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ABSTRACT

Designing effective stormwater pollution mitigation strategies is a challenge in urban stormwater
management. This is primarily due to the limited reliability of catchment scale stormwater quality
modelling tools. As such, assessing the uncertainty associated with the information generated by
stormwater quality models is important for informed decision making. Quantitative assessment of build-
up and wash-off process uncertainty, which arises from the variability associated with these processes, is
a major concern as typical uncertainty assessment approaches do not adequately account for process
uncertainty. The research study undertaken found that the variability of build-up and wash-off processes
for different particle size ranges leads to processes uncertainty. After variability and resulting process
uncertainties are accurately characterised, they can be incorporated into catchment stormwater quality
predictions. Accounting of process uncertainty influences the uncertainty limits associated with pre-
dicted stormwater quality. The impact of build-up process uncertainty on stormwater quality predictions
is greater than that of wash-off process uncertainty. Accordingly, decision making should facilitate the
designing of mitigation strategies which specifically addresses variations in load and composition of
pollutants accumulated during dry weather periods. Moreover, the study outcomes found that the in-
fluence of process uncertainty is different for stormwater quality predictions corresponding to storm
events with different intensity, duration and runoff volume generated. These storm events were also
found to be significantly different in terms of the Runoff-Catchment Area ratio. As such, the selection of
storm events in the context of designing stormwater pollution mitigation strategies needs to take into
consideration not only the storm event characteristics, but also the influence of process uncertainty on
stormwater quality predictions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

pollution mitigation is necessary for improving stormwater quality.
In this context, informed decision making plays an important role

In urban areas, the transformation of natural environment into
residential, commercial and industrial land use leads to the gen-
eration of pollutants ranging from particulate solids to toxic
particle-bound heavy metals and hydrocarbons (Brown and Peake,
2006; Hvitved-Jacobsen et al., 2010; WWAP, 2015). These pollut-
ants, which accumulate on urban impervious surfaces over dry
weather periods are entrained in stormwater runoff during storm
events. The urban water quality is degraded once polluted storm-
water runoff is discharged into receiving waters (Makepeace et al.,
1995; Zhao and Li, 2013). Stormwater pollution is therefore a major
concern in urban water management. As such, effective stormwater
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in the design of effective pollution mitigation strategies.

Information on catchment stormwater quality is essential for
planning and management decision making. This knowledge
(stormwater quality predictions) is commonly generated using
stormwater quality models which incorporate mathematical rep-
lications of primary pollutant processes, namely, build-up and
wash-off (WWAP, 2012; Xu and Tung, 2008). However, it has been
highlighted in past studies (e.g. Freni et al., 2009a; Helton and
Burmaster, 1996; Métadier and Bertrand-Krajewski, 2011 and
Zoppou, 2001) that uncertainties primarily arising from process
modelling itself and the variability in pollutant processes signifi-
cantly influence the interpretation of stormwater quality pre-
dictions. Decision making without adequate knowledge of these
uncertainties can lead to the design of ineffective stormwater
pollution mitigation strategies (Hvitved-Jacobsen et al., 2010;
Loucks et al., 2005; Obropta and Kardos, 2007).
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Stormwater quality modelling uncertainty, which arises from
sources such as model structure, input and calibration data and
model parameters, is generally understood. A number of tech-
niques are available for assessing modelling uncertainty as sum-
marised in Table 1. However, these techniques exhibit significant
drawbacks such as the use of user defined likelihood measures in
Generalized Likelihood Uncertainty Estimation (GLUE) and the role
of prior knowledge in Bayesian techniques in uncertainty
assessments.

On the other hand, how inherent process uncertainty stems
from process variability is investigated only in a limited number of
research studies. Wijesiri et al. (2016) confirmed that process un-
certainty can be quantitatively incorporated in build-up and wash-
off predictions, which in fact, as highlighted by Zoppou (2001), is
essential for informed decision making.

