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 14 

Water quality remains one of the greatest concerns with regards 15 

to human health. Advances in science and technology have 16 

resulted in highly efficient water treatment plants, significantly 17 

reducing diseases related to waterborne pathogenic 18 

microorganisms. While disinfection is critical to mitigate 19 

pathogen risk to humans, the reactions between the disinfectant 20 

and dissolved organic compounds can lead to the formation of 21 

chemical contaminants called disinfection by-products (DBPs). 22 
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DBPs have been related to numerous health issues including 23 

birth defects and cancer. The formation of disinfection by-24 

products occurs due to the reaction of oxidants and natural 25 

organic matter. DBP precursors are derived from anthropogenic 26 

sources including pharmaceuticals and chemical waste, the 27 

breakdown of vegetation from external catchment sources 28 

(allochthonous) and internally derived sources including 29 

phytoplankton (autochthonous). Current literature focuses on 30 

the contribution of allochthonous sources towards the 31 

formation of DBPs, however, the recalcitrant nature of 32 

hydrophilic phytoplankton derived organic matter indicates that 33 

autochthonous derived organic carbon can significantly 34 

contribute to total DBP concentrations. The contribution of 35 

phytoplankton to the formation of DBPs is also influenced by 36 

cellular exudation rates, chemical composition, environmental 37 

conditions and the physical and chemical conditions of the 38 

solution upon disinfection. Formation of DBPs is further 39 

influenced by the presence of cyanobacteria phyla due to their 40 

notoriety for forming dense blooms. Management of DBP 41 

formation can potentially be improved by reducing 42 

cyanobacteria as well as DBP precursors derived from other 43 

phytoplankton. 44 

 45 
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Abbreviations: 52 

 53 

AOM  – Algal organic matter 54 

C-DBP – Carbonaceous disinfection by-product 55 

CP – Chloropicrin 56 

DBP – Disinfection by-products 57 

DBPFP – Disinfection by-product formation potential 58 

DHAA – Dihaloacetic acid 59 

DCAA  – Dichloroacetic acid 60 

DHAN – Dihaloacetonitrile  61 

DOC – Dissolved organic carbon 62 

DON – Dissolved organic nitrogen 63 

EOM – Extracellular organic matter 64 

HAA – Haloacetic acid 65 

HAN – Haloacetonitrile 66 

HK – Haloketone 67 

IOM  – Intracellular organic matter 68 

LRV  – Log10 reduction value 69 

N-DBP – Nitrogenous disinfection by-product 70 

NDMA  – N-nitrosodimethylamine 71 

NLA – National lake assessment 72 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5  

 

NOM  – Natural organic matter 73 

TCAA  – Trichloroacetic acid 74 

THAA – Trihaloacetic acid 75 

THM  – Trihalomethane 76 

THMFP  – Trihalomethane formation potential 77 

TOC – Total organic carbon 78 

TOX – Total organic halide 79 

US EPA – United States Environmental Protection Agency 80 

UTOX – Unknown total organic halide 81 

82 
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1.1 Introduction 83 

Chemical disinfection is vital for the continued protection from 84 

bacterial, viral and some protozoan pathogens, and the common 85 

disinfectant chlorine is effective against a range of these 86 

pathogens (Table 1). While disinfection is critical to mitigate 87 

pathogen risk to humans, the reactions between the disinfectant 88 

and dissolved organic compounds can lead to the formation of 89 

chemical contaminants called disinfection by-products (DBPs). 90 

The formation of DBPs results in a residual, unintended health 91 

hazard (Richardson 2003). 92 

1.1.1 Disinfection By-product Formation 93 

Understanding how DBPs are produced is essential for 94 

determining the mechanisms by which phytoplankton may 95 

contribute to their formation. In addition to effectively killing 96 

pathogens, disinfectants are strong oxidising agents, able to 97 

oxidise complex natural organic matter ( NOM) molecules into 98 

simpler moieties (Richardson and Postigo 2011). This is often 99 

exploited to improve the treatability of the organic carbon pool 100 

prior to coagulation/flocculation, termed ‘pre-oxidation’. 101 

However, the disinfectant can react with readily available 102 

NOM and/or inorganic constituents to yield DBPs during the 103 

disinfection process and throughout the distribution network. 104 

Therefore, it is intuitive that the formation and yield of DBPs is 105 

dependent on the availability of NOM, choice of disinfectant, 106 
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the presence of inorganic compounds and the physical 107 

conditions of the reaction. 108 

Although there are a range of disinfectants (chloramine, ozone, 109 

chlorine dioxide) chlorine is commonly utilised for its low cost 110 

and capability to retain a disinfection residual. The chemical 111 

structure of the DBP formed is also influenced by the presence 112 

of inorganic constituents, such as bromide, iodide, nitrites and 113 

nitrates and the physical conditions of the reaction (Figure 1). 114 

Disinfection by-products were discovered with the 115 

identification of trihalomethanes (THMs) in 1974 by Bellar et 116 

al. (1974) and Rook (1974); since then there have been over 117 

600 DBPs identified in drinking water or simulated in 118 

laboratory experiments (Deborde and von Gunten 2008; Hebert 119 

et al. 2010). Given the imperative to disinfect, mechanisms are 120 

required to minimise formation of these chemical contaminants. 121 

Considering the range of possible chemical interactions and 122 

DBPs that may be formed, the removal of DBP precursors prior 123 

to chlorination is the preferred approach and has received the 124 

most attention in recent literature (Bond et al. 2011). This can 125 

be achieved either by preventing DBP precursors entering the 126 

water body or removing them from the source water prior to 127 

disinfection.  128 

Disinfection by-product precursors are derived from 129 

anthropogenic compounds, the breakdown of vegetation from 130 
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external catchment sources (allochthonous) and from internal 131 

sources including the phytoplankton (autochthonous). 132 

Anthropogenic sources of DBP precursors include 133 

pharmaceuticals and chemical wastes, which can accumulate in 134 

waterways due to their difficulty to remove during treatment. 135 

The transformation of pharmaceuticals to DBPs during the 136 

disinfection process has been detailed by Postigo and 137 

Richardson (2014). The contribution of catchment derived-138 

allochthonous NOM towards DBP formation varies between 139 

catchments depending on local climate, soil type, vegetation 140 

and the morphology of the watershed. The relative contribution 141 

of autochthonous carbon will be a function of nutrient load and 142 

phytoplankton growth. Allochthonous organic matter often 143 

exceeds autochthonous carbon as the dominant energy source 144 

in humic and oligotrophic lakes, whereas autochthonous 145 

organic carbon is often the dominant energy source in 146 

productive, eutrophic lakes (Jonsson et al. 2001). It is expected 147 

that autochthonous NOM will also be the dominant source of 148 

DBP precursors in environments exposed to low or intermittent 149 

rainfall events (Soh et al. 2008). The organic matter is removed 150 

during the coagulation process; however, autochthonous 151 

organic matter can be harder to treat due to higher 152 

concentrations of hydrophilic compounds (Bond et al. 2011; 153 

Lui et al. 2011). Therefore, phytoplankton dominated systems 154 
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may cause problematic DBP formation within the water 155 

