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QSAR for phototransformation rate constant (k):
logk = —0.0100 X AGY + 5.7528 x log MW + 0.3686 X pKa — 19.1607
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ABSTRACT

Flushing toilet with seawater is an effective methor preserving freshwater resources, but it
introduces iodide and bromide ions into domesticstexater. During chlorine disinfection,
iodide and bromide ions in the saline wastewatiuegit lead to the formation of iodinated and
brominated aromatic disinfection byproducts (DBFSxamples of aromatic DBPs include
iodophenolic, bromophenolic and chlorophenolic compls, which generally display
substantially higher toxicity than haloaliphatic P& This paper presented for the first time the
rates of phototransformation of 21 newly identiffemlophenolic DBPs in seawater, the receiving
waterbody of the wastewater effluent. The photatf@amation rate constantk)(were in the
range from 7.75 x T0to 4.62 x 10" h™’, which gave half-lives of 1.5 to 895 h. A quarttita
structure-activity relationship was established for the phratesformation of halophenolic DBPs

aslogk = —0.0100 x AG? + 5.7528 x log MW + 0.3686 x pKa — 19.1607,, where AG{ is

standard Gibbs formation energy, MW is moleculaigive and pkK is dissociation constant.
This model well predicted thie values of halophenolic DBPs. Among the tested DER%6-
triiodophenol and 2,6-diiodo-4-nitrophenol were riduo exhibit relatively high risks on marine
organisms, based on toxicity indices and half-lives seawater, the two DBPs underwent
photonucleophilic substitutions by bromide, chlericdind hydroxide ions, resulting in the
conversion to their bromophenolic and chlorophencdiunterparts (which are less toxic than the
parent iodophenolic DBPs) and to their hydroxyplienoounterparts (iodo(hydro)quinones,
which are more toxic than the parent iodophenolgPB). The formed iodo(hydro)quinones
further transformed to hydroxyl-iodo(hydro)quinonadich have lower toxicity than precursor
compounds.

Keywords: Disinfection byproducts, DBPs, photoconversiomtplransformation, toxicity.
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1. Introduction

Flushing toilet with seawater is an effeetmethod to conserve freshwater. This has been
practiced in Hong Kong, Marshall Islands, Avalond&iribati (Boehm et al., 2009; Yang et al.,
2015; Liu et al., 2017). Consequently, the domest@stewaters contain relatively high
concentrations of inorganic ions such as iodide larainide. In Hong Kong, the iodide and
bromide ions in wastewater effluents have beendauanthe ranges of 360 pg/L and 2631
mg/L, respectively(Gong and Zhang, 2013; Yang et al., 2015; Liu et al., 2017 Li et al., 2018;
Gong et al., 2018). Chlorination of water, richbromide and iodide ions, generates a suite of
brominated, iodinated, and chlorinated disinfectigproducts (DBPs) (Richardsenal., 2007;
Aguset al., 2009; Song et al., 2010; Criquetet al., 2012; Tanget al., 2012; Roccaro et al., 2013;
Bond et al., 2014Hua et al., 2015; Zhu and Zhang, 2016; Sharma et al., 2011.i and Mitch,
2018 Richardson and Postigo, 2QT¥n et al., 2016, 2018; Zhang et al., 2018; Gao et al., 2018;
Jiang et al., 2018). There has been a growing carregarding brominated and iodinated DBPs
due to their substantially higher toxicity than tthaduced by the chlorinated counterparts
(Echigo et al., 2004; Richardson et al., 200Dad et al., 2013; Yang and Zhang, 2013; Liu and
Zhang, 2014Sharma et al., 2014). In recent years, different groups of halophenBBPs have
been identified in chlorinated wastewater efflugniscluding 5-halosalicylic acids, 4-
halophenols, 2,4-dihalophenols, 2,6-dihalophenolg,4,6-trihalophenols, 2,6-dihalo-4-
nitrophenols, 3,5-dihalo-4-hydroxybenzaldehydes;dhalo-4-hydroxybenzoic acids, and 2,5-
dibromohydroquinone (Yang and Zhang, 20I®)xicity of twenty halophenolic DBPs and five
haloaliphatic DBPs has been evaluated by measti@agyrowth inhibition to the marine alga
Tetraselmis marina and the developmental toxicity to the marine ploaate Platynereis

dumerilii (Liu and Zhang, 2014Yang and Zhang, 2013). The results revealed that halophenolic
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DBPs generally induced dozens to hundreds of timglser toxicity than haloaliphatic DBPs.
Moreover, of the halophenolic DBPs tested, 2,4j6etophenol exhibited the highest growth
inhibition to the marine alga,6-diiodo-4-nitrophenol and 2,4,6-triiodophencre two of the
most toxic DBPs to the marine polychadtéi(and Zhang, 2014; Yang and Zhang, 2013).

Chlorinated saline wastewater effluentstaming DBPs are continuously discharged into
seawater (the ultimate receiving water body), amasequently halophenolic DBPs (especially
iodophenolic and bromophenolic ones) might chrdhiao harm to marine species (Yang et al.,
2015). Fortunately, the solar irradiation couldngf@rm most of toxic DBPs to less toxic
products, causing a decrease in the toxicity ofteveater effluents (mixtures of all DBPSs) (Liu
et al., 2017 Lv et al., 2017). However, some toxic halogenated DBPs were lilgdysistent in
receiving seawater (Fig. S1 in the Supplementaigrimation). Although great progress has been
made to understand phototransformation of DBPs flmmixture point of view, information on
individual halophenolic DBPs is still lacking.