The approach for assessing build-up and wash-off process un-
certainty proposed by Wijesiri et al. (2016) is based on mathe-
matical formulations which replicate the temporal variations of the
build-up and wash-off loads of particles <150 pm and >150 pm.
These temporal variations describe different behaviours to each
other during build-up and wash-off, which were found to primarily
influence process variability (Herngren et al., 2006; Wijesiri et al.,
2015a,b). Therefore, the incorporation of process variability into
build-up and wash-off process models can account for the different
behaviour of particles of different size fractions, which also result in
differences in their association with other pollutants, while un-
dergoing build-up and wash-off. This approach has previously been
undertaken using only small-plot scale field data obtained from
road surfaces. There is a need to translate this approach to
catchment-scale water quality predictions in order to demonstrate
the practical application of the study outcomes and to support the
interpretation of model outcomes.

The primary objective of the investigation described in this
paper was to quantitatively assess process uncertainty in relation to
catchment scale stormwater quality predictions focussing on road
surfaces, as these are the primary pollutant source to urban
stormwater runoff. Accordingly, the research study focused on: (1)
the translation of small-plot scale particulate build-up and wash-
off data into catchment scale stormwater quality predictions; and
(2) the extension of the uncertainty assessment approach proposed
by Wijesiri et al. (2016) for small-plot scale pollutant processes
models to catchment stormwater quality predictions. The out-
comes of this study are expected to facilitate the development of
approaches for enhancing stormwater pollution mitigation strate-
gies to improve urban stormwater quality.

2. Materials and methods
2.1. Study design

Accurate model development followed by satisfactory calibra-
tion and verification is critical for the accuracy of the modelling
outcomes. However, the lack of adequate data sets for calibration
often challenges the reliability of most modelling approaches
(Bertrand-Krajewski, 2007). As such, Egodawatta (2007) recognised

Table 1
Commonly used techniques for assessing stormwater quality modelling uncertainty.

that a modelling approach that utilises field data on pollutant
build-up and wash-off for generating necessary model parameters
enables the accurate prediction of stormwater quality, without
having to perform model calibration. Similarly, the modelling
approach developed and the uncertainty assessment undertaken in
this investigation also utilised small-plot scale field data collected
from urban catchments.

2.2. Study catchments

Three catchments: Gumbeel, Birdlife Park and Highland Park
were selected from Gold Coast, South East Queensland, Australia.
Gumbeel and Birdlife Park are small catchments located within the
larger Highland Park catchment. The field investigations on par-
ticulate build-up and wash-off were undertaken at selected road
sites located within each catchment. The selection of road sites was
based on the fact that roads constitute a significant component of
urban impervious surfaces and contribute significant pollutant
loads to stormwater runoff. Figs. S1—-S3 in the Supplementary In-
formation show the aerial views of the selected catchments and the
locations of road sites.

All three catchments are predominantly residential. Gumbeel,
which is 1.6 ha in extent, consists of duplex housing. The catchment
impervious area due to road surfaces (ratio between area of road
surfaces and total catchment land area) is 15%, and has a simple and
short drainage network compared to the other two catchments.
Birdlife Park (7.5 ha) consists of single detached housing, and road
surfaces form 12% of the impervious area. The drainage network in
Birdlife Park includes road gutters and side manholes. The largest of
the three catchments with an area of 105.2 ha, Highland Park, has
fractions of commercial and forestry land uses in addition to the
primary residential land use with single detached housing. The
road surfaces form 16% impervious area. The drainage network in
Highland Park includes pipes and channels which are connected to
Bunyip Brook tributary that runs across the catchment.

The catchment area and the impervious area were calculated
using Google Earth Pro. The impervious area was assumed to be
evenly distributed over the catchment. The details of the drainage
network in each catchment were obtained from the maps provided
by the Gold Coast City Council. The roads in the sampling sites were
found to have slopes varying from 7.2 to 10.8% and texture depth
varying from 0.66 to 0.92 mm. Detailed information regarding the
characteristics of the sampling sites located within each catchment
can be found in Wijesiri et al. (2015a,b).

