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a b s t r a c t

This study investigates sources of uncertainty in the modelling of greenhouse gas emis-

sions from wastewater treatment, through the use of local and global sensitivity analysis

tools, and contributes to an in-depth understanding of wastewater treatment modelling by

revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity

analysis is used to screen model parameters and identify those with significant individual

effects on three performance indicators: total greenhouse gas emissions, effluent quality

and operational cost. Sobol’s method enables identification of parameters with significant

higher order effects and of particular parameter pairs to which model outputs are sensi-

tive. Use of a variance-based global sensitivity analysis tool to investigate parameter in-

teractions enables identification of important parameters not revealed in one-factor-at-a-

time sensitivity analysis. These interaction effects have not been considered in previous

studies and thus provide a better understanding wastewater treatment plant model

characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the

primary contributor to uncertainty in total greenhouse gas emissions, due largely to the

interaction effects of three nitrogen conversion modelling parameters. The higher order

effects of these parameters are also shown to be a key source of uncertainty in effluent

quality.

ª 2013 Elsevier Ltd. All rights reserved.
1. Introduction Models used to estimate the magnitude of GHG emissions
Wastewater treatment can result in direct emissions of

greenhouse gases (GHGs) such as carbon dioxide (CO2),

methane (CH4) and nitrous oxide (N2O), as well as indirect

emissions resulting from energy generation, chemical

manufacture and sludge disposal, amongst other sources.

Reduction of GHG emissions is a topic of global interest, and it

is recognised that appropriate design and operation of

wastewater treatment processes can play a significant role in

mitigating the effects of global warming (Gori et al., 2011).
652.
tapple).
ier Ltd. All rights reserve
from wastewater treatment plants (WWTPs) for inventories

typically utilise empirical emission factors (e.g. IPCC, 2006b),

based on the volume of wastewater treated, influent concen-

trations, effluent concentrations or the mass of wastewater

components removed. These emission factors, however, have

a high degree of variability and uncertainty (Corominas et al.,

2012): for example, N2O emissions in the range 0e90% of the

nitrogen-load were reported by Kampschreur et al. (2009). As

such, there has been increasing interest in the use of

comprehensive process models and mechanistic models to
d.
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estimate dynamic GHG emissions. Resulting from this, it has

been highlighted that significant variability can occur in GHG

emissions from WWTPs with different designs (Shahabadi

et al., 2009) and operating under different conditions (Flores-

Alsina et al., 2011).

As wastewater utilities face the challenge of simulta-

neously reducing GHG emissions and improving treatment

standards due to increasing regulatory pressures, the impor-

tance of including GHG emissions in addition to effluent

quality and operational costs when evaluating design alter-

natives is clear. It has been shown that use of automatic

control can reduce GHG emissions (Corominas et al., 2010), but

models used are typically of hypothetical WWTPs and their

results are not always validated with real data (e.g. Hiatt and

Grady, 2008; Guo et al., 2012). As such, results are likely to be

subject to a high degree of uncertainty; and careful calibration

is therefore essential if applying the models and estimation

methodologies to a real WWTP for plant design or control

strategy development to reduce GHG emissions. Identification

of the most significant sources of uncertainty could aid effi-

cient calibration of models and reduce the complexity of

future uncertainty analyses, yet there has been little research

into the magnitude of uncertainty in GHG emission estimates

resulting from uncertainty in model parameters and emission

factors.

Sensitivity analysis is a useful tool for identification of the

key parameters controlling model outputs (Tang et al., 2007a).

However, whilst sensitivity analyses of dynamic WWTP

models have previously been undertaken to investigate the

effects of uncertainty in model parameters (e.g. Pons et al.,

2008; Flores-Alsina et al., 2009; Ramin et al., 2012), design

and operational parameters (Benedetti et al., 2008; Pons et al.,

2008) and influent characteristics (Pons et al., 2008), no

detailed analyses for identification of key parameters

affecting GHG emissions have been carried out. Gori et al.

(2011) completed a sensitivity analysis to investigate the ef-

fects of varying the pCOD/VSS ratio on the rate of GHG emis-

sions from different sources, but no other model parameters

were considered. Global sensitivity analyses (GSAs) of the

Benchmark Simulation Model No. 1 (BSM1) (Sin et al., 2011)

and the Benchmark Simulation Model No. 2 (BSM2) (Benedetti

et al., 2008), based on Monte Carlo experiments and linear

regression, enabled the identification of individual parame-

terswith significant effects on effluent quality and operational

cost, but did not consider GHG emissions. However, in-

teractions were not investigated and output uncertainty was

attributed to individual parameters only.

The aim of this research is to identify individual parame-

ters and parameter interactionswhich contribute significantly

to uncertainty in modelled GHG emissions from wastewater

treatment, as well as the more widely used performance in-

dicators of effluent quality and operational cost. Investigation

of the relative contributions of specific parameter interactions

to output uncertainty represents an advance in WWTP

modelling, as previous analyses have not enabled identifica-

tion of significant interactions. Sensitivity analysis of a revised

BSM2, with pre-defined layout, operating conditions and

influent characteristics, is carried out using the one-factor-at-

a-time (OAT) method, to identify significant individual (first

order) effects and inform the selection of parameters for
inclusion in further analysis. GSA is then carried out using a

variance-based method e Sobol’s method (Saltelli, 2002) e to

investigate higher order effects (interactions). This tool has

not, as of yet, been extensively used in wastewater treatment,

but previous applications have revealed situations and

modelling scenarios in which calibration is likely to be most

challenging due to the greater presence of parameter in-

teractions (Massmann andHolzmann, 2012) and improved the

efficiency of multi-objective optimisation problems by iden-

tifying important decision variable interactions (Fu et al.,

2012). The results enable identification of: a) parameters that

have negligible impact on uncertainty in key model outputs

and can, therefore, be excluded from future uncertainty ana-

lyses; and b) parameters which contribute significantly to

variance in any key model output, due to first or higher order

effects, and so need to be accurately defined for model cali-

bration and application.
2. Materials and methods

2.1. Model description

2.1.1. Model structure
The WWTP model used for parameter sensitivity analysis,

which will be referred to as BSM2-e, is based on the Bench-

mark Simulation Model No. 2: BSM2 (Jeppsson et al., 2007),

with modifications (outlined in Section 2.1.2) made to enable

dynamicmodelling of the emissions shown in Fig. 1. The plant

layout and modelling of pre-treatment and sludge treatment

processes are unaltered from those of BSM2 (as detailed by

Jeppsson et al. (2007) and Nopens et al. (2010)), but adjust-

ments have been made to the activated sludge model to

enable calculation of N2O emissions. A complete description

of all equations added and modifications made to the BSM2 is

provided as Supplementary information.