treatment plant and distribution network.  156 

The majority of the literature pools various sources of NOM or 157 

focuses only on allochthonous contributions to DBP formation, 158 

with minimal studies considering the contribution from 159 

phytoplankton (Hong et al. 2008; Fang et al. 2010b; Li et al. 160 

2012). This review is necessary given the limited availability of 161 

comprehensive DBP literature reviews, highlighting the 162 

significance of phytoplankton derived organic matter as a 163 

viable DBP precursor. As algal-derived organic carbon is 164 

generally more recalcitrant to conventional treatment it is 165 

imperative that the total contribution of phytoplankton to the 166 

formation of DBPs is thoroughly understood for improved 167 

management. This review aims to assess the potential for 168 

phytoplankton-derived DOC to form DBPs by determining the 169 

phytoplankton contribution to the organic carbon load in 170 

reservoirs and identify the cellular constituents of 171 

phytoplankton that may react with the chlorine. 172 

 173 

1.1.2 Disinfection By-product Toxicity 174 

Currently only 15 of DBPs are regulated by the World Health 175 

Organisation (WHO) as these compounds have sufficient 176 

toxicological evidence of carcinogenity, genotoxicity or 177 

adverse reproductive incidences (Richardson et al. 2007; 178 
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Krasner 2009; World Health Organisation 2011). Less than 100 179 

of the 600+ known and emerging DBPs have undergone 180 

quantitative or toxicology studies (Hebert et al. 2010). 181 

Although many of the studied DBP chemicals produced 182 

harmful effects, attribution of toxicology to human health 183 

outcomes is difficult (Hrudey 2009). Furthermore, there is not a 184 

consistent approach by which DBPs are regulated and the key 185 

authoritative organisations adopt/set unique lists of DBPs with 186 

significant variation in guideline values (Table 2). 187 

Comprehensive genotoxicity experiments  assessed the in vitro 188 

cytoxicity on Chinese hamster ovary cells when exposed to 189 

various classes of DBPs (Plewa et al. 2004a; Plewa et al. 190 

2004b; Plewa et al. 2008) These experiments provide evidence 191 

that the toxicity for various substituted DBP halogenated 192 

functional groups is, I > Br > Cl, and that nitrogenous DBPs 193 

(N-DBPs) are generally more genotoxic than carbonaceous 194 

DBPs (C-DBPs). This suggests that regulated carbonaceous and 195 

chlorine substituted DBP classes have lower genotoxic 196 

activities than other emerging DBP classes (Richardson et al. 197 

2007). Therefore, some classes of DBPs that have higher 198 

associated health risks are not being routinely monitored under 199 

current guideline standards. The higher genotoxicity of N-200 

DBPs is of concern given that phytoplankton are significant 201 

contributors to dissolved organic nitrogen (DON) and are 202 

known to promote the formation of N-DBPs (Mitch et al, 203 
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2009). A potential increase in more genotoxic N-DBPs may 204 

give rise to associated health risks with DBP exposure include; 205 

the potential association with bladder cancer, as well as links to 206 

miscarriages and birth defects (Hrudey 2009, Thomson and 207 

Sarkar 2014). 208 

N-nitrosodimethylamine (NDMA) is a N-DBP of significant 209 

concern, given nitrosamines are classified as carcinogenic, 210 

mutagenic and teratogenic (Choi and Valentine 2002). NDMA 211 

is predominantly formed from reactions between chloramine 212 

and dimethylamine, whilst also forming in chlorinated water in 213 

the presence of ammonia (Choi and Valentine 2002). A report 214 

by Mitch et al. (2009) found that significant NDMA precursors 215 

are only dominant in wastewater samples, whilst algal 216 

dominated and pristine water samples were less problematic in 217 

generating NDMA concentrations under typical chloramine 218 

disinfection. In contrast, NDMA formation from phytoplankton 219 

indicated that extracellular organic matter (EOM) and 220 

intracellular organic matter (IOM) are capable of producing 221 

NDMA concentrations above the local Californian public 222 

health goal of 3ng/L (Li et al. 2012). Further investigation is 223 

required due to contradictions on NDMA formation potential 224 

from phytoplankton precursors. 225 

 226 
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2.1 Phytoplankton Contribution to Total NOM Pool 227 

To determine how much carbon phytoplankton can contribute 228 

to the NOM pool it is necessary to obtain an estimate of the 229 

proportion of autochthonous and allochthonous NOM within a 230 

lake or reservoir ecosystem. A large-scale assessment of a 231 

broad range of aquatic environments has to be completed. A 232 

meta-analysis of the U.S. EPA National Lake Assessment 233 

(NLA) dataset of 1326 total sample points in 1076 U.S. lakes, 234 

provided a snapshot of a range of physical, chemical and 235 

biological lake properties (EPA, 2009, Rigosi et al. 2014). The 236 

lakes used in the NLA were selected from the U.S. National 237 

Hydrographic dataset using a generalised random tessellation 238 

stratified survey design (Stevens and Olsen 2004). All surveyed 239 

lakes located across the lower 48 U.S. states had a minimum 240 

depth of 1 meter and a minimum surface area of 0.01 km2. 241 

Sampling for the NLA was conducted during the summer of 242 

2007 to minimise the influence of seasonal variation. Total 243 

organic carbon (TOC) and chlorophyll a concentrations were 244 

recorded, allowing for a snapshot estimate of the phytoplankton 245 

derived organic matter relative to the total organic carbon pool. 246 

To achieve this we used comparative ratio between total 247 

chlorophyll a and TOC concentrations. The carbon to 248 

chlorophyll a ratio varies due to species composition and light 249 

exposure, with numerous studies reporting carbon to 250 

chlorophyll ratios between 27:1 and 83:1 (C:Chla) (Reynolds 251 
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1984; Riemann et al. 1989; Yacobi and Zohary 2010). The 252 

Reynolds estimation (C:Chla 50:1) is used as an general 253 

prediction of carbon based on values of chlorophyll a of a 254 

general phytoplankton pool, whereas other estimations are 255 

species specific. The chlorophyll a concentrations from the 256 

EPA database were multiplied by the carbon to chlorophyll 257 

ratio (C:Chla 50:1) to estimate how much carbon was found 258 

within the phytoplankton (Figure 2). Autochthonous carbon 259 

estimations from the US EPA National Lake Assessment 260 

indicated that in 520 of the sampling locations, or 39.2% of 261 

samples, phytoplankton biomass contributed >10% to the total 262 

carbon pool (Figure 2). This analysis provides an estimate of 263 

the standing pool of TOC within each lake, however, the TOC 264 

in phytoplankton is continually turning over as cells fix 265 

atmospheric CO2 converting it to organic carbon. As the 266 

phytoplankton cells lyse the organic carbon enters the dissolved 267 

fraction of the carbon pool. It is evident from this analysis that 268 

phytoplankton can contribute a significant amount of carbon to 269 

the total dissolved carbon in a lake or reservoir. 270 

An analysis of carbon sources in Myponga Reservoir, South 271 

Australia, identified that phytoplankton contributed 25-50 % of 272 

the total dissolved organic carbon (DOC) to the NOM pool 273 

during a period of low annual rainfall when allochthonous 274 

inputs were reduced (Linden 2008). The contribution of 275 

phytoplankton to the total DOC pool is dependent on the 276 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14  