Recently, the quantitative structwaetivity relationship (QSAR) approach has been
increasingly applied in studies of emerging watsrtaminants to establish relationships between
experimental (including chemical and toxicologicabbservations and physicochemical
propertiesof the molecules (Yang and Zhang, 2013; Liu and Zhang, 2014; Xiao et al., 2015; Jin
et al., 2015; Borhaniet al., 2016; Wang et al., 2018). This approach enables prediction of
properties on the assumption that compounds wittilasi structures behave alike and that the
property differences are attributable to enthalpgrges caused by different types and numbers
of functional groups (Chen, 2011). Different QSARbdrls have been developed for the
hydrolysis of DBPs (Wang et al., 2Q18u and Reckhow, 2015; Chen, 2011; Glezer et al., 1999).

Currently, a large number of DBPs (especially tbeid halophenolic ones) in chlorinated
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wastewater effluents are still unknown, and mighgbadually identified and confirmed in future
studies. It is important to develop a QSAR modeldoototransformation of halopenolic DBPs,
enabling prediction of the stability of halopherdlBPs which were not included in this study.
Accordingly, the present paper aimed tpinestigate the phototransformation kinetics of
various groups of halophenolic DBRE) develop a QSAR model for the phototransforiorat
kinetics of halophenolic DBP4iii) delineate the phototransformation mechanisms of two
selected iodophenolic DBPs, 2,4,6-triiodophenol @p6-diiodo-4-nitrophenol (which are of
relatively high risks to marine organisms as shdater in the Results and Discussion) in
seawater by identifying products and transformatmathways and (iv) evaluate toxicity
variations of the two iodophenolic DBPs during sfammation against the marine polychakte
dumerilii. This species has been successfully used in megstire comparative toxicity of
various DBPs, wastewater effluent and drinking watenplegYang and Zhang, 2013; Yang et
al., 2015; Liu et al., 2015; Liu et al., 2017 Li et al., 2017; Jiang et al., 2017; Han et al., 2017,

Han and Zhang, 2018).

2. Materialsand methods
2.1. Chemicals, solvents and experimental setup

Ultrapure water (18.2 WMcm) was supplied by a NANOpure system (Barnsteaewater
was collected from Clear Water Bay, Hong Kong (ZA3114.2 °E). The pH of seawater was
8.2 and concentrations of iodide, bromide, chlgrid&ate, and total organic carbon (TOC) were
32.1 pg/L, 64 mg/L, 19200 mg/L, <0.025 mg/L as N, and mg/L as C, respectively. The
iodide concentration was quantified per the methgdGong and Zhang (2013). Bromide,

chloride and nitrate were measured with an ion rclatograph (Dionex). TOC was measured
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with a TOC analyzer (Shimadzu). Prior to use, thawsater was filtered with a 0.46n filter,
autoclaved at 121 °C for 20 min, and cooled to antbhiemperature. Additionally, the seawater
was further aerated for 15 min for cultivating fra@dychaete. Standard compounds of DBPs were
purchased from different suppliers, with detailsvsh in Table S1. Other chemicals and organic
solvents were purchased from SigrA#drich.

In phototransformation studies, 100-mL dquéasks (base diameter 67 mm, overall height
110 mm, neck diameter 22 mm, neck length 25 mm)ewatained from Technical Glass
Products Inc., U.S. Eight full-spectrum simulatedlght lamps (BlueMax Spectra 5900 47" T5
High Definition Fluorescent Tube) were acquiredniré-ull Spectrum Solutions, U.S., and the
spectrum is shown in Fig. S2. A chamber with lengthidth x height of 1180 mm x 485 mm x
615 mm was self-constructed in the lab. The siredlaunlight lamps were fixed at the top of
the chamber and the distance between two adjaaenusl was 60 mm. The light intensity at the
bottom of the chamber was calculated as 6134 +l@8Xequivalent to 48.5 + 1.8 W/mper
details shown in Fig. S3). The temperature in thentber was controlled at 22 °C. This chamber
could hold totally 96 100-mL quartz flasks. Durireach test, the 96 quartz flasks each
containing a 40 mL solution (i.e., a certain numbérflasks contained DBP test solutions,
depending on the experimental design, and the ditslts contained seawater) were placed in
the chamber. The quartz flasks were repositionath éa h to eliminate the difference in
locational illumination. The volume of each teslusion was daily measured and replenished to

40 mL by adding ultrapure water to compensate ¥aperation loss.

2.2. Phototransformation of 21 halophenolic DBPs seawater
The phototransformation of 21 halophen@lBPs (as shown in Table 1) in seawater was
studied. These DBPs were newly identified in catéd saline wastewater effluents (Yang et

6
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al., 2013; Ding et al., 2013). For each DBP, ~20 stajpdard compound was dissolved in 4 L
seawater to obtain a solution at 5 mg/L, and thetism was quickly adjusted to pH 8.2 (i.e., the
pH of seawater) with NaOH and HCI solutions. Thiemy 40 mL solutions were taken out and
placed into 100 mL quartz flask§wo aliquots (as duplicates) were exposed to sitedla

sunlight for 84 h, and then pretreated, followedthg analysis with a Waters Acquity ultra
performance liquid chromatograph/electrospray iatin-triple quadrupole mass spectrometer
(UPLC/ESI-tgMS). Details are shown in the Suppletagn Information. The other two

duplicate aliquots were pretreated and analyzedediately after preparation.