2.1.2. Greenhouse gas emission modelling methodologies
GHG emissions are modelled using previously published

estimation methodologies, which are implemented in BSM2.

Sources of GHG production and direct emissions from the

modelled processing units include:

� Aerobic substrate utilisation (CO2), biomass decay (CO2) and

denitrification (CO2 and N2O) in activated sludge reactors

In BSM2, the reduction of nitrate to nitrogen is modelled as

a one-step process and dynamic production of N2O (an inter-

mediate product) cannot be determined. Modifications have

therefore been made to include four-step denitrification as

detailed by Samie et al. (2011). Stripping of N2O from solution

is then modelled using Henry’s law. CO2 emissions resulting

from nutrient removal are calculated using emission factors

derived from the stoichiometric relationships for denitrifica-

tion with and without an external carbon source (Shahabadi

et al., 2010).

Calculation of CO2 emissions from substrate utilisation and

biomass decay is based upon themethod detailed byMonteith

et al. (2005), with the suspended solids mass balance equation

adapted for non-steady state conditions. Required

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Fig. 1 e Schematic diagram of the modified BSM2 plant and sources of modelled GHG emissions (adapted from Nopens et al.

(2010)).
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concentrations and flow rates have been derived from the

BSM2 state variables and theoretical emission factors, derived

from stoichiometry, are applied.

� Biogas leakage (CO2 and CH4) and combustion (CO2)

Dynamic CH4 and CO2 formation and stripping in the

anaerobic digester and the resultant biogas composition and

flow rate are modelled in BSM2. It is assumed in BSM2 that all

biogas is combusted for energy recovery. However, past in-

vestigations (e.g. Shahabadi et al., 2009; Shahabadi et al., 2010),

have identified biogas leakage as a potential contributor to

total emissions. As it is impractical to accurately measure or

model small leaks, a fixed leakage factor of 5% (Shahabadi

et al., 2009) has been applied. It is assumed that the remain-

ing biogas is fully combusted and a theoretical emission factor

(Monteith et al., 2005) is used calculate CO2 production.

� Stripping of dissolved gases (CH4) in dewatering unit

Dissolved CH4 concentration in the digester effluent is

calculated using the BSM2 methodology. Given the negligible

partial pressure of CH4 in the atmosphere, it is assumed that

all CH4 is stripped from solution during dewatering.

Additional direct emissions may result from poorly

managed treatment and unintentionally anaerobic conditions

(Monteith et al., 2005); these are notmodelled, however, due to

a lack of reliable estimation techniques. Likewise, N2O emis-

sions associated with nitrifier denitrification during nitrifica-

tion are omitted. There have been recent studies into the

factors influencing N2O emissions (e.g. Foley et al., 2010; Law
et al., 2011; Rassamee et al., 2011), but there is little

consensus on a method which can be used to estimate emis-

sionswith any degree of certainty andmetabolicmodels of the

nitrifier denitrificationpathway (Mampaey et al., 2011; Ni et al.,

2011) have been found unable to consistently reproduce

experimental N2O emissions data (Law et al., 2012; Ni et al.,

2013). The significance of this omission is uncertain; hetero-

trophic denitrification is the dominant nitrogen removal pro-

cess, but nitrifier denitrification yields greater N2O emissions

relative to the nitrogen converted (Kampschreur et al., 2009).

Incomplete hydroxylamine oxidation can also result in N2O

emissions, but it is unclear underwhat conditions this process

becomes dominant and current models are inadequate (Ni

et al., 2013). If nitrification modelling is included in future

GHG emission estimates, inclusion of the associated parame-

ters in uncertainty analysis is recommended.

Indirect emissions result from:

� Generation of energy imported

Energy required for pumping, aeration, heating andmixing

is modelled using the original BSM2 methodologies; energy

recovery from biogas combustion is also calculated using the

BSM2 methodology, but with allowance for biogas leakage

incorporated. GHG emissions associated with net energy

import are affected by the electricity generation mix, as

emissions differ between energy sources. However, as elec-

tricity grid composition varies locally and nationally and the

model is not linked to a specific location, a single emission

factor of 0.245 kg CO2e/kWh (Gori et al., 2011) is used but

defined as uncertain.

http://dx.doi.org/10.1016/j.watres.2013.05.021
http://dx.doi.org/10.1016/j.watres.2013.05.021


wat e r r e s e a r c h 4 7 ( 2 0 1 3 ) 4 6 5 2e4 6 6 5 4655
� Manufacture of chemicals

Indirect emissions due to chemical addition have been

calculated using the carbon source flow rate for each tank, as

modelled in BSM2, and an emission factor of 1.54 kg CO2e/kg

MeOH (Shahabadi et al., 2010).

� Offsite degradation of effluent

Indirect CO2 emissions are modelled based on the

assumption that all BOD5 remaining in the effluent degrades

aerobically, as detailed by Shahabadi et al. (2010). Indirect N2O

emissions are calculated using an emission factor of 0.005 kg

N2OeN/kg N (IPCC, 2006b).

� Transport and offsite degradation of sludge

Emissions resulting from the transport of sludge are esti-

mated using a fixed emission factor (Shahabadi et al., 2010).

