughmany reactions, which typically require the presence

of water molecules, as discussed in two recent excellent
Fig. 4 e Space and time averaged emission spectrum of the

discharge measured with resolution of 1.3 nm Dn

represents the change in quantum number n of each

radiative transition in the N2(CeB) band system. This band

system indicates the presence of metastable N2 molecules.

on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/
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Fig. 5 e Hydrogen peroxide production in the liquid phase

in function of time with and without presence of the

nanofiber membrane.
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reviews by Locke and Shih (2011) and Jiang et al. (2014).

Dissociation of water by electron impact is the primary

example:

H2Oþ e/OHþHþ e (8)

Also, vibrational and rotational excitation of a water

molecule can lead to OH radical formation:

H2Oþ e/H2O
� þ e (9)

H2O
� þH2O/H2OþHþOH (10)

H2O
� þH/H2þOH (11)

The presence of atomic oxygen boosts OH radical forma-

tion as well:

OþH2O/2OH (12)

It has to be noted that OH radicals have a lifetime in the

order of 10e100 ms in gas phase (Locke and Shih, 2011).

Therefore, only OH radicals that are generated near the water

surface can diffuse from the plasma zone into the surround-

ing water. Their lifetime in the liquid phase is in the nano-

second range, since they will react immediately with a

surrounding molecule due to their high reactivity. This way,

they can recombine to a long-lived hydrogen peroxide mole-

cule through following reactions:

OHþH2O
�/H2O2 þH (13)

OHþOH/H2O2 (14)

The latter two reactions can also occur in the gas phase,

after which the hydrogen peroxide molecules can diffuse into

the surrounding water. Generation of UV photons, N2 meta-

stables, atomic O, OH radicals and O3 in gas phase indicates

that pDBD is indeed an effective source of active species for

advanced oxidation of micropollutants in water.
3.3. Ozone and H2O2 production

O3 concentration in gas phase is about 153 ppm or 327 mg/L

with nanofibermembrane in the setup and 163 ppm or 349 mg/

L without membrane. Taking into account the accuracy of the

ozone monitor, ozone production is thus independent of the

presence of themembrane. This agreeswith our expectations,

since ozone formation through reactions (3)e(7) occurs in the

gas phase, which is screened off from the membrane by the

water film under treatment.

H2O2 concentration in the liquid phase is shown in func-

tion of treatment time in Fig. 5. H2O2 production is about 5%

higher when the nanofiber membrane is added into the setup.

This difference is in the range of experimental error in mea-

surements of the discharge power which is about 5%. There-

fore, H2O2 production is considered to be independent of the

presence of the membrane as well, for similar reasons as

those for ozone production. From these results, an energy

yield for ozone generation of 5.07 g/kWh and for hydrogen

peroxide generation of 0.23 g/kWh is calculated, from 2.0 W

applied power, 0.5 SLM gas flow rate and 100 mL total solution

volume. According to the review of Locke and Shih (2011),
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reactors based on discharge over a liquid surface have re-

ported H2O2 yields ranging from 0.04 to 5.0 g/kWh, with most

data falling below 1 g/kWh. The H2O2 yield for plasma systems

is limited by mass transfer and the size of the plasmaeliquid

interface, where a larger plasmaeliquid interface is an

advantage in pDBD.

3.4. Energy efficiency for atrazine removal

Efficiency of atrazine removal is measured by GCeMS

method with solideliquid extraction. According to GCeMS

analysis, 45 min of plasma treatment reduces the initial

atrazine concentration from 30.0 mg/L to 11.7 mg/L and 4.6 mg/

L, respectively in absence and in presence of the nanofiber

membrane. The increase of atrazine decomposition in the

reactor with nanofiber membrane can be explained by

adsorption of atrazine on the membrane. Adsorption in-

creases the local concentration of the pollutant near the

plasmaeliquid interface, leading to more effective reaction of

active plasma species with pollutant in the plasmaeliquid

interface. Since this effect only enhances atrazine decom-

position in the thin water film near the active plasma region

(about 0.1% of the total solution volume), the dominating

decomposition processes are taking place at the plas-

maeliquid interface.