2.3. Small-plot scale field sampling and laboratory analysis

Particulate build-up and wash-off sampling were undertaken on
small road surface plots (3 m?) using a portable wet vacuum system
and a rainfall simulator. The use of the rainfall simulator was to
simulate storm events with different intensities and durations, and
also to avoid the constraints associated with sampling under nat-
ural storm events. The performance of both sampling tools was
validated under field conditions similar to the road surfaces in the
study sites prior to being used in the field experiments. The
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validation procedure discussed in detail in Herngren et al. (2006)
and Egodawatta et al. (2007) was adopted.

In the build-up experiments, particulate build-up samples (road
deposited solids) were collected for antecedent dry periods of 1, 2,
3, 7,14 and 23 days at Gumbeel Court (refer to Fig. S1) and Lauder
Court (refer to Fig. S3) road sites, while sampling was undertaken
for antecedent dry periods of 1, 2, 7, 14 and 21 days at Piccadilly
Place (refer to Fig. S2). Road deposited solids are a composite of
several sources such as soil, vehicular emissions, vegetation and
traffic related abrasion products (Mummullage et al., 2016a, 2016b).
For wash-off sampling, storm events with intensities of 20, 40, 65,
86, 115 and 133 mm/h were simulated at Gumbeel Court and Pic-
cadilly Place, while at Lauder Court, 40, 65, 86, 115 and 133 mm/h
storm events were simulated. The selection of storm event dura-
tions took into consideration the fact that the development of sheet
flow over time decreases the impact of raindrop kinetic energy in
the mobilisation of particles adhering to the road surface
(Egodawatta et al., 2007; Vaze and Chiew, 2000). As such, the du-
rations beyond which particulate wash-off load becomes insignif-
icant were selected for the simulation of the storm events.
Accordingly, the durations corresponding to storm event intensities
were 20 mm/h — 40 min, 40 mm/h — 35 min, 65 mm/h — 30 min,
86 mm/h — 25 min and 115 and 133 mm/h — 20 min. Further,
samples of initial particulate build-up available on road surfaces
prior to the simulation of storm events were also collected from a
road surface plot just beyond the wash-off sampling area.

The build-up and wash-off samples were analysed for two pa-
rameters: total particulate solids load and particle size distribution.
Standard methods 2540C and 2540D (APHA, 2012) were used to
determine particulate solids load in each sample. Particle size dis-
tributions were determined using a Malvern Mastersizer S instru-
ment which can analyse a particle size range of 0.05—900 um. The
quality audit standards QAS3002 and QAS3001-B were used to
verify the instrument performance (Malvern Instrument Ltd.,
1997).

2.4. Catchment model set-up and runoff simulation

The SWMM (US Environmental Protection Agency’s Stormwater
Management Model) module in Mike URBAN software developed
by the Danish Hydraulics Institute (MikeUrban, 2014) was selected
for setting up the catchment models. Hydrologic modelling by Mike
URBAN — SWMM module was based on the non-linear reservoir
method (MikeUrban, 2014). The criterion for hydrologic modelling
software selection was primarily based on the fact that the process
replications are physically based and catchment-specific hydrologic
parameters can be determined using field data. Additionally, ability
to set up catchment models to account for the spatial variability of
hydrologic processes and to perform runoff simulations for indi-
vidual storm events were considered as necessary capabilities that
should be available in the software.

In setting up the catchment models, the spatial variability of
hydrologic processes in the catchment was accounted for by
dividing the catchment into several sub-catchments conforming to
the drainage network. Accordingly, the catchment models devel-
oped are shown in Figs. S4—S6 in the Supplementary Information
which also give the details of the number of sub-catchments, nodes
and conduits allowed in each catchment model. The runoff gener-
ated by each sub-catchment is drained into a ‘load point’ which is
typically a node or an adjacent sub-catchment. Nodes are hydro-
logical components of a drainage network such as junctions
(manholes) and outfalls (terminal node of network). The water
accumulating at nodes is transported through conduits such as
pipes and channels (MikeUrban, 2014). A sample set of input data
consisting of sub-catchments, nodes and conduits for Mike URBAN

— SWMM for setting up the catchment models are given in Fig. S7
in the Supplementary Information.