 

trophic status of the lake and the catchment characteristics. For 277 

example, Bade et al. (2007) measured phytoplankton 278 

production of two oligotrophic lakes at ~20 % whereas 279 

Carpenter et al. (2005) made reference to a eutrophic lake 280 

where phytoplankton production was accountable for as much 281 

as 40% of the total DOC pool. Therefore, phytoplankton could 282 

be a significant DBP precursor in in similar euphotic systems, 283 

and during periods of low rainfall. Several species of 284 

phytoplankton form blooms in eutrophic water bodies resulting 285 

in water quality degradation and an increased risk to DBP 286 

formation (O’Neil et al. 2012). To gain more insight into how 287 

much autochthonous carbon phytoplankton contribute to the 288 

total NOM load it is necessary to consider phytoplankton 289 

chemical composition, growth and mortality rates, cellular 290 

exudation, cell lysis and loss of settling of cells. This would 291 

require sophisticated modelling beyond the scope of this 292 

review, however, both the Myponga Reservoir example and the 293 

US EPA Lake analysis suggest that phytoplankton can 294 

contribute a significant amount of organic carbon to lakes. 295 

 296 

2.1.1 Influence of Natural Organic Matter on DBP 297 

Formation 298 

The chemical composition of allochthonous NOM is defined by 299 

local climate and catchment characteristics, including the soil 300 
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and vegetation type (Frimmel 1998; Aitkenhead-Peterson et al. 301 

2003). The characterisation of NOM into operationally defined 302 

fractions described by Leenheer and Croué (2003) can aid in 303 

the prediction of DBP formation potential (DBPFP) post 304 

chlorination (Figure 3). Humic and fulvic acids, hydrocarbons, 305 

tannins and aromatic amines are contained within the 306 

hydrophobic fraction. Terrestrial NOM is commonly derived 307 

from lignin and contains a high aromatic content; hence 308 

allochthonous NOM tends to be hydrophobic in character 309 

(Hwang et al. 2001; Bond et al. 2011). Alternatively, 310 

carboxylic acids, polyuronic acids, amino acids, peptides, 311 

proteins and carbohydrates are commonly contained within the 312 

hydrophilic fraction. Autochthonous NOM is derived from 313 

phytoplankton, macrophyte and bacterial sources, consisting of 314 

low aromatic and high nitrogen content; indicating that 315 

autochthonous NOM tends to be predominantly hydrophilic in 316 

character (Bond et al. 2011). 317 

The hydrophilic organic carbon fraction is less prone to 318 

coagulation and as a result is partially recalcitrant to 319 

conventional treatment methods (Singer and Harrington 1993; 320 

Kim and Yu 2005; Matilainen et al. 2010; Lui et al. 2011). 321 

Eutrophic systems dominated by phytoplankton species can 322 

provide NOM with high hydrophilic content. Li et al. (2012) 323 

analysed the relative hydrophobicity of Microcystis aeruginosa 324 

using XAD and IRA resin fractionation technique. They 325 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16  

 

demonstrated that hydrophilic organic matter accounts for 86 % 326 

of IOM and 63 % of EOM from Microcystis aeruginosa. This 327 

has implications for the water treatment process as NOM from 328 

phytoplankton will be partially recalcitrant to conventional 329 

treatment methods. Furthermore, Lui et al. (2011) reported that 330 

hydrophilic NOM derived from algal protein can increase the 331 

DBPFP, in comparison to hydrophobic proteins. The research 332 

suggested that hydrophilic proteins were 35 times more 333 

effective as precursors of chloroform. Due to a high prevalence 334 

of hydrophilic content, the DOC from autochthonous 335 

phytoplankton production can significantly increase the 336 

DBPFP, even after conventional treatment.  337 

2.1.2 Growth and Mortality Rates 338 

The contribution of phytoplankton to the NOM pool, and 339 

resulting DBPFP can be further quantified with an 340 

understanding of population dynamics. Comprehension of 341 

species composition and distribution involves knowledge of 342 

phytoplankton growth and mortality rates. Population dynamics 343 

provide insight into how rapidly autochthonous organic matter 344 

derived from phytoplankton can enter the system. 345 

Phytoplankton are capable of rapid growth, with individual 346 

organisms expressing doubling rates between 6 hours to 10 347 

days (Harris 1986). Smaller cells generally replicate faster than 348 

larger algal cells. The fast growth rate of phytoplankton results 349 

in the rapid turnover of autochthonous NOM within the lake 350 
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and results in a large pool of carbon that could react to form 351 

DBPs. During the life cycle of phytoplankton, the release of 352 

DOC can be substantial, ranging from 9-67 % of total primary 353 

production (Hwang 1993). 354 

Phytoplankton mortality rates also greatly impact total 355 

contribution to the autochthonous organic matter pool. Losses 356 

within the phytoplankton community occur as a result of 357 

sedimentation, natural cell lysis, flushing, parasitism and 358 

predation (Crumpton and Wetzel 1982; South and Whittick 359 

1987). In the event of phytoplankton mortality, intracellular 360 

content is released into the water column raising the available 361 

NOM content for DBP formation. In a study of phytoplankton 362 

mortality rates by Crumpton and Wetzel (1982), grazing was 363 

considered the dominant cause of phytoplankton mortality. 364 

During ingestion by zooplankton, 16-37 % of algal carbon 365 

content can still be released as available NOM, susceptible to 366 

DBP formation upon chlorination (Lampert 1978; Strom et al. 367 

1997). Alterations in phytoplankton species dominance, growth 368 

and mortality rates provide evidence of a boom and bust 369 

lifecycle, resulting in NOM accumulation that is susceptible to 370 

DBP formation upon chlorination. 371 

2.1.3 Cellular Exudation 372 

Phytoplankton contribution to the NOM pool is also increased 373 

by natural exudation of dissolved organic matter. 374 

Phytoplankton excretion of NOM is theorised to occur 375 
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continuously, or as a result of environmental stressors 376 