2.3. QSAR modelling

In QSAR modeling, the logarithm of the @ rate constant (logg) was used as the
dependent (Wang et al.,, 2018). Physiochemical petiens were selected as independent
variables (molecular descriptors) based on theqgtrastsformation mechanism of halophenolic
DBPs. Multiple regression analyses were performeth whe software STATISTICA 12.0
(StatSoft). The quality of the model was charazegtiby the square of correlation coefficient

(r%), the Fisher criterion (F), the significance legg), and the standard error of estimate (

2.4. Phototransformation and toxicity variation oR,4,6-triiodophenol and 2,6-diiodo-4-
nitrophenol in seawater

A 3 L solution of 2,4,6-triiodophenol (or,62diiodo-4-nitrophenol) was prepared by
dissolving the standard compound in seawater agy/b.nThe pH of seawater remained the same
after the addition of 2,4,6-triiodophenol (or 2,&edo-4-nitrophenol) at this low concentration.

Then the solution was divided into 72 portions, aadh portion was 40 mL and placed into a
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100 mL quartz flask.

Seventy portions were divided evenly inwen groups and put under the irradiation of
simulated sunlight for seven exposure times (06206 h for 2,4,6-triiodophenol and 0.0884
h for 2,6-diiodo-4-nitrophenol). After a specifixposure time, two duplicate portions were
pretreated following the same procedure as thathersolutions of the 21 DBPs as shown in
Supplementary Information. Then, the duplicate rpaged solutions were combined into one
solution, and subjected to precursor ion scan (Pp&)duct ion scan, and multiple reaction
monitoring (MRM) analyses using UPLC/ESI-tgMS. RISz 126.9 is a powerful method for
fast, selectively, and sensitively detecting iodboataining compounds (Gong and Zhang, 2015).
For identifying and monitoring iodine-containing gibtransformation products, UPLC/ESI-
tgMS MRM scan and product ion scan were perfornéte structure of each product was
proposed according to the retention time, the [@oteatio of the ion cluster, and the fragment
information in product ion scans. The other eighttipns of 2,4,6-triiodophenol (or 2,6-diiodo-
4-nitrophenol) seawater solutions in each groupewsEmbined into a 320 mL solution. After
specific pretreatment, duplicate developmentaldibxiests were conducted with the embryos of
a marine polychaet® dumerilii following the procedure in previous studi@ang et al., 2015;
Liu et al., 2017) (see details in the Supplemenkaiyrmation).

The remaining two portions were kept inkai@ss for 600 h for 2,4,6-triiodophenol (or 684
h for 2,6-diiodo-4-nitrophenol). These samples weretreated and analyzed with UPLC/ESI-

tgMS following the same procedure as that for tlat®ns exposed to light.

3. Results and discussion

3.1. Phototransformation rates of 21 halophenoli®BPs
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The phototransformation of 21 halophenblgPs in seawater within 84 h of light exposure
was investigated. The degradation of these DBP#oweld pseudo-first-order reactions,
according to our previous study (Liu et al., 201Table 1 lists the percentages of the
phototransformation of DBPs within 84 h light expas The calculated pseudo-first-order rate
constants K, h™') and half-lives (h) are also given in Table 1. Tiesults suggested that
iodophenolic DBPs were transformed faster tharr thr@imophenolic counterparts, which in turn
were transformed faster than their chlorophenotiunterparts. For the four groups of DBPs
tested (2,4,6-trihalophenols, 4-halophenols, 2t@di4-nitrophenols, and 3,5-dihalo-4-
hydroxybenzaldehydes), the descending order gblio¢otransformation rates within each group
was: 2,4,6-triiodophenol > 2,4,6-tribromophenol #,@+richlorophenol; 4-iodophenol > 4-
bromophenol > 4hlorophenol; 2,6-diiodo-4-nitrophenol > 2,6-dibromo-4-nitrophenol 26-
dichloro-4xitrophenol; 3,5-diiodo-4-hydroxybenzaldehyde > 3,5-dibromo-4-
hydroxybenzaldehyde > 3,5-dichloro-4-hydroxybenehigie. Abusallout and Hua (2016a) and
Wang et al. (2017) studied the photolysis of hapdetic DBP analogues and also observed the
same descending order of photolysis rates: iodindPs > brominated counterparts >
chlorinated counterparts.