Emissions of CO2 and CH4 resulting from the degradation of

biosolids remaining in the sludge are modelled as detailed by

Shahabadi et al. (2009), based on the theoretical stoichiometric

equation for biomass decay in an anaerobic environment.

Dynamic N2O emissions are calculated using the modelled

sludge nitrogen content and an emission factor of 0.01 kg

N2O-/kg N (IPCC, 2006a).

All emissions are converted to CO2 equivalent (CO2e) units,

using global warming potentials (GWPs) of 21 and 310 for CH4

and N2O respectively (IPCC, 1996), to enable comparison of the

magnitude of emissions from each source.

2.1.3. Simulation strategy and performance assessment
The performance of control strategies in the BSM2 is typically

assessed using a 609 day simulation, incorporating stabilisa-

tion and evaluation periods, with predefined dynamic influent

data. Initial values should be determined by simulation with

200 days of constant influent data to allow the model to reach

steady state (Jeppsson et al., 2007). In order to carry out a GSA

of model parameters, however, it is necessary to significantly

reduce the computational demand. Based on analysis of the

effects ofmodifications in stabilisation and evaluation periods

on the OAT sensitivity analysis parameter rankings, a reduced

dynamic simulation period (consisting of 14 days stabilisation

and 14 days evaluation, using days 322e350 of the BSM2 dy-

namic influent data) has been selected to follow the 200 day

steady state initialisation. Whilst this shortened simulation

does not reproduce the model outputs obtained with full

length stabilisation and evaluation, it has been found to be

suitable for assessment of the relative importance of param-

eters, enabling correct identification of the most sensitive

model parameters in OAT sensitivity analysis and resulting in

an average change in rank of just 1.1 for all 70 parameters

across the three key outputs when compared with analysis

using the full dynamic simulation period (609 days).

Performance indicators used include an effluent quality

index (EQI) and an operational cost index (OCI), calculated

using the BSM2 methodology (Jeppsson et al., 2007). EQI is a

weighted sum of average effluent concentrations; OCI is a

measure of the average energy demand, energy recovery,

carbon source dosage and sludge production for disposal.
Average GHG emissions per unit of wastewater treated are

also calculated, and the contribution of each gas and direct

and indirect emissions to total GHG emissions aremodelled to

allow a more in-depth investigation into the most significant

sources of uncertainty.

2.1.4. Model validation
The magnitude of GHG emissions per unit of treated waste-

water reported in the literature differs significantly, even for

WWTPs with the same or similar treatment processes and

control. Total emissions in the range 19,554e22,920 kg CO2e/

d (equivalent to 0.947e1.110 kg CO2e/m
3, based on specified

flow rate) were reported by Corominas et al. (2012) in an

investigation into the effects of different GHG modelling ap-

proaches for the BSM2 plant. The BSM2-e emissions model

gives total GHG emissions of 1.077 kg CO2e/m
3 when using the

default BSM2 evaluation period, which is within this range.

2.2. Sensitivity analysis methodology

153 BSM2 parameters are used in the model (excluding those

relating to the plant design and operation), and a further 64

are used for the incorporated denitrification and emissions

modelling. Given the large number of evaluations required for

GSA, it is not practical to include every parameter. Therefore,

OAT sensitivity analysis, which requires significantly fewer

model evaluations, is used to provide an indication of the

importance of each parameter and identify parameters with

negligible effect on uncertainty in model outputs.

OAT sensitivity analysis enables changes in model outputs

to be clearly attributed to a specific parameter, with no am-

biguity, but does not explore the effects of varying two ormore

parameters simultaneously and is unable to identify any sig-

nificant interactions. As such, it is followed by GSA to obtain

an understanding of second (and higher) order effects and

allow exploration of the full parameter space.

2.2.1. Parameter screening
2.2.1.1. Parameter selection and definitions. Selection of BSM2

parameters is guided by the results of previous GSA by

Benedetti et al. (2008): those identified as being not significant

for EQI, OCI and effluent NH4 violations in terms of both the

standard regression coefficient and the partial correlation

coefficient are excluded from this analysis. Henry’s law co-

efficients used to model dissolution and stripping of CO2 and

CH4 in the anaerobic digester, however, are added to the

analysis, as they may affect emissions despite not having

significant effects on previously considered model outputs.

All half-saturation constants added for the modelling of

nitrogen conversions are included in the sensitivity analysis,

because these parameters have a high degree of uncertainty

(Reichert and Vanrolleghem, 2001) and affect modelled N2O

production, which has been shown to be a major contributor

to GHG emissions fromWWTPs (Rodriguez-Garcia et al., 2012).

Also, other half-saturation constants were found to be sig-

nificant by Benedetti et al. (2008).

It is assumed that median values for each parameter are

equal to the BSM2 default values (where applicable). For all

other parameters, median values are assumed to be those

reported in the literature on which the calculations are based.

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Parameters for which no feasible range is specified in the

literature are classified according to the system defined by

Reichert and Vanrolleghem (2001) (summarised in Table 1)

and adopted in later sensitivity and uncertainty analyses

(Rousseau et al., 2001; Benedetti et al., 2008).

Full details of parameters selected for screening are given

in Tables 2 and 3 and Table 3. Parameters 1e26 are BSM2 pa-

rameters, 27e39 are nitrogen conversion modelling parame-

ters and 40e70 are emissions modelling parameters.

2.2.1.2. One-factor-at-a-time sensitivity analysis. To carry out

OAT sensitivity analysis, a simulation is first conducted with

all parameters set at their default values; this represents the

base case. Further simulations are carried out with each

parameter individually set to its upper and lower bound

values in turn, whilst all others are held at their default values.

Percentage change in each model output with respect to the

base case is calculated for each simulation, to determine

which parameters cause the greatest variation in model out-

puts when individually varied within their feasible range.