Hijosa-Valsero et al. (2013) investigated atrazine decom-

position by DBD discharge at much higher initial concentra-

tion (5 mg/L). The authors observed an exponential decay of

atrazine concentration during treatment. This allows to

determine a first order reaction rate constant kA for atrazine

removal in our reactor from the equation.

ln

�
C0

Ct

�
¼ kAt (15)

where C0 and Ct are the atrazine concentration of the initial

solution and end solution respectively and t¼ 2700 s (¼45min)

is the total treatment time. Energy yield G50 in g/kWh for 50%

atrazine removal is determined from kA as (Hijosa-Valsero

et al., 2013)
on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/
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G50 ¼ 1
2
kAC0V
P ln 2

3:6� 106 J=kWh (16)

where V is the solution volume, P ¼ 2.0 W is the input power

and initial concentration C0 is given in g/L. Resulting values for

kA and G50 are found in Table 2.

In order to confirm that atrazine decomposition is taking

place mostly at the plasmaeliquid interface, the effect of the

dominant degradation processes in the water bulk is esti-

mated. According to the general view in literature, direct

oxidation by ozone and oxidation by the dark peroxone pro-

cess are the most dominant oxidation processes in the water

bulk in absence of UV light (Hong et al., 1996). Atrazine

degradation due to direct oxidation by ozone can be deter-

mined with the formula.

�d½A�
dt

¼ kA;O3
½A�½O3� (17)

where [A] and [O3] is the molar concentration of atrazine and

ozone respectively and kA;O3
¼ 6.0 M�1 s�1 is the reaction rate

constant of direct oxidation of atrazine by O3. Maximal O3

concentration in water is reached in thermodynamic equi-

librium according to Henry's law. Henry's law constant H0 for

ozone in water at 20 �C is reviewed by Kuosa (2008) in function

of pH, using several values in literature and from simulation.

Based on this review, the constant is taken as

H0 ¼ 7.9 � 103 kPa M�1 at pH ¼ 5 and H0 ¼ 7.3 � 103 kPa M�1 at

pH ¼ 4, with a linear dependence on pH. For our experiments

with initial pH ¼ 5.06 and final pH ¼ 3.99, this gives an initial

and final dissolved ozone concentration [O3] of 2.03 mM and

2.19 mM respectively. This way, atrazine concentration [A] is

calculated based on Eq. (17) where pH (and thus also [O3])

changes linearly in time.

A second process responsible for atrazine decomposition

in the bulk is oxidation by peroxone. This process occurs

when hydrogen peroxide is added to ozonated water. In that

case, OH radicals are formed in liquid phase through the re-

actions (18) to (21)

H2O2#Hþ þHO�
2 (18)

O3þHO�
2/O�

3 þHO2 (19)

O�
3#O2/O� (20)

O� þH2O/OH� þOH (21)

Since the reaction of O3 is much faster with the perhy-

droxyl anion HO�
2 than with the conjugate acid H2O2,
Table 2 e Final atrazine concentration cA,45min, atrazine degrad
atrazine decomposition with initial concentration of 30 mg/L. E
atrazine decomposition. Experimental data (in bold) without a
measurements. Data for direct oxidation by O3, for oxidation b
are results of simulation based on formulas (17), (24), (25) and

Parameter Without membrane Membrane Direct oxi

cA,45min (mg/L) 11.7 4.6 29.0

yeA (%) 61.0 84.7 3.4

kA (s�1) 3.5 � 10�4 6.9 � 10�4 1.3

G50 (g/kWh) 1.4 � 10�3 2.7 � 10�3 5.1
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reactions (18) to (21) become the dominant source of OH

radicals during the peroxone process in the absence of UV

light (Hong et al., 1996). As should be noted, the overall pro-

duction rate of OH radicals is influenced by scavenging re-

actions (22) and (23).