To better understand and capture the aflésnctional groups on the photolytic stability of
halophenolic DBPs, th& values were interpreted using a QSAR model. Thadstrd Gibbs
energies of formationAG®) of DBPs may represent their relative stabilithe\G® value of
each DBP was calculated using the software ChemBia 8.0 (CambridgeSoft) and given in
Table S2. A regression analysis of logersusAG;® was conducted (Equation (1) and Table S3).

logk = —0.00319 x AG? — 2.58277 (1)

r? = 0.3098, F(1,19) = 8.5282, p = 0.0083% 0.5778.
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The low correlation coefficient suggests that otfaetors also contribute to thevalues of
halophenolic DBPs. The authors’ previous researemahstrated that halophenolic DBPs
underwent §2 photonucleophilic substitution when they entereeceiving seawater:
bromophenolic and iodophenolic DBPs were convertied their chlorophenolic or
hydroxyphenolic counterparts, via substituting bremine and iodine atoms with chloride or
hydroxide ions in seawater; chlorophenolic DBPs were converted to their hydroxyphenolic
counterparts, via substituting the chlorine atomth vaydroxide ions in seawater (Liu et al.,
2017). As shown later in this manuscript, besidelorde and hydroxide ions, iodophenolic
DBPs were also substituted by bromide ions to ftreir brominated counterparts. Accordingly,
we considered the substitution possibilitieg,JPas one factor affecting the phototransformation
rate constant. & is related to the number of each type of halogema in a halophenoh) and
the number of substitution types of one halogere tfqy), and we defined it as the sum of the
products oin andm of all halogen types, i.€},(nxm). For iodinemis 3 as it can be substituted
by Br, CI" and OH; for bromine, mis 2 as it can be substituted by @hd OH; for chlorine, m
is 1 as it can be substituted by OHnly. The calculation of thes i value of 2-bromo-4-
chlorophenol is exemplified here. This halophermitains one chlorine atom and one bromine
atom, so its Ry can be calculated as 1x1 + 1x2 = 3. Thg VPalues of the tested DBPs are
presented in Table S2. A multiple regression aflgs log k versusAG and log R, was
conducted, and a QSAR was obtained (Equation @)lable S3).
logk = —0.00528 x AG? + 1.69789 X log Py, — 3.58772 2)
r> = 0.5584, F(2,18) = 11.381, p = 0.00064; 0.4749.

To further improve the prediction of thkevalues, ionization of halophenolic DBPs in

seawater was considered. In the2 $hotonucleophilic substitution of each halophenBIBP,

10
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the nucleophile (bromide, chloride, or hydroxideéjaeks on the DBP to form an unstable
complex (Liu et al., 2017). Compared with the nalutorm, the negatively charged form of a
halophenolic DBP might be difficult to be attackeetause of the charge repulsion. Logarithmic
dissociation constant (pKis a quantitative measure of ionization of a phknolic DBP in
seawater. The pKvalues of the tested DBPs at 25 °C, obtained fBmikinder, are given in
Table S2. By including pXas a descriptor, the QSAR was significantly imgahvas shown in
Equation (3) and Table S3. A plot of measureddegrsus predicted loigis shown in Fig. 1a.
logk = —0.01028 X AG? + 3.21592 X log Py, + 0.27402 X pK, — 6.50578  (3)

r’ = 0.8365, F(3,17) = 28.987, p < 0.0006G; 0.2973.

Wang et al. (2018) analyzed the hydrolyatss of aliphatic DBPs, and found that iodinated
DBPs hydrolyzed faster than their brominated coyates, which in turn hydrolyzed faster than
their chlorinated counterparts. They establishédS#AR model for the hydrolysis of aliphatic
DBPs, using molecular weight (MW) (because the aoneight of halogen follows the rank
order of iodine > bromine > chlorine) and the tatamber of halogen atoms in a DBP molecule
as descriptors. Accordingly, the QSAR model of Biqua(3) was modified by replacing log g
with log MW and adding the logarithm of the totainmber of halogen atoms in a molecule (log
N) as a descriptor, as shown in Equation (4) andeTas.
logk = —0.0107 x AG? + 5.5409 x log MW + 0.3920 X pKa + 0.9085 X log N — 19.1031  (4)

r? = 0.8752, F(4,16) = 28.04f,< 0.000005 = 0.2678.

The model was slightly improved, but INgs “insignificant” in this regression (p > 0.05,
Table S3). This indicates that the multiple regmsshould be re-conducted by removing khg
As shown in Equation (5)2 rof the regression slightly decreased becauseeimeval of one

descriptor, but the F value significantly increas€de plot of measured ldgversus predicted

11
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log k using Equation (5) is shown in Fig. 1b.
logk = —0.0100 x AG} + 5.7528 x log MW + 0.3686 x pKa — 19.1607 (5)
r’ = 0.8474, F(3,17) = 31.469, p < 0.0008G; 0.2872.

The insignificant contribution of Idg to the QSAR model might result from the positive
correlation between MW and. For a group of halophenolic DBP analogues, the Muvease
with the increase of the total number of halogesmat on the benzene ring, e.g., the MWs of
chlorophenols follow the rank order of chloropher(@l8.6) < dichlorophenol (163.0) <
trichlorophenol (197.5). Equations (3) and (5) lao¢h statistically acceptable, and Equation (5)
is slightly better. Besides, the concept and catah of Ry, are somewhat complicated, while
the calculation of MW is easier. Accordingly, Eqoat(5) is adopted as the QSAR model for the
phototransformation of halophenolic DBPs.

It should be pointed out that the photatfarmation of halophenolic DBPs in natural
marine environment mainly depends on the actuansity of sunlight and the penetration of
sunlight in seawater. The solar intensity on haoriab surface depends on the solar elevation
angle. Tables S4&6 show the solar elevations and intensities onzdtal surface in three
coastal regions with different latitudes, includifingapore (1.3° N 103.8° E), Hong Kong
(22.3° N 114.2° E), and Boston, MA, U.S. (42.4° NO? W), on March 20, 2018 (when the sun
directed at the equator). In this study, halophendBP solutions were contained in 100 mL
quartz flasks, with the water depth of ~1.1 cm, #m&l sunlight (6134 + 231 lux) penetration
could be considered as 100%. In natural marinemidte penetration of sunlight decreased with
water depth (Liu et al., 2017). The phototransfdromarates of halophenolic DBPs might vary
with actual sunlight intensity received by the DBRsseawater. The kinetics data and QSAR

model obtained in this study show the “comparativ&alues of halophenolic DBPs, which may

12
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aid in determining the persistent DBPs.