2.2.2. Global sensitivity analysis
Sobol’s method (2001) is selected for GSA despite being

computationally expensive, as it enables first, second and

higher order effects to be distinguished through the calcula-

tion of first, second and total order sensitivity indices for each

parameter or parameter pair. It also provides more robust

sensitivity rankings and a more detailed description of the

impact of individual parameters and their interactions on

model performance than other GSAmethods such as analysis

of variance (Tang et al., 2007b), and requires significantly

fewer model evaluations than factorial design given the large

number of parameters under investigation.

The total variance (D) of model outputs, resulting from

samples of the feasible parameter space, is decomposed and

attributed to specific parameters and their interactions as fol-

lows, assumingparameters are independent (Tanget al., 2007b):

D ¼
X

i

Di þ
X

i<j

Dij þ
X

i<j<k

Dijk þ.þ D12.p (1)
Table 1 e Parameter uncertainty classes.

Class Description Uncertainty (%) Examples

1 Accurately

known

parameters

5 External and

input parameters

2 Intermediate 20 Growth rates;

temperature

dependence

coefficients

3 Very poorly

known

parameters

50 Kinetic parameters,

except those listed

in Class 2; half-

saturation

concentrations;

specific death

and respiration

rates
where Di ¼ output variance resulting from the ith parameter;

Dij ¼ output variance resulting from interaction between ith

and jth parameters; p ¼ total number of parameters.

First and second order sensitivity indices Si and Sij repre-

sent the percentage contribution of the ith parameter alone

and the interaction between the ith and jth parameters to total

variance, respectively; total order index STi represents the

percentage contribution related to the ith parameter,

including the interactions of any order, as defined below:

Si ¼ Di

D
(2)

Sij ¼
Dij

D
(3)

STi ¼ 1� Dwi

D
(4)

where Dwi ¼ output variance resulting from all parameters

except ith parameter. A high first order sensitivity index in-

dicates a parameter whose individual uncertainty provides a

large contribution to output variance, whereas a low first

order index and high total order index indicates a parameter

whose interactions result in significant output variance, but

individually has little effect.

Sobol’s method is implemented here as follows:

1. Specify upper and lower bounds of parameters for analysis.

2. Generate 2n random parameter samples within the speci-

fied bounds, with quasi-Monte Carlo sampling using

Sobol’s sequence generator.

3. Resample parameters using Saltelli’s (2002) extension to

Sobol’s method, holding one fixed at a time, to generate

n(2pþ2) parameter sets.

4. Run model with each parameter set in turn, recording

values of model outputs.

5. Compute first order, total order and second order sensi-

tivity indices, and rankings for each parameter as detailed

by Tang et al. (2007b).

6. Calculate 95% bootstrap confidence intervals for all sensi-

tivity indices.
3. Results and discussion

3.1. One-factor-at-a-time sensitivity analysis

OAT sensitivity analysis results are presented in Tornado di-

agrams, which show the percentage change in each model

output with respect to the base case when each model

parameter is individually set to its respective upper and lower

bounds. Parameters are ranked by the greatest range of per-

centage change for any model output and results for the most

sensitive parameters are presented in Fig. 2. For clarity, only

the 28 parameters with a corresponding range of change of at

least 5% in one or more model output are shown.

Variation of a single parameter within its feasible range

can have particularly significant effects on modelled GHG

emissions; setting the half saturation constant for readily

biodegradable substrate for N2O reduction (parameter 30) to

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Table 2 e BSM2 and nitrogen modelling parameters selected for sensitivity analysis screening and global sensitivity
analysis (highlighted); HSC [ half saturation coefficient.

Parameter
number/name

Description Default value Class Bounds

Value Ref. Lower Upper Ref.

1/Y_H Heterotrophic biomass yield (g COD/g COD) 0.67 a 1 0.6365 0.7035 c

2/f_P Fraction of biomass yielding particulate products 0.08 b 1 0.076 0.084 c

3/i_XB Biomass nitrogen/COD mass ratio (g N/g COD) 0.08 a 1 0.076 0.084 c

4/mu_H Heterotrophic max specific growth rate (/d) 4 a 2 3.2 4.8 c

5/K_OH Oxygen HSC for heterotrophic biomass (g(eCOD)/m3) 0.2 a 3 0.1 0.3 c

6/ny_g Correction factor for anoxic heterotroph growth 0.8 a 2 0.64 0.96 c

7/ny_h Correction factor for anoxic hydrolosis 0.8 a 2 0.64 0.96 N/A

8/k_h Max specific hydrolosis rate (g COD/g COD/d) 3 a 3 1.5 4.5 N/A

9/K_X HSC of slowly biodegradable substrate (g COD/g COD) 0.1 a 3 0.05 0.15 N/A

10/mu_A Autotrophic max specific growth rate (/d) 0.5 a 2 0.4 0.6 c

11/K_NH Ammonia HSC for autotrophs (g NH3eN/m3) 1 a 3 0.5 1.5 c

12/b_A Decay coefficient for autotrophic biomass (/d) 0.05 a 3 0.025 0.075 N/A

13/K_OA Oxygen HSC for autotrophic biomass (g (eCOD)/m3) 0.4 a 3 0.2 0.6 c

14/k_a Ammonification rate (m3/g COD/d) 0.05 a 3 0.025 0.075 N/A

15/F_TSS_COD TSS fraction of total COD (g TSS/g COD) 0.75 a 1 0.7125 0.7875 N/A

16/k_hyd_ch Hydrolosis influence coefficient for

carbohydrates (/d)

10 a N/A 6.25 12.5 Derived

from c

17/k_hyd_pr Hydrolosis influence coefficient for

proteins (/d)

10 a N/A 6.36 13.64 Derived

from c

18/k_hyd_li Hydrolosis influence coefficient

for lipids (/d)

10 a N/A 6.36 13.64 Derived

from c

19/K_S_ac Monod HSC for acetate (kg COD/m3) 0.15 a 3 0.075 0.225 N/A

20/K_H_co2 Henry’s law coefficient for CO2 (Mliq/bar) 0.035 a 2 0.028 0.042 N/A

21/K_H_ch4 Henry’s law coefficient for CH4 (Mliq/bar) 0.0014 a 2 0.00112 0.00168 N/A