2.5. Selection of storm events for runoff simulation

In order to simulate stormwater runoff generated from a
catchment, the primary boundary condition required is the rainfall
records. It was important to obtain records of storm events with
different characteristics (i.e. intensity and duration) that typically
occur in the study area. Therefore, the rainfall records from the
Hinze Dam weather station (Station ID: 040584), which is the
nearest to all three study catchments, for the period 2004—2014
were analysed. These rainfall records were provided as rainfall
depths in 1 min time steps by the Australian Bureau of Meteorology.

For model simulation, it was necessary to select individual
storm events from the rainfall records. In order to select repre-
sentative years, the variation of annual rainfall depth over the
period 2004—2014 was analysed. Fig. S8 in the Supplementary In-
formation shows the variation of annual rainfall depth with respect
to the average annual rainfall depth for the selected period. The
average annual rainfall depth was 1436.3 mm. As evident from
Fig. S8, annual rainfall depths for five years are less than the average
annual rainfall depth, while annual rainfall depths for six years are
greater than the average annual rainfall depth. Therefore, it was
decided to select two representative years (i.e. 2005 and 2008) with
the annual rainfall depth below and above the average annual
rainfall depth for model simulations. The selection of these repre-
sentative years also reduced the number of storm events to be used
for model simulation.

The rainfall records for the selected two years were further
analysed to select the storm events where the event rainfall depth
is greater than the depression storage for road surfaces. Depression
storage is the surface storage of water resulting from processes
such as ponding, surface wetting and interception at the beginning
of a storm event. This was to ensure all selected storm events
generate runoff. The depression storage for the road surfaces was
calculated as the difference between the rainfall depth and the
runoff depth corresponding to the initial period of the storm events
simulated at each road site. The simulated storm events used to
calculate the depression storage are given in Table S1 in the Sup-
plementary Information. The average depression storage for the
road surfaces in the three catchments was found to be 2.87 mm.

In selecting storm events, continuous and longest storm events
were first selected. Further, where such events had continued to the
next day, it was considered as a single event. The selected events
were further assessed to ensure that the rainfall depth of each event
was greater than 2.87 mm. Accordingly, 27 storm events from the
year 2005 and 38 storm events from the year 2008 were selected
for model simulation. Further, the average intensity of each selected
storm event was also calculated. Given the time series of intensities
for the selected storm events, the runoff volume generated from
the road surfaces was simulated using the three catchment models.
The intensities and durations of storm events and the runoff vol-
ume simulated at each catchment are given in Tables S2 and S3 in
the Supplementary Information.

2.6. Prediction of stormwater quality and quantification of
associated uncertainty

Prediction of catchment stormwater quality and quantification
of associated uncertainty were undertaken based on two scenarios:
(1) using the primary build-up and wash-off models where build-
up and wash-off process variability is poorly characterised (Ball
et al,, 1998; Sartor and Boyd, 1972); and (2) using the revised
build-up and wash-off models which were derived by
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incorporating process variability into the primary models (Wijesiri
et al., 2016). Equations (1) and (2) given below define the primary
build-up and wash-off models which were adapted from Ball et al.
(1998) and Sartor and Boyd (1972), respectively. In this regard, it is
important to note that the validation of these simplest forms of
build-up and wash-off models was not undertaken as they were
used only for implementing the approach to assess process un-
certainty, and thereby to guide the uncertainty assessment in
relation to the revised models. Equations (3) and (4), which define
the revised build-up and wash-off models were adapted from
Wijesiri et al. (2016). The derivation of revised models (details are
given in the Supplementary Information) were based on the fact
that the differences in behaviour of particles <150 um and >150 um
during build-up and wash-off predominantly influences process
variability (Gnecco et al., 2005; Gobel et al., 2007; Wijesiri et al.,
2015a,b).
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where: B — particulate build-up load