The authors’ group previously evaluated titdcity of the 21 tested halophenolic DBPs
using a marine alga and a marine polychéete and Zhang, 2014; Yang and Zhang, 2013). The
ECso value of each DBP against each marine speciéstasl lin Table S7. The toxicity index was
calculated as the reciprocal of the g£@alue x 1000 (Pan et al.,, 2014). The risk of each
halophenolic DBP on the alga or the polychaete gasulated as the product of the toxicity
index and the half-life (Table S7). 2,4,6-Triiodeplol and 2,6-diiodo-4-nitrophenol showed
relatively high risks among the 21 halophenolic BB8uggesting that these two DBPs deserve
more attention. Thus, the phototransformation ofl,&friiodophenol and 2,6-diiodo-4-
nitrophenol was further investigated.

3.2. Phototransformation and toxicity variation &,4,6-triiodophenol in seawater

When the 2,4,6-triiodophenol solutions w&ept in darkness for 600 h, no change in
concentration was observed, indicating that nosfamation of 2,4,6-triiodophenol occurred
without light irradiation. Fig. 2 shows the ESI-t§MPIS spectra ofwz 126.9 of 2,4,6-
triiodophenol solutions at different light exposutenes. The intensity of iomm/z 471
(corresponding to 2,4,6-triiodophenol) decreasedh wight exposure time, indicating the
phototransformation of 2,4,6-triiodophenol. Severabtotransformation products were detected
(Table S8). After 0.025 h light exposure, diiodotogliinone (Vz 361, including 2,6-diiodo-1,4-
hydroquinone and 2,4-diiodo-1,6-hydroquinone) wagedted in the solution, and it might be
generated via the substitution of an iodine aton2,#6-triiodophenol with a hydroxyl group.
Additionally, diiodohydroquinone was in equilibriumith diiodoquinone rf¥z 360, including
2,6-diiodo-1,4-quinone and 2,4-diiodo-1,6-quinongPLC/ESI-tgMS MRM scans of ionsyz

361 andm/z 360 were conducted for all solutions. The varratio the total peak area (i.e., the

13
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summation of the peak areas of ian& 361 andm/z 360) with exposure time indicates the
change in the concentration of diiodohydroquinohg.shown in Fig. S4, diiodohydroquinone
formed and subsequently converted, with the maxingomcentration showing up at the light
exposure time of 40 h. After 11.5 h of light exp@suchlorodiiodopheno{m/z 379/381) and
bromodiiodophenolnyz 423/425) were detected (Fig. 2), and they mighhfrom the halogen
atom substitution in 2,4,6-triiodophenol (i.e., Wi substitution of iodine atom by chloride and
bromide, respectively).

The substitution of iodine by hydroxidelafde and bromide ions may follow thes

photonucleophilic substitution mechanism (Liu et 2017) as follows:

_|>

s
f@;#
s

lz
F

a-chaect
& -18@ s
F

B, UJ =B

3

QQQ

When exposed to the simulated sunlight, 2,4,6edmhenol became excited. The iodine atoms
are at the para- and ortho-positions to the hydrgsyup (an electron donating group), and thus
are readily substituted. In seawater, hydroxiddprae and bromide ions could serve as
nucleophiles. They added to the photo-excited 2rig@lophenol molecules to generate unstable
d-complexes, e.qg., 4,4-hydroxyiodo-2,6-diiodophedod-chloroiodo-2,6-diiodophenol, and 4,4-

bromoiodo-2,6-diiodophenol, respectively. Theseomplexes tended to transform to stable
compounds by leaving either one functional grouptlen4-position. Because the dissociation
energies follow the rank order oflds—| (272.0 kd/mol) < @Hs—Br (336.4 kd/mol) < gHs—Cl
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(399.6 kJ/mol) < @Hs—OH (463.6 kJ/mol) (Cottrell, 1958), the iodine atteft as an'lion in all
the threed-complexes, yielding the substitution products @jédo-1,4-hydroquinone, 4-chloro-
2,6-diiodophenol and 4-bromo-2,6-diiodophenol.

In the UPLC/ESI-tgMS MRM chromatograms o iclustersnwz 379/381 ananz 423/425
(Fig. S5 and S6), two peaks were observed for @éactcluster. Accordingly, ion clusterv/z
379/381 might correspond to 4-chloro-2,6-diiodopiieand 2-chloro-4,6-diiodophenol, and ion
cluster m/z 423/425 might correspond to 4-bromo-2,6-diiodoghemnd 2-bromo-4,6-
diiodophenol. This suggested that the iodine atamn$oth para- and ortho-positions to the
hydroxyl group might be substituted. The peak areafs chlorodiiodophenol and
bromodiiodophenol (as the summation of both isojegeased from the exposure time of 11.5
to 110 h and then decreased (Fig-S#&). The decrease resulted from further photonpbliéo
substitution.