OHþO3/HO2 þO2 (22)

OHþH2O2/HO2 þH2O (23)

Similarly to Eq. (17), atrazine degradation due to the per-

oxone process is given by.

�d½A�
dt

¼ kA;OH½A�½OH� (24)

where [OH] is the molar concentration of OH radicals and

kA,OH ¼ 3� 109 M�1 s�1 is the reaction rate constant of atrazine

oxidation by OH radicals (Fischbacher et al., 2013). For perox-

one process, the pseudo-steady-state concentration of [OH]

can be calculated with the kinetic model of Hong et al. (1996)

as

½OH�ss ¼
1:2k19½O3�½H2O2�TK18½Hþ��1

k22½O3� þ k23½H2O2�T þ kA;OH½A� (25)

where k19 ¼ 2.8 � 106 M�1 s�1, k22 ¼ 1.1 � 108 M�1 s�1 and

k23 ¼ 2.7 � 107 M�1 s�1 are reaction rate constants from re-

actions (19), (22) and (23) respectively, K18 ¼ 2.4 � 10�12 is the

equilibrium constant of reaction (18) and [H2O2]T and [Hþ] are
the molar concentration of hydrogen peroxide and the

hydrogen cation. In Formula (25), the OH radical formation

yield reduction of 40% as suggested by Fischenbacher et al.

(2013) is taken into account. Scavengers of the OH radical,

other than O3, H2O2 and atrazine, are disregarded, since the

goal is to estimate the maximal degradation of atrazine by the

peroxone process. Kinetics of atrazine decomposition due to

direct oxidation by O3 in combination with peroxone process

is presented in Fig. 6.

Simulation gives an atrazine degradation of 3.4%, 10.4%

and 13.5% after 45 min of treatment, respectively by direct

oxidation with ozone, by the peroxone process and by the

combination of both. Fig. 6 shows concentration of atrazine

and [OH] in function of treatment time as simulated for the

different processes. Initially, OH radical formation by the

peroxone process increases strongly, to reach its peak value

of 2.13 � 10�14 M after 9.8 min. After the peak, scavenging of

OH radicals by H2O2 becomes dominant and decreases the

efficiency of the peroxone process. This is a well-known

phenomenon, since the most optimal [H2O2] to [O3] ratio

value for peroxone mentioned in literature is typically
ation yield yeA and first order reaction rate constant kA for
nergy yield is presented as G50 value corresponding to 50%
nd with nanofiber membrane are retrieved from GCeMS
y peroxone process and the theoretical limit of the reactor
(26).

dation by O3 Oxidation by peroxone Theoretical limit

26.9 7.6 � 10�3

10.4 99.97

� 10�5 4.1 � 10�5 3.1 � 10�3

� 10�5 1.6 � 10�4 1.2 � 10�2

on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.watres.2014.11.009
http://dx.doi.org/10.1016/j.watres.2014.11.009


Fig. 6 e Atrazine and OH radical concentration in function

of treatment time for direct oxidation with ozone (O3), for

dark peroxone process and for combination of both, as

calculated with the kinetic model of Hong et al. (1996) from

formulas (17), (24) and (25). The theoretical limit is

calculated from formula (26), while taking into account the

peroxone process with direct ozonation in the bulk

solution. The red curves are calculated from 10% to 21% of

atrazine removal at the outlet in combination with the bulk

processes and correspond with the experiments without

and with membrane respectively. Since the red curves are

much lower than the combined ozone and peroxone curve,

oxidation by ozone and peroxone only contributes to a

small part of total atrazine removal. (For interpretation of

the references to color in this figure legend, the reader is

referred to the web version of this article.)
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ranging from 0.3 to 1.0 (Glaze et al., 1987; Munter, 2001; Hsu

et al., 2003; De Witte et al., 2009; Kalra et al., 2011).