W — amount of particulates washed-off

W, — amount of particulates available at the beginning of storm
event

t — antecedent dry period/storm event duration

[ — storm event intensity

a, B, k — build-up and wash-off coefficients (subscripts indicate
corresponding particle size fraction)

Although Mike URBAN — SWMM is capable of simulating build-
up and wash-off, the software does not allow the incorporation of
user-defined mathematical models of build-up and wash-off.
Therefore, numerical computing software was required to predict
catchment scale particulate build-up and wash-off using Equations
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Fig. 1. Predicted Event Mean Concentration (EMC) of particulate solids and associated uncertainty limits for primary and revised models — Gumbeel, year 2005 storm events; Note:
PM — primary models, and RM — revised models. Results for 2008 storm events are given in the Supplementary Information.



14 B. Wijesiri et al. /| Water Research 103 (2016) 10—20

(1)—(4). Consequently, MATLAB in-built non-linear regression tools
that include the function nlinfit (MathWorks, 2013) were used for
the prediction of particulate build-up and wash-off from road
surfaces, and thereby to translate the predictions into catchment
stormwater quality and also for quantifying uncertainty.

Firstly, parameters of build-up and wash-off models were esti-
mated for each catchment using the small-plot scale field data. In
regard to wash-off model parameters, it was necessary to estimate
a common value for the wash-off coefficient (k) which can be used
for predicting wash-off for the selected storm events. In fact,
adoption of this approach was supported by the fact that the wash-
off coefficient is approximately similar for storm events with
different intensities (Avellaneda et al., 2009; Wijesiri et al., 2015a).
As such, a common value for ‘k’ was estimated for the range of
intensities of the selected storm events which varied from
13.8 mm/h to 74.2 mm/h. Accordingly, the common ‘k’ value was
estimated using the wash-off data corresponding to 20, 40, 65 and
86 mm/h storm events, which were simulated in the field investi-
gation. Estimated build-up and wash-off parameters are given in
Table S4 in the Supplementary Information.

Particulate build-up load per unit area was then predicted for
different antecedent dry periods using the estimated build-up
models. Then, particulate wash-off load per unit area was pre-
dicted for each predicted build-up value and for each storm event
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selected from the two representative years. Given the catchment
area and the volume of stormwater runoff simulated using the
catchment models, the predicted particulate wash-off load per unit
area was then converted to catchment scale Event Mean Concen-
tration (EMC) values. The EMC values for particulate solids are
presented in Tables S5 and S6 in the Supplementary Information.

For the quantification of uncertainty associated with predicted
stormwater quality, the procedure followed in the study described
in Wijesiri et al. (2016) was adopted. Accordingly, 10,000 simula-
tions of the EMCs of particulate solids were performed primarily
accounting for residual errors and parameter estimation errors that
correspond to the prediction of build-up and wash-off. In regard to
accounting for these errors, the proportional error model structure
(MathWorks, 2013) as defined by Equation (5) was assigned. As
such, the residual errors were accounted for in terms of the vari-
ance of ‘y’ given the build-up and wash-off model parameters ‘¢’
and predictor variable ‘t’. The variance of ‘y’ can be written as
shown by Equation (6). The parameter estimation errors were
accounted for in terms of the standard error of each estimated
parameter value which was obtained from the observed Fisher
Information Matrix generated by the nlinfit function. Thus, using
the simulated EMCs of particulate solids, lower (2.5th percentile)
and upper (97.5th percentile) uncertainty limits could be deter-
mined, accounting for 95% uncertainty interval.