After 110 h light exposure, dichloroiodopbe (m/z 287/289/291) and
bromochloroiodophenohf/z 331/333/335) were detected (Fig. 2), and they wlezeroducts of
photonucleophilic chlorine substitution of chloriediophenol and bromodiiodophenaol,
respectively. According to the UPLC/ESI-tgMS MRMramatograms (Figs. S7 and S8), two
dichloroiodophenols (2,6-dichloro-4-iodophenol arj4-dichloro-6-iodophenol) and one
bromochloroiodophenol (2-bromo-6-chloro-4-iodophg¢neere generated. The peak areas of
dichloroiodophenol (as the summation of both is@hemd 2-bromo-6-chloro-4-iodophenol
increased from the exposure time of 110 to 334 dhthen decreased (Figs. S4, S7, and S8).
Accordingly, photonucleophilic substitution played important role in the transformation of
2,4,6-triiodophenol in seawater (Fig. 3a). Photdaghilic hydroxyl substitution was observed

in the photodegradation of 2-chlorophenol (Raolgt2003), and photonucleophilic chlorine
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365

substitution was found in phototransformation ofiaphenolic and bromophenolic DBPs in
seawater (Liu et al., 2017). This is the first tithat the photonucleophilic bromine substitution
of iodophenolic DBPs was observed.

After 236 h light exposure, iodotrihydroxymgone (Wz 282) was observed (Fig. 2), and its
peak area in UPLC/ESI-tgMS MRM chromatogram keptaasing within the exposure period
from 236 to 600 h (Fig. S4). lodotrihydroxyquinomas proposed to be a transformation product
of diiodoquinone, as exemplified by the transforomatof 2,6-diiodo-1,4-quinone (Fig. 3b).
First, 2,6-diiodo-1,4-quinone underwent two seqianphoto-addition reactions with water,
leading to two more hydroxyl groups substitutedtios benzene ring and the formation of 2,6-
diiodo-3,5-dihydroxy-1,4-quinone (with the mechamishown in Fig. S9d). Second, 2,6-
diiodo-3,5-dihydroxy-1,4-quinone was transformed2odo-3,5,6-trihydroxy-1,4-quinone via
photonucleophilic hydroxyl substitution. Another sstble pathway is that 2,6-diiodo-1,4-
guinone was first transformed to 2-hydroxy-6-iodd-tjuinone via photonucleophilic hydroxyl
substitution, and then 2-hydroxy-6-iodo-1,4-quinamaerwent two sequential photo-addition
reactions with water, generating 2-iodo-3,5,6-titoxy-1,4-quinone (with the mechanism
shown in Fig. S9ed). The mechanism of photo-addition reaction betwbkaloguinone and
water under UV radiation has been suggested eé@ian et al., 2013).

Fig. 4a shows the normal development peages of the marine polychaete embryos in the
2,4,6-triiodophenol solutions with different lighkposure times. Notably, each concentration in
Fig. 4a was the concentration of 2,4,6-triiodopheio the concentrated sample before
phototransformation. For each curve, the value GfyBvas calculated per Yang and Zhang
(2013)’'s method. According to the previous studar(y and Zhang, 2013), the &W&alues of

the same DBP solution from three different batabieembryos were within a relative standard
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deviation of 1.2%.

Photonucleophilic bromine and chlorine sitbogon triggered the transformation from
2,4,6-triiodophenol to its bromophenolic and chgrenolic counterparts, which might decrease
the toxicity of “2,4,6-triiodophenol” (to be exathe overall toxicity of “2,4,6-triiodophenol and
its transformation products”). However, per thesg@alues (Table S9), when the exposure time
increased from 0.025 to 40 h, the toxicity of “BAiiodophenol” slightly increased (by 7.6%).
This toxicity increase agrees with the concentratimcrease of diiodo(hydro)quinone.
Halo(hydro)quinones are a new class of highly toRBPs in disinfected wastewater and
drinking water. Halohydroquinones were found to dugbstantially more toxic than other
halophenolic DBPs (Yang and Zhang, 2013). Certaatoduinones generated intracellular
reactive oxygen species in T24 bladder cancer ,callsl bound to oligodeoxynucleotides
(Anichina et al., 2010; Du et al., 2013). When the light exposure time exceeded 40 h, the
concentration of diiodo(hydro)quinone decreased, the toxicity of “2,4,6-triiodophenol” also
decreased. This indicates that further phototransiton of diiodo(hydro)quinone was a
detoxification process. Photo-addition reactionhwitater led to more substitutions of hydroxyl
groups on the benzene ring, which lowered lag Kf the (hydro)quinone product and thus
lowered the toxicity of the product. This is conesig with the results of the previous study (Liu
et al., 2017). After 600 h of light exposure, tlo&itity of “2,4,6-triiodophenol” decreased by

78%, compared with the initial toxicity.