Table 2 presents a summary of data on atrazine decom-

position in the reactor, obtained from experiments and from

formulas (17), (24) and (25). Also, a theoretical limit of the

reactor efficiency was calculated from the Equation (26). This

formula is based on the assumptions of complete atrazine

decomposition at the outlet of the reactor chamber during

pumping and of ideal mixing of the solution at the inlet.

�d½A�
dt

¼ Q
V
½A� (26)

where Q ¼ 0.3 mL/s (¼18 mL/min) is the water flow and

V ¼ 100 mL is the total solution volume. To be complete,

atrazine degradation by peroxone and ozone in the solution

bulk is taken into account in this theoretical limit.

The atrazine removal energy yield in the experiments and

in the red curves in Fig. 6 is one order ofmagnitude lower than

the theoretical limit. More specifically, 10% and 21% of atra-

zine concentration that passes along the active plasma zone

and leaves the reactor chamber during pumping is removed

without membrane and with membrane respectively, as

determined by our simulations. As discussed before, this ef-

fect of themembrane indicates the importance of degradation

processes in the proximity of the plasmaeliquid interface.

Direct oxidation by ozone and oxidation by the peroxone

process can only explain about 20% of the observed atrazine

decomposition without membrane. This is a further
Please cite this article in press as: Vanraes, P., et al., Decompositi
electrical discharge and adsorption on nanofiber memb
j.watres.2014.11.009
indication that oxidative processes in the thin water film play

an important role. Atrazine decomposition at the plas-

maeliquid interface is caused by multiple reactive plasma

species from the active plasma zone, such as UV photons,

radicals, ions and long-living metastables like HO2
*. When

these species reach the water surface and interact with atra-

zine, oxidation takes place. Increasing the local concentration

of atrazine near the plasmaeliquid interface will increase the

chance on such collisions and thus the overall atrazine

degradation yield, which is a strong advantage of the sug-

gested method.

3.5. By-products

HPLC-MS chromatograms of the initial solution and the solu-

tion after 45 min of plasma treatment are shown in Fig. 7. In

agreement with the GCeMS results, a stronger decrease of the

atrazine peak is observed after treatment when the nanofiber

membrane is added in the setup. Due to the low initial atrazine

concentration, however, accurate detection of most by-

products by HPLC-MS is not possible. At least 4 oxidation

products have been found with monoisotopic mass 128.04 Da,

170.14 Da, 187.06 Da and 213.08 Da, which all have higher

abundancewhenthemembrane isadded in thesetup.Only two

of them are tentatively identified as deethylatrazine and

ammelide (Fig. 8). Both are commonly found amongst atrazine

by-products in advanced oxidation processes (Adams and

Randtke, 1992; Gonzalez et al., 1994). Deethylatrazine is one of

the first generation intermediates in several atrazine degrada-

tion pathwaysproposed in literature.Moreover, it is considered

to be more stable than other intermediates from the first gen-

eration, due to its persistence in natural waters and due to the

higher reactivity of the ethyl group (Adams and Randtke, 1992;

Beltr�anet al., 1996).Ammelide is oneof thefinal stableproducts

in the atrazine oxidation pathway and is considered to be less

toxic thanatrazineand itsearlier intermediates (Gonzalezetal.,

1994; Beltr�an et al., 1996; Chan et al., 2004; Khan et al., 2014; Xu

et al., 2014).The relativestabilityofboth intermediatesexplains

why they are detected in the present study despite the low

initial atrazine concentration.

To our knowledge, atrazine degradation by-products from

treatment with DBD plasma have only been reported by

Hijosa-Valsero et al. (2013). The authors used a DBD reactor

very similar to the one used in this study, but powered by AC

high voltage and with much higher initial atrazine concen-

tration of 5 mg/L Hijosa-Valsero et al. (2013) identified 3

common atrazine oxidation products, deethylatrazine, dei-

sopropylatrazine and atrazine amide, and one less common

intermediate 4-chloro-6-(ethenylamino)-1,3,5-triazin-2-yl.