(Malinsky-Rushansky and Legrand 1996). The rate of cellular 377 

exudation is enhanced by an increase in UV radiation closer to 378 

the surface of the water (Köhler et al. 2001). The increased 379 

extracellular release has been linked to the accumulation of 380 

excess photosynthates or products of photosynthesis (Fogg 381 

1983). Experiments have closely related the rate of exudation to 382 

the rate of primary production (Mague et al. 1980; Descy et al. 383 

2002). To estimate percentage of extracellular release, Baines 384 

and Pace (1991) assessed published results based on 225 385 

observations of phytoplankton extracellular release, particulate 386 

primary production and biomass values. The meta-analysis 387 

determined that approximately 13 % of total carbon fixed by 388 

phytoplankton is exuded by cells and found extracellularly 389 

(Baines and Pace 1991). This indicates that the phytoplankton 390 

continuously contribute a significant NOM load to their 391 

surrounding environment, further increasing the risk of DBP 392 

formation.  393 

There is significant variation in extracellular release between 394 

individual species and phyla. A study compared NOM 395 

production per unit of chlorophyll a, per hour for a species of 396 

cyanobacteria (Oscillatoria prolifera), green algae 397 

(Scenedesmus quadricauda) and diatom (Chaetoceros muelleri) 398 

(Nguyen et al. 2005). The study indicated that cyanobacteria 399 

had the highest rate of DOC exudation (9.0 µg C (µg Chl a)-1h-
400 
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1), followed by green algae (3.6 µg C (µg Chl a)-1h-1) and 401 

diatom species (1.1 µg C (µg Chl a)-1h-1). The continuous rate 402 

of cellular exudation equates to a large autochthonous carbon 403 

input, particularly in eutrophic systems where a large biomass 404 

of phytoplankton is usually present. Increased autochthonous 405 

DOC input from continuous cellular exudation can potentially 406 

further increase the DBP formation upon chlorination. The 407 

natural cellular exudation of organic matter is of even greater 408 

concern to water treatment in the event of an algal bloom. 409 

2.1.4 Phytoplankton Blooms 410 

Excess nutrient supply and adequate exposure within the 411 

euphotic zone can result in a phytoplankton bloom event. 412 

Eutrophication of freshwater environments from urban, 413 

agricultural and industrial development has resulted in an 414 

increased frequency of phytoplankton blooms (Paerl and 415 

Huisman 2008). Numerous phytoplankton genera are known to 416 

form blooms; however, cyanobacteria are most notorious (Paerl 417 

et al. 2001). Measurements of Microcystis aeruginosa blooms 418 

by Oudra et al. (2001) have indicated cell densities exceeding 419 

106 cells/mL. Cyanobacteria blooms often occur as surface 420 

blooms, due to the presence of gas vesicles that provide 421 

cyanobacterial cells with buoyancy and promote the formation 422 

of a thick scum across the surface of the water (Oliver et al. 423 

2012). Phytoplankton blooms significantly increase the 424 

concentration of autochthonous NOM due to increased cell 425 
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biomass resulting in accelerated rates of cell lysis, parasitism, 426 

predation and cellular exudation. During a bloom event, rapid 427 

carbon turnover significantly increases autochthonous organic 428 

matter content. As the hydrophilic fraction is more recalcitrant 429 

to removal by coagulation, organic matter will carry through 430 

the distribution system resulting in the increased chlorine 431 

demand and DBP formation (Lui et al. 2011). 432 

Phytoplankton are important DBP precursors, indicated by a 433 

boom and bust lifecycle, rapid cellular exudation, hydrophilic 434 

dominant cellular composition and the formation of highly 435 

concentrated blooms. Research conducted by Graham et al. 436 

(1998) indicated that cellular exudation and DBP formation 437 

increased with the age of the culture. There was a spike in yield 438 

of DBPs during the late stationary death phase of the cell 439 

lifecycle. The correlation between DBP yield and age of the 440 

phytoplankton culture occurs due to the breakdown of storage 441 

products into more chemically reactive compounds and the 442 

consequential release of these compounds (Graham et al. 443 

1998). 444 

2.1.5 Chemical Composition of Phytoplankton 445 

Differences in the chemical composition of phytoplankton 446 

between individual species results in the alteration of cellular 447 

production rates, structural characteristics, chlorine reactivity 448 

and the biological lability of NOM synthesised (Nguyen et al. 449 
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2005). Phytoplankton have three major classed biomolecules; 450 

proteins, lipids and carbohydrates. The concentration of these 451 

major biomolecules can be measured to determine the cellular 452 

composition of phytoplankton. Surrogate compounds bovine 453 

serum albumin (BSA), fish oil and starch can be used to 454 

investigate how variations in phytoplankton composition can 455 

influence the formation of DBPs (Hong et al. 2008; Wei et al. 456 

2011). The model compounds are considered to be statistically 457 

reliable surrogates due to chemical similarities between BSA, 458 

fish oil and starch and the respective algal derived proteins, 459 

lipids and carbohydrates. Hong et al. (2008) determined the 460 

DBPFP upon chlorination of the three model compounds 461 

(chlorine dose = 10 mg Cl2/ mg-1 C, contact time = 96 hour, 462 

temperature = 20 °C, pH = 7). This work identified that lipids 463 

and proteins were more effective precursors of the THM 464 

chloroform and that proteins are also a dominant precursor for 465 

two haloacetic acids (HAAs); dichloroacetic acid (DCAA) and 466 

trichloroacetic acid (TCAA). Starch was not identified as a 467 

major contributor to the formation of DBPs (Hong et al. 2008) 468 

(Table 3). The use of model compounds to predict total DBPFP 469 

of phytoplankton is based on two assumptions; (1) that algal 470 

cellular content is 100 % comprised of proteins, lipids and 471 

carbohydrates, and (2) that carbon percentages of proteins, 472 

lipids and carbohydrates are 53 %, 76 % and 40 % respectively 473 

(Hong et al. 2008). Results obtained from the chlorination of 474 
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model compounds were then used to predict the DBPFP of 49 475 

species across three phyla based on their known chemical 476 

compositions; cyanobacteria (8 species), green algae (15 477 

species) and diatom (26 species) (Table 4). Estimations of 478 

chloroform formation closely matched experimental data; 479 

however, DCAA and TCAA concentrations were significantly 480 

underestimated. It is likely that the presence of RNA, DNA and 481 

aromatic compounds resulted in higher than anticipated 482 

haloacetic acid concentrations (Kitis et al. 2002; Hong et al. 483 

2008). The results identify that phytoplankton chemical 484 

composition changes the formation potential of DBPs during 485 

chlorination. 486 

Although chemical variation exists between individual species, 487 

general trends in cellular constituents are evident across 488 

cyanobacteria, green algae and diatom phylum. A meta-489 

analysis of the chemical composition of phytoplankton species 490 

indicates that cyanobacteria are generally comprised of more 491 

protein (41-69 %) than diatoms (12-50 %); however diatoms 492 

generally accumulate more lipids (5-43 %) in comparison to 493 

cyanobacteria and green algae (2-30 %) (Hong et al. 2008). 494 

Higher concentrations of proteins within cyanobacteria species 495 

may cause problematic DBP formation within the water 496 

treatment plant due to higher efficiency of protein to form 497 

THM and HAA species. Growth experiments have also 498 

indicated that diatom and cyanobacteria cell cultures produced 499 
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in excess of 20 mg/L of DOC which was significantly more in 500 