3.3. Phototransformation and toxicity variation &, 6-diiodo-4-nitrophenol in seawater
The concentration of 2,6-diiodo-4-nitropbkim the solution kept under darkness for 684 h

was almost the same as the initial concentratioggesting that no transformation occurred. Fig.
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S10 shows the ESI-tgMS PIS spectrant 126.9 of 2,6-diiodo-4-nitrophenol seawater soksio
with different light exposure times. The intengitfyion m/z 390 (corresponding to 2,6-diiodo-4-
nitrophenol) decreased with the light exposure fimsiggesting the occurrence of
phototransformation. After 11.5 h light exposure;ch®oro-6-iodo-4-nitrophenolnfz 298/300)
and 2-bromo-6-iodo-4-nitrophenatz 342/344) were formed via the photonucleophilicocine
and bromine substitutions of 2,6-diiodo-4-nitropblerrespectively. The ion intensity of 2-
chloro-6-iodo-4-nitrophenol increased from the esgpe time of 11.5 to 110 h and stayed the
same afterwards, and the ion intensity of 2-bromod®-4-nitrophenol increased from the
exposure time of 11.5 to 110 h and decreased a&ftdsy Interestingly, 2,6-diiodo-1,4-
hydroquinone rfyz 361) was generated via the substitution of theorgroup in 2,6-diiodo-4-
nitrophenol with a hydroxyl group. This photonuglédic substitution occurred because the
CgHs—OH bond (463.6 kJ/mol) shows higher dissociatioergy than the gHs—NO, bond
(215.5 kJ/mol) (Cottrell, 1958), and also becatreertitro group is at the meta-position of both
iodine atoms (electron withdrawing groups) and plaga-position of the hydroxyl group (an
electron donating group) (Liu et al., 2017). 2,6eld0-1,4-hydroquinone was in equilibrium with
2,6-diiodo-1,4-quinonenfz 360) in water. The total intensity of ioms/z 360 andn/z 361
increased from the exposure time of 11.5 to 40hkentdecreased afterwards, and became
undetectable after 362 h of light exposure. Furthemsformation of 2,6-diiodo-1,4-
(hydro)quinone should follow the reactions as obsérin the phototransformation of 2,4,6-
triiodophenol. At the exposure time of 110 h, aeotphotonucleophilic hydroxyl substituted
product, 2-iodo-4-nitro-1,6-hydroquinonen/¢ 280), was detected. This compound was in
equilibrium with 2-iodo-4-nitro-1,6-quinonen(z 279). The total intensity of ions/z 280 and

m/z 279 increased from the exposure time of 110 to &8within 684 h of light exposure, the

18



412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

main reactions for the transformation of 2,6-diigttaitrophenol were photonucleophilic
bromine, chlorine and hydroxyl substitutions (F&11). Interestingly, 33% of 2,6-diiodo-4-
nitrophenol remained after 684 h of light exposwvhijle 2,4,6-triiodophenol was undetectable
after 600 h of light exposure (Fig. 2). This comfed that the phototransformation of 2,6-diiodo-
4-nitrophenol ¥z 390) was slower than that of 2,4,6-triiodophenol.

Fig. 4b shows the normal development peegss of the marine polychaete embryos in the
2,6-diiodo-4-nitrophenol solutions with differemght exposure times. Per the &®@alues (Table
S10), the toxicity of “2,6-diiodo-4-nitrophenol’qtbe exact, the overall toxicity of “2,6-diiodo-
4-nitrophenol and its transformation products”)reased by 14.9% within the first 40 h of light
exposure, which matched well with the intensity@ase of 2,6-diiodo-1,4-(hydro)quinone. This
confirmed that the formation of halo(hydro)quinonecreased the toxicity. With further
phototransformation of 2,6-diiodo-1,4-(hydro)quiednom the exposure time of 40 to 110 h, the
toxicity of “2,6-diiodo-4-nitrophenol” decreasedater, another toxic haloquinone product, 2-
iodo-4-nitro-1,6-(hydro)quinone was generated, iebn intensity increased with the exposure
time; as a result, the toxicity of “2,6-diiodo-4-nitrogiol” kept slightly increasing within the
exposure period from 110 to 684 h. From these t®silcan be concluded that 2,6-diiodo-4-
nitrophenol is a relatively persistent DBP withatelely high toxicity in receiving seawater.
Besides, 2,6-dibromo-4-nitrophenol and 2,6-dichléitrophenol also showed low
phototransformation rates (Table 1). It is expedted different (hydro)quinone products might
also form during the phototransformation of thegse DBPs, and their toxicity might maintain at
relatively high levels after a long exposure timdecordingly, controlling the formation of
halonitrophenolic DBPs deserves a high priorityastewater treatment.

It needs mentioning that, according to Addlesit and Hua (2016b), sunlight irradiation of
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nitrate and natural organic matter (NOM) in wateuld result in the formation of HO-, NO- and
NO,- radicals and excited NOM triplet state that caxddse the indirect phototransformation of
halophenolic DBPs. On the other hand, sunlightlie@on could convert halide ions in seawater
to halogen radicals (Yang and Pignatello, 2017) toald react with NOM in seawater to form
halogenated organics (Sankoda et al., 2017; Calza et al., 2008). As assessed in Supplementary
Information, compared with the phototransformatairhalophenolic DBPs, either the indirect
phototransformation of or the formation of halopblén DBPs in the seawater under sunlight

irradiation might be negligible.

4. Conclusions

This study investigated the phototransfaromaof 21 halophenolic DBPs in receiving
seawater. The reaction rate constafgsh{’) were well predicted using a QSAR model that
employed three physicochemical descripta&;’, log MW and pK. Among the tested DBPs,
2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenohisited relatively high risks (i.e., relatively
high toxicity and long half-life) on marine orgams. These two iodophenolic DBPs were
transformed to their bromophenolic, chlorophenobod hydroxyphenolic counterparts via
photonucleophilic substitutions by bromide, chlerahd hydroxide ions in seawater.