22/frxs_adm Anaerobically degradable fraction biomass 0.68 a 1 0.646 0.714 N/A

23/v0 Maximum Vesilind settling velocity (m/d) 474 a 2 379.2 568.8 c

24/r_h Hindered zone settling parameter (m3/g SS) 5.76E-04 a 2 0.00046 0.00069 c

25/r_p Flocculent zone settling parameter (m3/g SS) 0.00286 a 2 0.00229 0.00343 c

26/f_ns Non-settleable fraction 0.00228 a 2 0.00182 0.00274 c

27/K_S2 HSC for S_S for NO3- reduction (g COD/m3) 20 d 3 10 30 N/A

28/K_S3 HSC for S_S for NO2- reduction (g COD/m3) 20 d 3 10 30 N/A

29/K_S4 HSC for S_S for NO reduction (g COD/m3) 20 d 3 10 30 N/A

30/K_S5 HSC for S_S for N2O- reduction (g COD/m3) 40 d 3 20 60 N/A

31/K_NO3 HSC for SNO3 for heterotrophs (g N/m3) 0.2 d 3 0.1 0.3 N/A

32/K_NO2 HSC for SNO2 for heterotrophs (g N/m3) 0.2 d 3 0.1 0.3 N/A

33/K_NO HSC for SNO for heterotrophs (g N/m3) 0.05 d 3 0.025 0.075 N/A

34/K_N2O HSC for SN2O for heterotrophs (g N/m3) 0.05 d 3 0.025 0.075 N/A

35/ny_g2 Anoxic growth factor for NO3
� reduction 0.28 d 2 0.224 0.336 N/A

36/ny_g3 Anoxic growth factor for NO2
� reduction 0.16 d 2 0.128 0.192 N/A

37/ny_g4 Anoxic growth factor for NO reduction 0.35 d 2 0.28 0.42 N/A

38/ny_g5 Anoxic growth factor for N2O reduction 0.35 d 2 0.28 0.42 N/A

39/ny_Y Anoxic yield factor for heterotrophs 0.9 d 1 0.855 0.945 N/A

a Alex et al. (2008).

b Henze et al. (1987).

c Benedetti et al. (2008).

d Hiatt and Grady (2008).
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its upper bound, for example, results in a 244% increase in

reported GHG emissions. Individual variation of a further

eight parameters is shown to result in a range of at least 25%

change in GHG emissions.

A maximum range of variation in total GHG emissions of

260%, resulting from uncertainty in just one parameter (No.

30), is observed, whereas maximum changes in EQI and OCI

are significantly lower at 22.0% (No. 12) and 17.9% (No. 64)

respectively. This confirms that accurate calibration of the

model with regards to GHG emissions modelling is extremely

important. The nine parameters shown to have greatest
individual effects on GHG emissions are all used in the

modelling of nitrogen conversions, suggesting that uncer-

tainty in GHG emissions corresponds primarily to uncertainty

in the rate of N2O production. The three parameters to which

GHG emissions are shown to be most sensitive result in

negligible change in EQI and OCI and ought, therefore, to be

relatively simple to calibrate if significant higher order effects

are not identified in GSA.

The greatest changes in EQI arise due to uncertainty in the

original BSM2 parameters, and nitrogen modelling parame-

ters have comparatively little impact. Uncertainty in

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Table 3 e Emissions modelling parameters selected for sensitivity analysis screening and global sensitivity analysis
(highlighted); EF [ emission factor.

Parameter
number/name

Description Default value Class Bounds

Value Ref. Lower Upper Ref.

40/f Ratio of BOD5 to BODu (g BOD5/g BODu) 0.68 b 1 0.646 0.714 N/A

41/EF_AerOxi EF for aerobic oxidation of BOD (kg CO2/kg O2) 1.1 b 1 1.045 1.155 N/A

42/EF_AerAutoOxi EF for endogenous respiration of VSS (kg CO2/kg VSS) 1.947 b 1 1.850 2.044 N/A

43/EF_CO2denitWCarb EF for CO2 emissions from denitrification

with external carbon source (g CO2/g N2_N)

2.62 Derived

from c

1 2.489 2.751 N/A

44/EF_CO2denitWOCarb EF for CO2 emissions from denitrification

without external carbon source (g CO2/g N2_N)

2.83 Derived

from c

1 2.689 2.972 N/A

45/K_H_n2o_base Henry’s law constant for N2O (mol/l/bar) 0.025 d 2 0.02 0.03 N/A

46/kLa_n2o Gas transfer coefficient for N2O (/d) 2 e 3 1 3 N/A

47/pgas_n2o Partial pressure of N2O in atmosphere (bar) 3.20E-07 f 2 2.56E-07 3.84E-07 N/A

48/EF_AnaerBODremCH4 CH4 emissions from anaerobic carbonaceous

substrate utilisation (g CH4/g BOD)

0.25 c 1 0.238 0.263 N/A

49/EF_AnaerBODremCO2 CO2 emissions from anaerobic carbonaceous

substrate utilisation (g CO2/g BOD)

0.27 c 1 0.257 0.284 N/A

50/EF_AnaerVSSdecCH4 CH4 emissions from anaerobic biomass

decay (g CH4/g VSS)

0.35 c 1 0.333 0.368 N/A

51/EF_AnaerVSSdecCO2 CO2 emissions from anaerobic biomass

decay (g CO2/g VSS)

0.58 c 1 0.551 0.609 N/A

52/leak_frac Fraction of biogas leaked 0.05 g 3 0.025 0.075 N/A

53/CH4toCO2_combust Combustion emission factor (g CO2/g CH4) 2.75 b 1 2.613 2.888 N/A

54/CH4_conversioneff Energy conversion efficiency for heating 0.5 h 2 0.4 0.6 N/A