comparison to the green algae cell culture which produced 501 

between 10-12 mg/L of DOC (Nguyen et al. 2005). 502 

Phytoplankton are also a major source of DON in natural 503 

waters, with some species of cyanobacteria capable of 504 

excreting up to 45 % of their total fixed nitrogen as organic 505 

nitrogen (Nguyen et al. 2005; Zhang et al. 2014). The 506 

chlorination of phytoplankton enriched with organic nitrogen 507 

resulted in an increased formation of N-DBPs (Fang et al. 508 

2010b). This has major implications for water quality within 509 

the water treatment plant due to the higher genotoxicity 510 

associated with N-DBPs (Richardson et al. 2007). Therefore, 511 

cyanobacteria species are of significant concern with regards to 512 

DBP formation due to higher protein concentrations, increased 513 

DOC formation, high DON contribution and notoriety of 514 

forming blooms. 515 

2.1.6 Intracellular vs Extracellular Organic Matter 516 

Phytoplankton derived organic matter arises from two sources, 517 

the metabolic excretion forming extracellular organic matter 518 

(EOM) or via cell lysis, where intracellular organic matter 519 

(IOM) is released from a break in the cell wall (Henderson et 520 

al. 2008). The extracellular release of organic matter from 521 

phytoplankton is dominated by proteins and carbohydrates (38 522 

% < 1kDa) as waste and excess photosynthetic derivatives 523 

(Reynolds 2007; Li et al. 2012). A high concentration of 524 
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proteins would result in substantial formation of DBPs (Hong 525 

et al. 2008). A comparison of EOM and IOM allows for 526 

increased precision when estimating the total DBPFP within the 527 

water treatment plant. A study by Li et al. (2012) assessed 528 

cyanobacteria Microcystis aeruginosa, to compare total 529 

contribution of EOM and IOM to organic matter yield and DBP 530 

concentrations. EOM contributed significantly less organic 531 

matter than IOM, 29.7 and 100.5 mg/L respectively. However, 532 

assessment of DBP formation indicates that EOM contributed 533 

more to the formation of both THMs and NDMA per mg of 534 

carbon when water samples were subjected to chlorination and 535 

chloramination (Figure 4) (Li et al. 2012). In comparison to 536 

IOM, EOM is represented as a significant contributor to the 537 

formation of DBPs, inferring that species with a large 538 

surrounding mucilage component and high cellular exudation 539 

rate will have a greater contribution to the formation of DBPs 540 

(Nguyen et al. 2005; Li et al. 2012). A corresponding study by 541 

Huang et al. (2009), identified that specific yield from EOM 542 

resulted in a slightly higher total THM and HAA yield 543 

compared with the IOM for Anabaena flos-aquae. However, 544 

the opposite trend was observed for Microcystis aeruginosa, 545 

contradictory to  results by Li et al. (2012). Variability in 546 

species strain, light and nutrient availability are known to alter 547 

the production of EOM and are a likely explanation for 548 

variations between the two studies (Mague et al. 1980; 549 
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Reynolds 1984). Both studies identified, using a mass specific 550 

comparison, that IOM was the main contributor to the 551 

formation of DBPs due to the significantly larger contribution 552 

of NOM (Huang et al. 2009; Li et al. 2012). This mass specific 553 

comparison of EOM and IOM indicated that intracellular 554 

content contributed 77.2, 80.9, 63.3 and 77.2 % of the total 555 

organic matter, THMFP, HAAFP and NDMAFP respectively 556 

(Li  et al. 2012). The auto-lysis of phytoplankton cells will 557 

release excess DOC that is comprised of up to 86 % 558 

hydrophilic matter remaining recalcitrant during conventional 559 

water treatment. Therefore both IOM and EOM contribute 560 

significantly to the formation of DBPs. 561 

 562 

3.1 Other Contributing Factors to DBP Formation 563 

Disinfection by-product formation is influenced by 564 

environmental conditions, the choice of disinfectant, 565 

concentration of inorganic moieties such as bromide and 566 

iodide, and the physical conditions of the chemical reaction 567 

including; temperature, pH, dosage of disinfectant and contact 568 

time of the reaction. 569 

3.1.1 Environmental Conditions 570 

To enable adequate growth and proliferation of phytoplankton 571 

the physical, chemical and biological conditions of the lake 572 

have to be suitable. The impact of climate dramatically alters 573 
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community composition with variation of species dominance 574 

depending upon the mixing/stratification regime and nutrient 575 

availability (Lund 1965). Typically green algae and diatoms 576 

rely on vertical mixing of the water column to remain entrained 577 

and ensure adequate exposure within the euphotic zone to 578 

satisfy their light requirements (Brookes et al. 2003; Oliver et 579 

al. 2012). Warm conditions that enable stratification to develop 580 

can favour the gas vacuolated cyanobacteria. Climate change 581 

scenarios indicate that freshwater systems will be exposed to 582 

increased temperatures, more intense and longer periods of 583 

thermal stratification and altered nutrient loads potentially 584 

favouring cyanobacteria over other phytoplankton groups 585 

(Carey et al. 2012). Increase in cyanobacteria production due to 586 

the effects of climate change is of concern given their chemical 587 

composition, contribution to DOC and notoriety of forming 588 

blooms. 589 

Nutrient availability is fundamental for phytoplankton growth, 590 

with limiting nutrients reducing the growth. Carbon, nitrogen 591 

and phosphate have often been considered to restrict 592 

phytoplankton growth (Hecky and Kilham 1988). Reviews by 593 

Hecky and Kilham (1988) and Guildford and Hecky (2000) on 594 

nutrient limitations have identified that phosphorus 595 

concentration is the critical limiting nutrient that regulates algal 596 

biomass and growth rates within most freshwater systems 597 

(Nagar et al. 1974); although nitrogen limitation can occur in 598 
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freshwater systems (Baker et al. 2000). In an evaluation of 599 

historical data from Myponga Reservoir, South Australia 600 

Linden et al. (2004) compared the maximum annual total 601 

phosphorus (TP) and the maximum chlorophyll a found in the 602 

following growth period in the years between 1985 and 2000 603 

(Figure 5). They showed chlorophyll a concentrations as a 604 

measure of phytoplankton abundance increased as total 605 

phosphorus increased supporting earlier works (Sakamoto 606 

1966; Vollenweider and Dillon 1974; Jones and Lee 1982). 607 

This indicates the significant role that phosphorus plays in 608 

determining both the rate of phytoplankton growth and the 609 

carrying capacity of a lake, which would determine the yield of 610 

organic matter produced. 611 

 612 

3.1.2 Disinfection Agent 613 

The choice of disinfectant is important in determining what 614 

DBPs can be formed in the presence of NOM and inorganic 615 

matter. Chlorine is predominantly used as a disinfectant for 616 

water treatment due to its low cost and stability, as it provides a 617 

residual to prevent microbial regrowth throughout the 618 

distribution network (Bond et al. 2011; Fabris et al. 2012; 619 

Zhang et al. 2014). At a pH < 7.5 chlorine dissolves in water to 620 

form a strong oxidising agent, hypochlorous acid, capable of 621 

oxidising NOM. Due to public health concerns regarding DBP 622 
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formation, there has been an increasing interest in the 623 