After 84% of atrazine decomposition, the deethylatrazine to

atrazine relative abundance in the mass spectra was roughly

0.5, while it is 0.02 in the present study in presence of the

nanofibermembrane. Hoeben (2000) investigated degradation

of a 25 mg/L atrazine solution by corona discharge above

water and detected at least 7 oxidation products, but could

not identify them. As this suggests, the degradation pathway

of atrazine under plasma treatment is sensitive to different

experimental parameters.

The HPLC-MS results of the present study illustrate the

high potential of pDBD plasma to decompose persistent
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Fig. 7 e Detail (from 18.7 min to 31.7 min) of HPLC-MS chromatogram of initial atrazine solution and of treated samples with

and without the presence of the nanofiber membrane. For each considered peak belonging to an oxidation by-product, the

mass spectrum is shown.

Fig. 8 e Proposed oxidation by-products of atrazine treatment with pulsed DBD.
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micropollutants. Moreover, as can be seen from the different

peaks in Fig. 7, adding the nanofiber membrane in the setup

enhances by-product generation. Cleavage of the s-triazine

ring has not yet been reported in any advanced oxidation

process (Mededovic and Locke, 2007). Pelizzetti et al. (1990)

have concluded from detailed GCeMS analysis that photo-

catalytic oxidation of aqueous atrazine cannot destroy the

triazine ring and that the final oxidation product is cyanuric

acid.
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4. Conclusion

In this work, a new water treatment reactor based on at-

mospheric pulsed dielectric barrier discharge above water is

investigated. In order to increase decomposition efficiency

and to limit unwanted by-product formation, combination of

pDBD plasma with adsorption on nanofiber membrane was

proposed. Atrazine is chosen as model micropollutant with
on of atrazine traces in water by combination of non-thermal
rane, Water Research (2014), http://dx.doi.org/10.1016/
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an initial concentration of 30 mg/L, which is one order of

magnitude higher than the maximally allowed concentra-

tion in drinking water. In the pDBD reactor, the measured

energy yield of H2O2 production in liquid phase is about

0.23 g/kWh and concentration of H2O2 is linearly dependent

on treatment time. The energy yield of O3 production is

measured to be 5.07 g/kWh. While the H2O2 and O3 produc-

tion in the reactor is not influenced by the presence of the

nanofiber membrane, there is a significant increase in atra-

zine decomposition when the membrane is added to the

setup. An atrazine removal yield of 85% can be obtained with

nanofiber membrane at 45 min of treatment where only

about 61% removal is reached with plasma alone. The

observed effect is caused by atrazine adsorption on the

membrane close to the plasma active region, leading to a

higher local atrazine concentration near the plasmaeliquid

interface. The higher local concentration increases the fre-

quency of direct and indirect oxidizing interactions of the

micropollutant with reactive species from the active plasma

region. To reinforce this explanation, the contribution of the

dominant atrazine degradation processes in the water bulk

has been estimated. According to literature, direct oxidation

by ozone and oxidation by peroxone are the dominant pro-

cesses in the water bulk in absence of UV light. Using the

kinetic model of Hong et al. (1996), the contribution of these

bulk processes to the overall atrazine degradation is calcu-

lated to be only about 20%. Therefore, the determining

oxidation reactions are occurring in the thin water layer near

the plasma active region. The main by-products of atrazine

decomposition measured by HPLC-MS are the first genera-

tion intermediate deethylatrazine and the deep oxidation

by-product ammelide. System efficiency is almost doubled

when the nanofiber membrane is placed in the plasma

reactor with deeper degradation of atrazine to the by-

products. These results show the benefits of combining

non-thermal plasma with pollutant adsorption for degrada-

tion of micropollution, a synergetic effect that yet has to

receive more attention.
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