55/PF_Qintr Pumping energy factor, internal AS

recirculation (kWh/m3)

0.004 a 2 0.0032 0.0048 N/A

56/PF_Qr Pumping energy factor, AS sludge recycle (kWh/m3) 0.008 a 2 0.0064 0.0096 N/A

57/PF_Qw Pumping energy factor, AS wastage flow (kWh/m3) 0.05 a 2 0.04 0.06 N/A

58/PF_Qpu Pumping energy factor, pumped underflow from

primary clarifier (kWh/m3)

0.075 a 2 0.06 0.09 N/A

59/PF_Qtu Pumping energy factor, pumped underflow from

thickener (kWh/m3)

0.06 a 2 0.048 0.072 N/A

60/PF_Qdo Pumping energy factor, pumped underflow from

dewatering unit (kWh/m3)

0.004 a 2 0.0032 0.0048 N/A

61/mixenergyunitreac Energy for activated sludge mixing (kW/m3) 0.005 a 2 0.004 0.006 N/A

62/mixenergyunitAD Energy for anaerobic digester mixing (kW/m3) 0.005 a 2 0.004 0.006 N/A

63/cp Specific heat capacity for water (Wd/gC) 4.84E-05 a 1 4.60E-05 5.09E-05 N/A

64/O2TransferEff Aeration oxygen transfer efficiency (kg O2/kWh) 1.80 i 2 1.44 2.16 N/A

65/EF_Elec EF for electricity generation (kg CO2e/kWh) 0.245 h 2 0.196 0.294 N/A

66/EF_EmbodiedCarb EF for methanol usage (kg CO2e/kg) 1.54 c 2 1.232 1.848 N/A

67/EF_SludgeTransport EF for transport of sludge (kg CO2e/tonne) 24 c 2 19.2 28.8 N/A

68/EF_SludgeN2O EF for sludge applied to managed soils (kg N2O/kg N) 0.016 j 2 0.013 0.019 N/A

69/EF_AerBODreml EF for carbonaceous BOD removal (kg CO2/kg COD) 0.33 c 1 0.314 0.347 N/A

70/EF_EffN2O EF for N2O emissions from effluent (kg N2O/kg N) 0.008 k 2 0.006 0.009 N/A

a Alex et al. (2008).

b Monteith et al. (2005).

c Shahabadi et al. (2010).

d Lide and Frederiske (1995).

e Samie et al. (2011).

f European Environment Agency (2011).

g Shahabadi et al. (2009).

h Gori et al. (2011).

i Nopens et al. (2010).

j IPCC (2006a).

k IPCC (2006b).
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emissions modelling parameters has no effect on EQI. Un-

certainty in BSM2 parameters contributes to uncertainty in all

three of the key model outputs, although OCI is affected to a

lesser degree (maximum 3.2% change, compared with 22.0%

and 19.0% for EQI and GHG emissions respectively). It is,

therefore, important to take into account the effects of BSM2

parameter values on GHG emissions as well as on
conventional performance assessment measures when cali-

brating the model.

The OCI is affected predominantly by uncertainty in the

oxygen transfer efficiency (parameter 64) during OAT sensi-

tivity analysis, suggesting that this is particularly important to

consider when carrying out uncertainty analyses with regard

to operational costs.

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Fig. 2 e Percentage change in model output resulting from variation of individual parameter values.
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3.2. Sobol’s method global sensitivity analysis

GSA was carried out using the highlighted parameters in

Tables 1 and 2, selected based on OAT sensitivity analysis
Fig. 3 e First and total order sensitivity ind
screening results. In addition to the 28 parameters shown in

Fig. 2, these include a further 11 of the highest ranked pa-

rameters. First order, second order and total order sensitivity

indices computed using a sample size of 4000 are presented,
ices calculated using Sobol’s method.

http://dx.doi.org/10.1016/j.watres.2013.05.021
http://dx.doi.org/10.1016/j.watres.2013.05.021


Fig. 4 e Second order sensitivity indices calculated using Sobol’s method.
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and parameters are classified as either ‘not sensitive’, ‘sensi-

tive’ or ‘highly sensitive’ based on their contribution to output

variance. A threshold of 1% contribution to output variance

(i.e. a sensitivity index of at least 0.01) is used to define sen-

sitive parameters, and a 10% contribution (i.e. a sensitivity

index of at least 0.1) for highly sensitive parameters.

It is known that small numerical errors can result from the

truncation of Monte Carlo approximations used in Sobol’s

method for calculation of integrals (Tang et al., 2007b), so

slightly negative indices are assumed to equal zero. Instances

in which the total order index is slightly greater than one or

the total order index is less than the sum of the first and

second order indices are also attributed to such errors. For the

OCI, total order indices sum to less than one; this apparent

error, however, is fully accounted for by the 95% confidence

intervals.

Bootstrapped confidence intervals, calculated using 1000

resamples, are presented for all first and total order indices

greater than 0.01. It is noted that some sensitivity indices have

a high degree of uncertainty, with the greatest confidence

interval being 0.501� 0.099. The number of samples generated

for analysis was quadrupled from preliminary analyses in an

attempt to reduce confidence intervals, but further increase in

the number of samples is impractical due to the high

computational demand. Large uncertainties are not unex-

pected for Sobol’s method, however, due to random number

generation effects (Tang et al., 2007b), and confidence in-

tervals in excess of 20% of the corresponding sensitivity
Table 4 e Characteristics of total and component GHG emissio

Direct CO2 Direct CH4

Base case (kg CO2e/m
3) 0.4795 0.0595

Mean (kg CO2e/m
3) 0.4736 0.0596

Variance ((kg CO2e/m
3)2) 0.0006 0.0003
indices have been reported for previous analyses (Tang et al.,

2007a,b). Despite large confidence intervals, the sensitivity

indices can still be used to provide an indication of the relative

significance of uncertainty in each modelling parameter in

terms of its effects on model output uncertainties.