substitution of chlorine by other disinfectants.  624 

Hua and Reckhow (2007) used natural surface waters collected 625 

from Newport News Virginia to study the DBP formation 626 

potential using five oxidants; chlorine, chloramine, both with 627 

and without pre-ozonation, and chlorine dioxide. To minimise 628 

variation between experiments the temperature (20°C), pH (7) 629 

and reaction time (48 hours) were held constant. A range of 630 

DBPs were monitored, including four chlorinated/brominated 631 

THMs, nine chlorinated/brominated HAAs, three 632 

dihaloacetonitriles, two haloketones, chloropicrin and total 633 

organic halide (TOX). There were several notable outcomes 634 

from this experiment; each disinfection scenario was capable of 635 

producing a unique range of DBPs with a large percentage of 636 

unknown halogenated compounds (UTOX) formed. The use of 637 

Ozone and chloramines as disinfection agents resulted in the 638 

increased formation of nitrogenous DBP’s that are known to be 639 

more genotoxic. When Ozone was used in conjunction with 640 

chloramine the concentration of UTOX increased substantially. 641 

This increase in UTOX was also achieved when chloramine or 642 

chlorine dioxide were used as the sole disinfectant. These 643 

results indicated that the issue of DBP formation cannot be 644 

resolved simply by using an alternate disinfection agent.  645 
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The investigation of DBP formation from various disinfectants 646 

by Hua and Reckhow (2007) can provide an understanding of 647 

what DBPs are likely to form when the source water contains 648 

higher concentrations of hydrophilic, phytoplankton derived 649 

organic matter. Analysis of chloramination and chlorination of 650 

phytoplankton by Fang et al. (2010a) identified significant 651 

differences in DBP yields between the two treatments. 652 

Chlorination of M.aeruginosa culture resulted in increased 653 

formation of N-DBPs and haloaldehydes, with reduced C-DBP 654 

formation in comparison a dominant humic NOM source. 655 

Alternatively, chloramination of phytoplankton culture resulted 656 

in a slight reduction of total DBP formation in comparison to a 657 

humic NOM source. The use of a strong oxidiser such as ozone 658 

can result in an overall increase in DBP formation due to its 659 

ability to lyse algal cells, releasing IOM and increasing DBP 660 

formation during subsequent chlorination/chloramination (Fang 661 

et al. 2010a). 662 

When choosing a disinfection agent it is also important to 663 

consider other issues including; the inability to retain 664 

disinfection residual (ozone), inefficiency against taste and 665 

odour compounds (chloramine), higher concentration of 666 

unknown total organic halide (UTOX) with a potentially higher 667 

genotoxicity (chloramine, ozone/chloramine, chlorine dioxide), 668 

and higher chemical costs (ozone, ozone/chlorine, 669 

ozone/chloramine) (Nikolaou et al. 1999). 670 
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3.1.3 Dose and Contact Time 671 

Application of chlorine for the efficient disinfection of potable 672 

water supplies is driven by the maintenance of a chlorine 673 

residual post treatment, influenced by dose concentration time 674 

and the contact time of the reaction. A chlorine concentration 675 

of 0.5 mg/L at point of delivery is recommended (World Health 676 

Organisation 2011). A reduction in chlorine dose can allow for 677 

incomplete removal of biological pathogens or insufficient 678 

chlorine to reach the end of the distribution system. Chlorine 679 

residual less than the recommended concentration can allow for 680 

microbial regrowth throughout the distribution network, 681 

exposing consumers to an increased risk of disease from 682 

waterborne pathogens. However, excess chlorine dose can 683 

result in an escalated health risk by increasing total DBP 684 

formation (Sadiq and Rodriguez 2004). For example, El-Dib 685 

and Ali (1995) observed that upon chlorination of Nile River 686 

water total THM formation increased from 70 to 85 µg/L when 687 

chlorine dose was increased from 5 to 20 mg/L respectively 688 

(contact time = 2 hours, pH = 8, temperature = 20°C). A similar 689 

relationship was observed by Dojlido et al. (1999), identifying 690 

peak HAA concentrations when chlorine dose was highest.  691 

Contact time with chlorine also influences the formation rates 692 

of DBPs (Nikolaou et al. 1999). El-Dib and Ali (1995) 693 

determined that total THM formation ranged from 30 to 90 694 

µg/L when contact time was adjusted from 30 to 240 minutes 695 
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respectively (Cl2 dose = 5 mg/L, pH = 8, temperature = 20°C). 696 

A corresponding experiment by Liang and Singer (2003) 697 

supports these results, whilst suggesting that HAA 698 

concentration also increases with prolonged contact time. 699 

However, increased contact time can also result in the 700 

decreased concentration of some halogenated DBPs including 701 

haloacetonitriles (HANs) and haloketones (HKs) as a result of 702 

hydrolysis and further reactions with chlorine (Singer 1994). 703 

An increase in chlorine concentration and contact time during 704 

the disinfection of a phytoplankton dominated system has the 705 

potential to significantly increase DBP formation with a 706 

probable increased production of N-DBP. Chlorine dose and 707 

contact time affects phytoplankton cell integrity, releasing 708 

intracellular content for further reaction (Daly et al. 2007). 709 

Further research is required to determine how chlorine dose 710 

concentration affects the rate of DBP and more specifically N-711 

DBP formation from phytoplankton derived organic precursors. 712 

 713 

3.1.4 Temperature 714 

Disinfection by-product formation is also influenced by the 715 

temperature and pH of the water during treatment. Research by 716 

Roccaro et al. (2008) studied the effects of temperature on 717 

chlorine consumption and formation of DBPs from Ancipa 718 

Reservoir samples. It was evident that chlorine consumption 719 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

32  

 

accelerated as temperature was manipulated from 3 to 34°C and 720 

disinfection by-product formation increased as reaction 721 

temperature was altered from 3 to 20°C. A further increase in 722 

temperature from 20 to 34°C resulted in a shift in DBP 723 

speciation to a less brominated pool. Higher temperatures result 724 

in increased reaction rate kinetics causing faster and higher 725 

yielding formation of DBPs (Fang et al. 2010b). This has 726 

seasonal implications suggesting that DBPFP will be 727 

maximised during summer, when ambient temperatures are 728 

higher (Nikolaou and Lekkas 2001).  729 

Phytoplankton population densities are strongly influenced by 730 

seasonal fluctuations, typically peaking in summer when water 731 

temperatures are at a maxiumum and stratification is most 732 

strongy developed (Reynolds 1984). Although phytoplanklton 733 

are capable of surviving subarctic and arctic climates, their 734 

growth rates are substantially diminished (Rautio et al. 2011). 735 

The optimum temperature and the degree to which growth rate 736 

increases with temperature; differ greatly between 737 

phytoplankton species. The Q10 temperature coefficient for 738 

growth describes the rate of change of growth rate with a 10°C 739 

change in temperature. The Q10 for cyanobacteria range 740 

between 1.8-4.3 and for chlorophytes 1.1-3.7 (Lurling et al. 741 

2013). Therefore warmer temperature will accelerate 742 

phytoplankton growth and phytoplankton-derived DOC 743 

concentrations. An increase in phytoplankton-derived DOC 744 
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will result in increased concentrations of hydrophilic organic 745 