500 ; ;
Antecedent dry period: 2 days

400} ]

20 30 40 50 60
Storm Event Intensity (mm/hr)

Antecedent dry period: 14 days

w

o

o
I

EMC (ppm)
N}
=}
S

100

60
Storm Event Intensity (mm/hr)

Fig. 2. Predicted Event Mean Concentration (EMC) of particulate solids and associated uncertainty limits for primary and revised models — Birdlife Park, year 2005 storm events;
Note: PM — primary models, and RM — revised models. Results for 2008 storm events are given in the Supplementary Information.
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y=f+bthfe (5)

varly|0, t] = G3f(t, ) (6)

where: y — response variable

f — function value

01 — error parameters

e ~N(0, 1)

t — predictor variable

8 — build-up and wash-off model parameters

Further, when simulating EMCs, the error parameter 61 was set
to 1 (default value) similar to the study in Wijesiri et al. (2016).
However, it is important to note that the uncertainty is a function of
both 0; and the predicted response. As the predicted response is a
function of 9, the uncertainty associated with 3 is also considered in
the uncertainty assessment. Moreover, 0; is a proportionality
parameter which shows that when the predicted response is rela-
tively large, the variance is relatively large (similarly when 6; is
relatively small, the variance is relatively small). In practice, 04
could be a range of values. However, the impact in terms of un-
certainty will be a function of the predicted response, and similar
trends of different magnitudes will be observed. Hence, setting 0,
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to a reasonable value allows assessing this impact in terms of
uncertainty.

3. Results and discussion
3.1. Accounting of process uncertainty

As discussed in Wijesiri et al. (2016), the quantitative accounting
of process uncertainty was related to the difference in uncertainty
associated with the build-up and wash-off predictions between
primary and revised models, noting that this was done using small
plot data. Therefore, the uncertainty associated with catchment
stormwater quality predicted in terms of EMC was compared be-
tween primary and revised models. As evident in Figs. 1-3 (storm
events for 2005) and Figs. S9—S11 (storm events for 2008), the
uncertainty bandwidth incorporated into the predicted EMCs using
revised build-up and wash-off models shows an increase.

However, as the predicted EMCs of primary and revised models
were found to be slightly different, the relative uncertainty band-
width (ratio between uncertainty bandwidth and predicted EMC)
was also compared. This allowed for an unbiased comparison of
uncertainty between primary and revised models. Accordingly,
Figs. 4—6 confirm the increase in uncertainty in relation to the
revised model. The change in uncertainty associated with predicted
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Fig. 3. Predicted Event Mean Concentration (EMC) of particulate solids and associated uncertainty limits for primary and revised models — Highland Park, year 2005 storm events;
Note: PM — primary models, and RM — revised models. Results for 2008 storm events are given in the Supplementary Information.
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EMCs between primary and revised models can be due to changes
in the mathematical form of the primary models which result from
the incorporation of process variability. Similar fact was noted by
Wijesiri et al. (2016) in the case of the small plot scale pollutant
processes modelling study.

Accordingly, it could be concluded that accurate characterisa-
tion of build-up and wash-off process variability in the respective
models enables process uncertainty to be accounted for as an in-
tegral part of the uncertainty associated with catchment storm-
water quality predictions. Furthermore, it has been highlighted in
past studies (e.g. Haddad et al., 2013; Lee et al., 2012; Sun et al,,
2012; Zoppou, 2001) that uncertainty associated with stormwater
quality predictions plays an important role in the interpretation of
these predictions. This makes it essential to understand how build-
up and wash-off process uncertainty could translate to un-
certainties in catchment stormwater quality predictions and
thereby support the interpretation of modelling outcomes.

3.2. Characterisation of the influence of process uncertainty

It is evident from Figs. 1—3 and Figs. S9—S11 that the change in
uncertainty is significantly influenced by the change in the upper
uncertainty limit, which is consistently greater than that of the
lower uncertainty limit. This applies to the change in the limits
within which predicted stormwater quality varies. On the other

1.65
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hand, this change in uncertainty reflects the influence of variability
in build-up and wash-off on pollutant loads released into storm-
water runoff. As such, in the case where process uncertainty is not
accounted for, it may not be possible to correctly interpret the
predicted catchment stormwater quality. This can lead to ineffec-
tive decision making in relation to the formulation of stormwater
pollution mitigation strategies.