3.2.1. Sensitivity indices based on EQI, OCI and total GHG
emissions
3.2.1.1. First and total order indices. First and total order

sensitivities calculated based on EQI, OCI and total GHG

emissions are presented in Fig. 3.

The EQI is shown to be sensitive or highly sensitive to

twenty BSM2 and nitrogen modelling parameters, with

emissions modelling parameters (predictably) having no ef-

fect. Uncertainty in the BSM2 parameters results primarily in

first order effects, but it is shown that higher order effects are

dominant for nitrogen modelling parameters, and that some

important parameters cannot be identified based on their in-

dividual effects alone. For example, OAT sensitivity analysis

suggests that EQI is not sensitive to parameters 28 and 29

(ranked 11th and 25th), but investigation into their in-

teractions using Sobol’s method shows that they are the

greatest contributors to output variance.

The effects of parameter interactions on OCI uncertainty

are negligible, and there is only one highly sensitive param-

eter: the oxygen transfer efficiency (parameter 64). OCI is also

sensitive to three BSM2 parameters, although their contribu-

tion to output variance is insignificant in comparison.
n results used for Sobol’s method sensitivity analysis.

Direct N2O Total indirect Total GHGs

0.1426 0.1872 0.8688

1.1725 0.1913 1.8970

9.6585 0.2047 9.7978

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Fig. 5 e First and total order sensitivity indices based on direct N2O emissions and total indirect GHG emissions.
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All parameters classed as highly sensitive based on GHG

emissions are used in the modelling of N2O production and

emission, supporting the earlier suggestion that, due to their

high GWP, uncertainty in the rate of N2O emissions is a
Fig. 6 e Second order sensitivity indices calculated using

Sobol’s method, based on direct N2O emissions.
significant contributor to uncertainty in total GHG emissions.

Variance in modelled GHG emissions is predominantly due to

interactions, although first order effects are still significant for

some nitrogen modelling parameters: parameter 28, for

example, contributes 50.1% of output variance to total output

variance, with 10.9% from the parameter itself and 39.2% from

its interactions with other parameters. It would, therefore, be

beneficial to investigate the effects of specific interactions, to

ensure that suitable allowance is made in future analyses and

model calibration.

It can be seen that there is only one parameter to which all

three key model outputs are sensitive (parameter 8), although

both EQI and GHG emissions are highly sensitive to the half

saturation coefficients for readily biodegradable substrate for

NO3, NO2 and NO reduction. Fourteen parameters are not

classed as sensitive based on any of the three key outputs; it is

suggested that these need not be included in future uncertainty

analyses.

3.2.1.2. Second order indices. Second order sensitivity indices

calculated based on output GHG emissions and EQI are pre-

sented in Fig. 4 (second order indices based on OCI are not

calculatedsince ithas beenshown that theeffect of interactions

is negligible): the shade of grey represents the sensitivity index

magnitude for the corresponding parameter pair. Whilst no

interactions due to individual parameter pairs can be classed as

highly sensitive, there are numerous parameter pairs which

have a significant impact on output variance in GHG emissions

and EQI (index � 0.01, shown with a circle).

http://dx.doi.org/10.1016/j.watres.2013.05.021
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Table 5 e Ranking of model parameters to which at least one key model output is sensitive.

Parameter
number

Sensitivities based on EQI Sensitivities based on OCI Sensitivities based on total GHG emissions

GSA sensitivity rank OAT rank GSA sensitivity rank OAT rank GSA sensitivity rank OAT
rank

First
order

Total
order

First
order

Total
order

First
order

Total
order

1 20 10

5 5 14 7

7 19 25 12 17

8 12 12 17 3 4 6 11 11

10 2 5 3

11 10 17 8

12 1 3 1

13 3 8 2

14 6 11 5

22 2 2 2

23 7 15 6

25 4 13 4

27 6 9 1 3 4

28 1 11 2 1 7

29 8 2 25 7 2 3

30 3 7 1

32 18 19 14 14

33 16 30 10 6

35 9 13 4 5 5

36 7 15 8 9

37 9 4 28 4 8

38 13 2

39 11 10 14 9 15

46 5 6 12

64 1 1 1

Light grey shading denotes sensitive parameters, based on corresponding index.

Dark grey shading denotes highly sensitive parameters, based on corresponding index.

wat e r r e s e a r c h 4 7 ( 2 0 1 3 ) 4 6 5 2e4 6 6 54662
Not all parameters identifiable as having significant in-

teractions, based on the difference between their total and

first order sensitivity indices, are found to have sensitive

parameter pairs, and the second order effects of some pa-

rameters account for only a small proportion of total output

variance resulting from their interactions. Second order ef-

fects involving parameter 28, for example, contribute to

3.1% of variance in total GHG emissions, but all interactions

with this parameter contribute 39.2% of output variance,

showing that higher order interactions are significant; cali-

bration of such parameters is, therefore, likely to be

challenging.

In terms of both GHG emissions and EQI, all sensitive

parameter pairings include at least one nitrogen modelling

parameter and the most significant second order interactions

are between two nitrogen modelling parameters. This pro-

vides further support to the earlier suggestion that careful

calibration of nitrogen modelling parameters is vital if model

output uncertainty is to be reduced.

3.2.2. Sensitivity indices based on component GHG emissions
Having identified parameters to which total GHG emissions

are sensitive, the effects of uncertainty in these parameters on

emissions of different gases and from different sources are

explored, and the contribution of uncertainty in different

emission components to uncertainty in total GHG emissions is

investigated.
The characteristics of GHG emissions resulting from the

160,000 parameter sets modelled for GSA are summarised in

Table 4, from which it can be seen that variance in direct N2O

emissions contributes greatly to variance in total GHG emis-

sions. Indirect emissions provide a comparatively small (12%)

contribution to mean total GHG emissions, but are the second

greatest contributor to total variance. Variance in direct CO2

and CH4 emissions provides negligible contribution to total

variance, despite contributing 33% of mean total GHG emis-

sions. This suggests that, unless uncertainty in direct N2O

emissions is significantly reduced by reduction of relevant

parameter uncertainties, inclusion of parameters to which

only direct CO2 and CH4 emissions are sensitive is unnec-

essary when calculating uncertainty in total GHG emissions.