By combining with our previous study (Lia &l., 2017), it can be concluded that the
toxicity of a halophenolic DBP changed during itsofotransformation in receiving seawater.
Photonucleophilic bromine and chlorine substitugiomght decrease the toxicity of iodophenolic
DBPs, and photonucleophilic chlorine substitutioigim decrease the toxicity of bromophenolic
DBPs. However, via photonucleophilic hydroxyl sufosion, halophenolic DBPs were

transformed to their hydroxyphenolic analoguesp(imsidro)quinones, and the toxicity might
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significantly increase. Fortunately, halo(hydro)gpnes could further transform to less toxic
products. As expected, the variation in toxicity aothalophenolic DBP in receiving seawater
mainly depended on the formation and further tramsétion of its hydroxyphenolic counterpart,

halo(hydro)quinone.
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Table 1. Photdransformatio of 21 halophenolic DBPs iseawate, observed unde84 I light exposur.

DBP Photctransformatior(%) k(h)? Half-life (h) ®
2,4, e-trichlorophenc 15.2+1.: 1.96x1(° 353.1
2,4, e-tribromophenc 22.7+2.. 3.07x1C° 226.1
2,4, ¢-triiodophenc 27.3x2.( 3.80><1(":d 182.¢
2 ,€6-dichlorc-4-nitrophenc 13.610.¢ 1.74x1C° 398.:
2,6-dibromc-4-nitrophenac 15.0+0.t 1.93x1(° 358.¢
2,6-diiodc-4-nitrophena 16.7+0.¢ 2.18x1(° 318.7
4-chlorophenc 6.3+0.2 7.75x1C* 894.¢
4-bromophenc 8.0£0.¢ 9.93><1("f' 698.:
4-iodophenc 9.8+0.¢ 1.23x1(C° 564.t
3,5-dichlorc-4-hydroxybenzaldehyc  29.4+1.: 4.14x1(° 167.2
3,5-dibromc-4-hydroxybenzaldehyc  35.0+1.¢ 5.13><1(":d 135.2
3,5-diiodc-4-hydroxybenzaldehy( 76.7+4.; 1.73><1("Z 40.C
2,4-dichlorophenc 37.7+1. 5.63x1(° 123.(
2,e-dichlorophenc 12.242.( 1.55x1(° 447.%
2,4-dibromophenc 49.5+2.¢ 8.13x1(° 85.2
2,6-dibromophenc 29.4+1.¢ 4.14x1C° 167.2
2-bromc-4-chlorophenc 47.7+2.¢ 7.72x1(C° 89.¢
4-bromc-2-chlorophenc 35.8+2.: 5.28x1(° 131.¢
5-chlorosalicylic aci 88.8+4.¢ 2.61x1(? 26.€
5-bromosalicylic aci 98.7+2.! 1.21x1C*° 5.7°
2,5-dibromohydroquion 10C 4.62x1(*° 1.5°¢

@ The results werealculated pethe pseudc-first-orderphototransformatic.

®The results were obtained in our previous study €tial., 2017).

“The concentration of 2,5-dibromohydroquinone wadetectable by the light exposure time of 84 h. Per
our previous study (Liu et al., 2017), 2,5-dibrompdtoquinone completely transformed within 3 h light

exposure.
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Fig. 1. (a,b) Plots of measured log of the 21 halophenolic DBPs against lkgvalues predicted from
Equations (3) and (5), respectively.
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Fig. 2. ESI-tqMS

PIS spectra afVz 126.9 of 2,4,6-triiodophenol seawater solutionthwhe light exposure

times of (a) 0.025, (b) 11.5, (c) 40, (d) 110, Z8p, (f) 334, and (g) 600 h. The y-axes are altfensame

scale. Proposed

structures of some ions and iostects are shown at the top of the figure. For

chlorodiiodophenol, bromodiiodophenol and dichlodmphenol, isomers were detected using UPLC/ESI-
tgMS MRM scans.
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(b) Further phototransformation of the hydroxyl-substituted product
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Fig. 3. Phototransformation pathway of 2,4,6-triiodopheinoseawater(a) photonucleophilic substitution of
2,4,6-triiodophenol, andb) further phototransformation of the hydroxyl-subgd product. The products
were tentatively proposed. The structures marked miz values indicate that the corresponding molecular
ions or ions clusters were detected by ESI-tgMSd®18/z 126.9.
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Fig. 4. Normal development percentages of the marine pabtet. dumerilii in the(a) “2,4,6-triiodophenol”
and (b) “2,6-diiodo-4-nitrophenol” solutions with differedight exposure times. The x-axes indicate the
concentrations of 2,4,6-triiodophenol and 2,6-digdnitrophenol in the concentrated test sampler o
phototransformation.
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Highlights

» Photolysisrates of halophenolic DBP analogues followed iodo- > bromo- > chloro-.

* A QSAR model was devel oped for the photolysis of halophenolic DBPs.

* lodophenolic DBPs phototransformed to the bromo-, chloro- and hydroxy-counterparts.
* The hydroxy-counterparts (halo(hydro)quinone) were more toxic than the parent DBPs.
» Further phototransformation of halo(hydro)quinone was a detoxification process.