matter contributing to DBP formation upon chlorination.  746 

3.1.5 pH 747 

The effects of pH on DBPFP is more complex as it chemically 748 

alters the speed of the rate determining step of the reaction 749 

(Bond et al. 2011). Therefore, the effect of pH on the formation 750 

of DBPs is defined by the chemical structure of the precursor. 751 

Research by Hua and Reckhow (2008) assessed the rate of 752 

formation of THMs, dihaloacetic acids (DHAA), trihaloacetic 753 

acids (THAA) and UTOX at pH values of 5, 7 and 10 (DOC = 754 

4.7 mg/L, chlorine dose = 8.1 mg/L, contact time = 72 hours, 755 

temperature = 20°C). The yield of THMs and DHAAs 756 

increased as pH was elevated from 5 to 10. However, the 757 

opposite effect was observed for the formation of THAAs and 758 

UTOX. A decrease in TOX concentration from 930 to 878 and 759 

768 µg/L was also observed as pH increased from 5 to 7 and 10 760 

respectively. The reduction in concentration of some DBPs 761 

may result from accelerated hydrolysis and dehalogenation at 762 

higher pH values (Singer 1994; Hua and Reckhow 2008). 763 

Therefore it would be critical to determine the effect of pH on 764 

DBP formation from phytoplankton precursors, to enable a 765 

more accurate prediction of DBPFP speciation and toxicity. 766 

Phytoplankton are able to modify the pH of the water due to 767 

formation of by-products from photosynthesis and respiration. 768 

During the day photosynthesis increases with increasing 769 
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exposure to light, consuming free CO2 and increasing O2 770 

production; resulting in an increase in alkalinity. At night the 771 

opposite is true, photosynthesis rates decrease and respiration 772 

increases, raising CO2 concentrations; resulting in an increase 773 

in acidity (Wetzel 2001). Therefore during a bloom event the 774 

time of the day will considerably influence the pH of the water 775 

and may indirectly impact DBP formation where pre-oxidation 776 

is practised. 777 

3.1.6 Influence of Inorganic Constituents 778 

The chemical speciation of DBP formation upon chlorination is 779 

altered by the presence of inorganic constituents, bromide and 780 

iodide. Upon chlorination, bromide and iodide are rapidly 781 

oxidised to hypobromous acid and hypoiodous acid 782 

respectively. Hypobromous and hypoiodous acids are active 783 

oxidising agents that react with NOM to form brominated and 784 

iodated DBPs. To investigate the effect of these inorganic 785 

constituents on DBP formation Hua et al. (2006) analysed raw 786 

water samples from drinking water treatment plant intakes at 787 

the City of Winnipeg, Manitoba and the City of Tulsa, 788 

Oklahoma. Samples were dosed with bromide and iodide at 789 

concentrations of 0, 2, 10 and 30 µM prior to chlorination. 790 

Chlorination of the samples was conducted to produce a 791 

chlorine residual of 0.5 mg Cl2/L after a 48 hour contact time at 792 

20°C with a pH of 7. The experiment concluded that increased 793 

concentration of bromide and iodide halogens resulted in a 794 
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general increase in DBP speciation dominated by bromo- and 795 

iodo- moieties by outcompeting chlorine substitution. The 796 

addition of 2-30 µM of bromide to Tulsa raw water samples 797 

increased the total yield of THMs (four species) by 18-74% and 798 

HAAs (nine species) by 2-35% respectively. The addition of 2-799 

30 µM of iodide to Tulsa raw water samples had minimal effect 800 

on total THM (10 species) yield; whilst TOX decreased by 2-35 801 

% respectively. The rate of iodide substitution was also 802 

significantly slower than bromide substitution. The formation 803 

of bromo- and iodo- substituted DBPs results in higher values 804 

of genotoxicity, causing concern for detrimental health 805 

outcomes (Plewa et al. 2004a; Plewa et al. 2004b; Richardson 806 

et al. 2007). The influence of inorganic constituents on DBP 807 

formation and speciation varied depending on the conditions of 808 

the NOM precursors in the source water. For example, 809 

Cowman and Singer (1996) assessed the effect of bromide on 810 

aquatic humic substances and found no correlation between 811 

bromide concentrations and HAA formation. 812 

The concentration of inorganic constituents also alters the DBP 813 

formation potential of phytoplankton precursors. Results 814 

obtained from studies of Microcystic aeruginosa, indicated that 815 

the addition of bromide shifted DBP formation from HAA to 816 

THM dominated compounds (Wei et al. 2011). These results 817 

are contradictory to results from Hua et al. (2006) where whole 818 

raw water samples were used. The effects of inorganic 819 
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constituents on a phytoplankton dominated system could have 820 

profound effects on DBP formation, speciation and the 821 

resulting associated health risk.  822 

 823 

4.1 Mitigation of DBP formation from Phytoplankton 824 

Derived Precursors 825 

To mitigate DBP formation it is critical that hydrophilic, 826 

autochthonous organic matter is targeted and removed prior to 827 

chlorination. This could be achieved by improving catchment 828 

management to reduce nutrients and phytoplankton production. 829 

Improved catchment management combined with an 830 

understanding of the dominant species and abundance of 831 

phytoplankton within the system will allow for early detection 832 

of increased DBP formation potential. More advanced water 833 

treatment such as activated carbon, ultrafiltration, or resins can 834 

then be utilised to prevent risk of exposure to phytoplankton 835 

derived DBPs during a detected increase in phytoplankton 836 

abundance, reducing the concentration of NOM precursors 837 

exposed to chlorination. 838 

Developing a greater understanding of the risk of DBPs to 839 

human health will allow for improved monitoring of harmful 840 

DBPs and tighter regulation. There is still a significant 841 

percentage of UTOX compounds being produced with minimal 842 
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understanding of the short and long term impacts to human 843 

health. 844 

 845 

5.1 Conclusion 846 

The focus on phytoplankton within water treatment has largely 847 

been on phytoplankton cell removal and the removal of toxic 848 

compounds. However, only a few species are known to produce 849 

toxins or taste and odour compounds that can compromise 850 

water quality. In contrast all phytoplankton species fix carbon 851 

and contribute to the DOC pool and potential DBP precursors. 852 

This can pose a threat to human health when increased 853 

concentration of algal derived DOC is exposed to chlorine, 854 

increasing the risk of DBP formation. The contribution of 855 

phytoplankton towards the formation of DBPs is 856 

underestimated or largely ignored. The majority of the 857 

literature pools various sources of NOM or focuses only on 858 

allochthonous contributions to DBP formation. As algal-859 

derived organic carbon is generally more recalcitrant to 860 

conventional treatment it is imperative that the total 861 

contribution of phytoplankton to the formation of DBPs is 862 

thoroughly understood for improved management and the 863 

minimisation of associated health risks.  864 

Phytoplankton derived DBP formation is impacted by the rapid 865 

algal growth and turnover rates, cellular composition and 866 
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biological lability. The contribution of phytoplankton to the 867 