Further GSA therefore focuses on sources of uncertainty in

direct N2O and total indirect emissions.

First and total order sensitivity indices based on emission

components are presented in Fig. 5. There is negligible dif-

ference between those based on total GHG emissions and

those based on direct N2O emissions only, confirming that

reducing uncertainty in N2O emissions is key to reducing

uncertainty in total GHG emissions.

Uncertainty in indirect GHG emissions is primarily attrib-

uted to first order effects of the oxygen transfer efficiency and

emission factors for carbonaceous BOD removal andN2O from

the WWTP effluent and sludge (parameters 64, 65 and 68). A

further five sensitive parameters are also identifiable. Given

http://dx.doi.org/10.1016/j.watres.2013.05.021
http://dx.doi.org/10.1016/j.watres.2013.05.021
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that the effects of interactions are negligible and the highly

sensitive parameters are not classed as sensitive based on any

other model output, calibration with regards to indirect

emissions ought to be straightforward.

As parameter interactions are shown to contribute signif-

icantly to variance in direct N2O emissions, second order

sensitivity indices are calculated and are shown in Fig. 6.

Again, the indices based on direct N2O emissions are very

similar to those based on total GHG emissions, although there

are differences: whilst all sensitive parameter pairs still

include at least one nitrogen modelling parameter, nine pairs

involving the half saturation coefficient for NO2 for hetero-

trophs (parameter 32) are no longer classified as sensitive.

This suggests that their second order interactions impact

primarily on other GHG emissions. All emissions modelling

parameters are involved in significant second order in-

teractions with parameters 29, 36, 37 and 38 and are, there-

fore, particularly important to reduce uncertainty in and

consider simultaneously during calibration. Also important is

the interaction between parameters 28 and 27, which alone

contributes 2% of variance in direct N2O emissions.

3.3. Key sources of uncertainty and comparison of
results

Model parameters to which at least one of the key model

outputs (EQI, OCI and total GHG emissions) is sensitive, based

on the corresponding sensitivity indices, are detailed in Table

5. Shading is used to distinguish sensitive and highly sensitive

parameters for each output, and rankings based on OAT

sensitivity analysis results as well as first and total order

indices are provided. The maximum specific hydrolysis rate

(parameter 8) is classified as sensitive based on all three key

model outputs, showing that it is necessary to simultaneously

consider its impacts on each output during calibration. A

further ten parameters are classified as sensitive based on

both EQI and OCI; their effects on both effluent concentrations

and GHG emissions must be taken into account during cali-

bration. The remaining fourteen parameters are classified as

sensitive based on just one model output.

OAT sensitivity analysis results provide a good indication

of the most significant individual sources of uncertainty in

output EQI and OCI: parameters classified as highly sensitive

based on their first order indices are also the highest ranked in

OAT sensitivity analysis. For GHG emissions, however, OAT

sensitivity analysis did not enable correct identification of any

parameters classified as highly sensitive in GSA and there are

significant discrepancies between the first order index rank-

ings and OAT sensitivity analysis rankings for all parameters.

This shows that a full GSA is an important tool even when

identification of only significant first order effects is required.

GSA using Sobol’s method also enables identification of

parameters involved in interactionswith significant effects on

uncertainty in the model output. As such, highly sensitive

parameters have been identified which have comparatively

low first order sensitivity indices and contribute to output

uncertainty primarily through higher order effects. These are

not all identifiable by OAT sensitivity analysise uncertainty in

parameter 28, for example, provides the greatest contribution

to uncertainty in output EQI, but is ranked only 11th based on
the results of OAT sensitivity analysis. This highlights the

importance of including the effects of interactions when

identifying and prioritising sources of uncertainty.
4. Conclusions

This research uses sensitivity analysis tools to assess the

contribution of uncertain parameters in the modelling of GHG

emissions fromwastewater treatment to uncertainty inmodel

outputs, and to identify parameters to which the outputs are

most sensitive. Sensitivity analyses are carried out using both

the OATmethod (also used for screening) and Sobol’s method

(to enable identification of significant interactions), from

which the following conclusions can be drawn:

� Parameters used in the modelling of nitrogen conversions

have negligible first order (individual) effects on the EQI and,

based on OAT sensitivity analysis, have a low significance

rank. Use of Sobol’smethod, however, enables identification

of parameters involved in interactions that contribute

greatly to uncertainty in EQI. This highlights the importance

of considering parameter interactions using a variance-

based global sensitivity analysis method such as Sobol’s

method.

� Uncertainty in total GHG emissions from the modelled

WWTP result primarily from uncertainty in direct N2O

emissions, due to their high GWP. Key sources of uncer-

tainty in direct N2O emissions include the half saturation

coefficients for readily biodegradable substrate for NO3, NO2

and NO reduction. As such, further work to reduce uncer-

tainty in these parameter values would be beneficial in

order to reduce uncertainty in total GHG emissions.

� GSA reveals that parameters used in the modelling of ni-

trogen conversions are key sources of uncertainty in both

EQI and total GHG emissions e therefore, when calibrating

the model, it is important to consider the effects on both of

these outputs.

� Uncertainty in the OCI is shown to be predominantly due to

first order effects resulting from uncertainty in the oxygen

transfer efficiency. Neither EQI or GHG emissions are sen-

sitive to this parameter, thus calibration of model outputs

used in calculation of the OCI is expected to be relatively

straightforward if this knowledge is taken into account.

In summary, this study has enabled the identification of

parameters that contribute significantly to uncertainty in one

or moremodel outputs and require careful calibration, as well

as those that provide negligible contribution and can be

omitted from future uncertainty analyses.
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