As Figs. 4—6 reveal, the influence of process uncertainty on
catchment stormwater quality predictions can be distinguished
between build-up and wash-off processes. As such, in relation to
the revised models, the relative uncertainty bandwidths show
greater variation over different build-up events compared to the
variation in relative uncertainty bandwidths over different storm
events (wash-off events). The influence of build-up process un-
certainty on stormwater quality predictions implies that the vari-
ability in pollutant build-up plays a relatively more important role
in influencing catchment stormwater quality predictions. This
conclusion is further supported by the fact that build-up process
uncertainty propagates to the wash-off process (Wijesiri et al.,
2016), resulting in significant variations in the load and composi-
tion of pollutants entrained in stormwater runoff, and thereby, the
stormwater quality predictions. Moreover, the significance of the
build-up process variability in the context of the prediction of
catchment stormwater quality can be considered to be a generic
finding as the revised build-up model shows similar behaviour in
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Fig. 4. Relative uncertainty bandwidth (RUB) for primary and revised models — Gumbeel.
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relation to small plot scale predictions (Wijesiri et al., 2015b).

Furthermore, in the context of designing stormwater pollution
mitigation strategies, Liu et al. (2012) highlighted the need to focus
on specific storm events based on the pollutant loads present in
stormwater runoff. Therefore, investigating the influence of process
uncertainty on stormwater quality predictions specifically in rela-
tion to such storm events would also facilitate the formulation of
effective pollution mitigation strategies. Liu et al. (2012) adopted an
approach primarily based on storm event intensity and duration in
order to classify the storm events occurring in the same
geographical area as this study.

Accordingly, the Intensity-Frequency-Duration distributions of
the storm events selected from the years, 2005 and 2008 were
developed as shown in Fig. 7. Evidently, four types of storm events
could be identified as shown. In this classification, the storm events
with intensities less than 30 mm/h and durations less than 0.5hr
were considered as low intensity-short duration storm events
(Type 1), while Type 2 storm events were identified as low
intensity-long duration (>0.5hr) storm events. Similarly, Type 3 and
4 storm events were identified as high intensity (>30 mm/h)-short
duration and high intensity-long duration events, respectively. As
can be seen in Fig. 7, Type 1 storm events have occurred most
frequently in both 2005 (11 events) and 2008 (21 events). However,
this observation differs slightly from the results reported by Liu
et al. (2012), where low intensity (<20 mm/h)-long duration

(>2hr) events were found to occur more frequently. This could be
due to the fact that the classification in the current study is rela-
tively broader (four types of storm events) than the classification by
Liu et al. (2012) (three types of storm events) could influence the
difference in the characteristics of the most frequent storm events.
In effect, the criteria for selection and classification of storm events
can influence the design of effective stormwater pollution mitiga-
tion strategies.

In addition to the storm event intensity and duration, runoff
volume is also critical for designing effective stormwater pollution
mitigation strategies. Specifically, pollutants contained in smaller
volumes of stormwater runoff can be effectively treated (Guo and
Urbonas, 1996; Liu et al., 2013). As such, it was important to
consider the runoff volume generated by the different types of
storm events, and investigate the influence of process uncertainty
on stormwater quality predictions that correspond to each type of
storm event. Fig. 8 (for 2005) and Fig. S12 (for 2008) in the Sup-
plementary Information show the Intensity-Runoff-Duration dis-
tributions for the storm events selected from the two
representative years. It is evident that both Type 1 and Type 3
events generate significantly smaller volume of runoff compared to
Type 2 and Type 4 events. Figs. S13 and S14 in the Supplementary
Information show the distributions of Runoff-Area ratio (ratio be-
tween runoff volume and total catchment area) for the selected
storm events, which is a useful index in the context of the
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Fig. 5. Relative uncertainty bandwidth (RUB) for primary and revised models — Birdlife Park.