formation of DBPs can potentially be heightened due to the 868 

notoriety of formation of cyanobacterial blooms, chemical 869 

composition and high DON contribution. Reducing 870 

phytoplankton populations within the water body is necessary 871 

to limit disinfection contact with cells and exudates. Therefore 872 

limiting nutrient supply with improved catchment management 873 

can mitigate many of the problems associated with algae 874 

(Brookes and Carey 2011). Nutrient reduction limits 875 

phytoplankton carrying capacity and growth rates minimising 876 

the abundance of toxic cyanobacteria and DBP precursors 877 

derived from phytoplankton. Reducing the algal concentrations 878 

exposed to the disinfection process will reduce DBP formation 879 

within the water treatment plant and distribution network.  880 
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Table 1: Examples of pathogens with evidence of health significance, indicating chlorine 

resistance and expected time for minimal removal during chlorination. Pathogen minimum 

removal data collected from (Centers for Disease Control and Prevention, 2012) and 

references therein. (*)Indication of CT times for each pathogen group (World Health 

Organisation,2011). 

 Pathogen Health 

Significance  
Resistance to 

Chlorine a 

Minimal Removal (CT99
 ) 

B
ac

te
ri

a 

Overall* High Low 0.04-0.08 min.mg/L (5°C, pH 6-7) 

E. coli High Low <0.25 min.mg/L (23°C, pH 7) 

Campylobacter jejuni High  Low 0.5 min.mg/L (25°C, pH 8) 

Salmonella Typhi High Low 1 min.mg/L (20-25°C, pH 7) 

V
ir

us
es

 

Overall * High Moderate 2-30 min.mg/L (0-10°C, pH 7-9) 

Poliovirus High Moderate 6.36 min.mg/L (5°C, pH 6) 

Hepatitis A Virus High Moderate <0.41 min.mg/L (25°C, pH 8) 

Rotavirus High Moderate 0.05 min.mg/L (4°C pH7) 

Coxsackie A High Moderate 0.14-0.15 min.mg/L (5°C, pH 6) 

P
ro

to
zo

a 

Overall * High High 25-245 min.mg/L (0-25°C, pH 7-8) 

Cryptosporidiumhomin
is/ parvum 

High High 15,300 min.mg/L (25°C, pH 7.5) 

Entamoeba histolytica High High 20 min.mg/L (27-30°C, pH 7) 

Giardia intestinalis High High 15 min.mg/L (25°, pH 7) 
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Table 2: List of regulations on DBPs with associated guideline values from the US EPA, WHO, the European Union and, Australia and New 

Zealand. 

*Sum of the ratio of the concentration of bromoform, dibromochloromethane, bromodichloromethane and chloroform to its respective guideline 

value can’t exceed 1.  

World Health Organisation Guideline Values US EPA  Mandatory Standards  European Union Standards  

Mandatory Standards   

Australian Drinking Water 

Guidelines 

Regulated DBPs  (µg/L) Regulated DBPs  (µg/L) Regulated DBPs  (µg/L) Regulated DBPs  (µg/L) 

Total THM  * Total THM 80 Total THM 100 Total THM 250 

Bromate 10 Total HAA (5 regulated) 60 Bromate 10 Chloroacetic acid 150 

Bromodichloromethane 60 Bromate 10   Dichloroacetic acid 100 

Bromoform 100 Chlorite 1000   Trichloroacetic acid 100 

Chlorate 700     Chloral hydrate 100 

Chlorite 700     NDMA 0.1 

Chloroform 300     Bromate 20 

Dibromoacetonitrile 70     Chlorite 800 

Dibromochloromethane 100     2-chlorophenol 300 

Dichloroacetate 50     2,4-dichlorophenol 200 

Dichloroacetonitrile 20     2,4,6-trichlorophenol 20 

Monochloroacetate 20     Cyanogen chloride 80 

N-nitrosodimethylamine (NDMA) 0.1     Formaldehyde 500 

Trichloroacetate 200       

2,4,6-Trichlorophenol 200       
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Table 3: Disinfection by-product formation as a result of chlorination of model compounds 

(Hong et al. 2008). 

Model Compounds CHCl3 (µg mg
-1

 C) DCAA (µg mg
-1

 C) TCAA (µg mg
-1

 C) 

BSA 27.1 25.9 22.8 

Fish oil 50.0 3.36 1.27 

Starch 3.06 4.91 0.09 
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Table 4: Total DBPFP based on a comparison of protein, carbohydrate and lipid concentrations from cyanobacteria (8 species), green algae (15 

species) and diatom (26 species) (Hong et al. 2008). 

 Protein (%) Carbohydrates (%) Lipids (%) CHCl3 (µg mg
-1

 C) DCAA (µg mg
-1

 C) TCAA (µg mg
-1

 C) 

Cyanobacteria 61.5 25.2 13.3 24.1 17.6 14.2 

Green algae 50.5 21.7 27.8 28.3 15.1 11.9 

Diatoms 42.9 17.9 39.2 31.8 13.3 10.3 
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Figure 1: General schematic of DBP formation; the reaction of a disinfectant agent with an 

organic precursor and/or an inorganic precursor forms a suite of DBPs. The rate and yield of 

the reaction is governed by a range of physical conditions. 
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Figure 2: Analysis of the autochthonous carbon load from phytoplankton from the U.S. National Lake Assessment. Phytoplankton carbon 

contribution was estimated from the known chlorophyll a concentration using predictive ratios from the literature. The Reynolds Estimation 

(Carbon:Chla, 50:1) is an accurate average estimation of carbon based on total species composition of phytoplankton. 
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Figure 3: General classification of NOM by hydrophobicity and acidity into specific chemical 

groups. The red boxes highlight the major constituents of phytoplankton (Leenheer and 

Croué 2003). 
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Figure 4: Comparison of IOM and EOM contribution to DOC, trihalomethane formation 

potential (THMFP), haloacetic acid formation potential (HAAFP) and nitrosodimethylamine 

formation potential (NDMAFP) (Li et al. 2012). 
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Figure 5: Positively correlated relationship between maximum total phosphorus (TP) and 

maximum chlorophyll a concentration (Linden et al. 2004) 
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Highlights 

 

• Phytoplankton contains a significant proportion of 

hydrophilic organic matter. 

• Hydrophilic NOM is more recalcitrant to 

conventional treatment, increasing DBP formation. 

• Species population dynamics and continuous 

exudation contributes significantly to DOC pool. 

• High protein content in some species has been 

linked to increased DBP formation. 

• Nutrient reduction limits phytoplankton carrying 

capacity, aiming to reduce DBP precursors. 