18 B. Wijesiri et al. /| Water Research 103 (2016) 10—20

development of stormwater management strategies. It is further
evident that Type 1 and Type 3 events can be clearly distinguished
from Type 2 and Type 4 events.

In fact, Type 1 and Type 3 storm events together account for
more than 70% of the total events that have an average intensity of
30 mmy/h. On the other hand, Figs. 13 and Figs. S9—S11 and data
presented in Tables S5 and S6 reveal that storm events with average
intensity around 30 mm/h and duration less than 0.5hr are
responsible for generating the highest EMCs for particulate solids.
Interestingly, the proportionately wider uncertainty limits associ-
ated with these predictions of high EMCs show that the solids
concentrations could vary over a relatively wider range compared
to the EMCs predicted for Type 2 and Type 4 storm events.

Specifically, in relation to Type 1 and Type 3 storm events, the
change in the uncertainty limits corresponding to the revised build-
up and wash-off models also shows greater variation than the
change in uncertainty limits for Type 2 and Type 4 events. The
uncertainty associated with predicted EMCs for Type 1 and Type 3
and Type 2 and Type 4 storm events are shown separately in
Figs. S15 and S16 in the Supplementary Information. This implies
that the influence of process uncertainty on stormwater quality
predictions for Type 1 and Type 3 events is relatively more signif-
icant compared to the predictions for Type 2 and Type 4 events. The
significance of the influence of process uncertainty on stormwater
quality predictions for each type of storm events can be further

highlighted by considering the relationship between storm event
characteristics and Runoff-Area ratios (by comparing Figs. S13 and
S14 with Figs. S15 and S16). Further, the influence of process un-
certainty on predictions of particulate solids loadings would be
similar to the influence of process uncertainty on EMCs. This is due
to the fact that uncertainty is a function of the predicted response
(discussed in Section 2.6). Therefore, it is important that the design
of stormwater pollution mitigation strategies should specifically
focus on accurate interpretation of stormwater quality predictions
for Type 1 and Type 3 storm events in order to enhance the effec-
tiveness of such strategies. Liu et al. (2012) also identified the
importance of focussing on storm events with characteristics
similar to Type 1 and Type 3 events (i.e. intensity >20 mm/h and
duration <2hr) in the design of stormwater pollution mitigation
strategies.

4. Conclusions

This paper has presented an approach to quantitatively assess
the build-up and wash-off process uncertainty as an integral part of
the uncertainty associated with stormwater quality predictions.
Process uncertainty was found to influence the upper limit of the
uncertainty associated with predicted particulate solids event
mean concentration values. This illustrates the changes in the limits
within which predicted stormwater quality varies, particularly
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highlighting the influence of process variability on variations in
pollutant loads entrained in stormwater runoff. The impact of
build-up process uncertainty on stormwater quality predictions
was found to be greater than that of wash-off process uncertainty.
This implies that the variability in the build-up process contributes
significantly to the variations in catchment stormwater quality.

It was also found that the storm events with average intensity
around 30 mm/h and duration less than 0.5hr produce the highest
concentrations of particulate solids. These storm events could also
be distinguished from the events with relatively large average in-
tensity (>30 mm/h) and duration greater than 0.5hr. Further, the
storm events (average intensity around 30 mm/h and duration less
than 0.5hr) were clearly identified in terms of the Runoff-
Catchment Area ratio, which is an important index used for the
development of stormwater management strategies. The storm-
water quality predictions corresponding to these storm events are
significantly influenced by the build-up and wash-off process un-
certainty compared to other events. As such, the selection of storm
events for the design of stormwater pollution mitigation strategies
needs to take into consideration not only the storm event charac-
teristics and runoff volume, but also the influence of build-up and
wash-off process uncertainty on stormwater quality predictions.
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