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Abstract

Bio-recalcitrant micropollutants are often insuffintlly removed by modern
wastewater treatment plants to meet the future ddmavorldwide. Therefore,
several advanced oxidation techniques, including ptasma technology, are being
investigated as effective complementary water neat methods. In order to permit
industrial implementation, energy demand of thesehniques needs to be
minimized. To this end, we have developed an etadtdischarge reactor where
water treatment by dielectric barrier discharge [I)Bs combined with adsorption
on activated carbon textile and additional ozomatibhe reactor consists of a DBD
plasma chamber, including the adsorptive textitel an ozonation chamber, where
the DBD generated plasma gas is bubbled. In theprg@aper, this reactor is further
characterized and optimized in terms of its ena&ffjgiency for removal of the five
pesticidess-HCH, pentachlorobenzene, alachlor, diuron and @topon, with initial
concentrations ranging between 22 and 430 pg/Ltgyrefficiency of the reactor is
found to increase significantly when initial micamjutant concentration is
decreased, when duty cycle is decreased and whagexs used as feed gas as
compared to air and argon. Overall reactor perfoeais improved as well by
making it work in single-pass operation, where wadlowing through the system
only once. The results are explained with insigbtend in literature and practical
implications are discussed. For the used operdtmoralitions and settings;HCH

is the most persistent pesticide in the reactoth \@ minimal achieved electrical
energy per order of 8 kWhAnwhile a most efficient removal of 3 kWhirar lower

was reached for the four other pesticides.

Keywords: plasma treatment; pesticides; energy yield; eitritrate; peroxone
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1. Introduction

With ongoing improvement of chemical analytical huats, various
compounds and their transformation products arereasingly

detected in water bodies in low concentrations he tange of
microgram to nanogram per liter. Among these stedal
micropollutants are food additives, industrial cleatfs, pesticides,
pharmaceuticals and personal care products. Degpi& low

concentrations, various hazardous environmenta&ceffhave been
observed (Milla et al. 2011, Rizzo et al. 2013) dAidnally, there is
growing concern about their effect on human headltbnventional
wastewater treatment plants are often unable tlicguftly remove

these micropollutants (Luo et al. 2014). Preventineasures are,
unfortunately, strongly limited by the increasingntand, while
enhancement of conventional techniques often hghgiide effect

on many persistent micropollutants (Luo et al. J0IBherefore,
advanced treatment methods, such as activatedm;anhee recently
received more attention for their effective removalf

micropollutants. Nonetheless, these techniquesaaseciated with
high costs and the additional problem of hazardmarscentrate or
adsorbate disposal. As a promising alternativeaaded oxidation
techniques are the most effective available methoddecompose
bio-recalcitrant organics. Since their energy castshigh up to now,
research needs to focus on optimization of theargy efficiency.

Combination of oxidation methods with each otherwoth other

advanced treatment techniques is hereto proposadiiry reviews as

an effective strategy (Ghatak 2014, Oturan and A2(@il4).
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Amongst the advanced oxidation techniques, plasoanblogy for
water treatment takes an interesting place, siriseable to produce a
wide spectrum of oxidative species, leading tova delectivity of the
decomposition process. Moreover, its flexible desifacilitates
synergetic combination with other advanced separatnd oxidation
methods. In prior research, we have found a syndrgiveen
micropollutant adsorption and dielectric barriesatiarge (Vanraes et
al. 2015a). Further, we have developed and chaizatea new type
of plasma reactor for water treatment (Vanraed.€2Gd5b). In this
reactor, micropollutant decomposition by atmosphedlielectric
barrier discharge in dry air is combined with agsion on activated
carbon textile and with extra bubbling of plasmaeg@ated ozone. To
this end, the water solution under treatment igcelated between a
plasma chamber with the carbon textile and an dmma&hamber.
Atrazine was used as model micropollutant with amtiall
concentration of 30 pg/L. Plasma gas bubbling douted to up to
40.5% of total atrazine decomposition, confirming iateresting
optimization of the reactor's energy efficiency, asmpared to

plasma treatment alone.

In the present study, our reactor is investigateti @ptimized further
in terms of its energy efficiency. For this purpofge persistent
pesticides with significantly diverse propertieg amvestigated for
their removal kinetics: a-hexachlorocyclohexane oHCH),

pentachlorobenzene (PeCB), alachlor, diuron angr@soron. Their
variety permits to gain a more comprehensive viewtlee overall

reactor performance and optimization. As in ourvimes research,
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initial concentration of the pollutants is takenthe order of 100
Mg/L, to have sufficient agreement with real-wosiduations and
with the maximally allowed limits defined by the ithd States
Environmental Protection Agency (EPA 2007), by WWerld Health
Organization (WHO 2008) and by the European Padianand the
Council (EC 2006). Prior to micropollutant remokaletics analysis,
the evolution of pH and conductivity during plasrmaatment is
investigated and explained. Next, the contributddmmicropollutant
evaporation and adsorption to the total removatess is studied in
detail. Afterwards, the effect of pH, salt additionnitial
concentration, applied power and feed gas on thactogs
performance is shown and compared with insightenfitberature.
Finally, the reactor is modified to work in singlass operation,
where water is flowing through the system only onidee influence
of the sequence of plasma chamber and ozonatiombsrais
discussed and the reactor's performance is comparigd its

recirculated batch operation.

2. Experimental methods and materials

2.1. DBD water treatment reactor and deter mination of solution

parameters

Each pesticide removal experiment is performed wlith plasma
reactor described in our previous study (Vanraeal.eR015b). In
short, a pesticide solution is continuously redated between a
plasma chamber and an ozonation chamber. Basdtkomater flow
rate of 95.3 mL/min and solution volume of 400 milLthe ozonation

chamber, hydraulic residence time in the ozonatbtamber is

5
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calculated to be 4.20 min. Relative to this valugjraulic residence
time in the plasma chamber is negligible (0.86@20s). The plasma
chamber consists of a coaxial DBD electrode systetere the
grounded inner electrode is covered with one layfeZorflex®,
100% activated carbon textile. The solution undeattment flows
downwards along the carbon textile. Plasma is @gaedrin dry air
over the carbon textile by applying a pulsed AChhigltage on the
outer mesh electrode that covers the tubular qugazs dielectric
barrier. The duty cycle of the power is definedresfraction of time
during which the plasma is operating, given by th&o of the
variable power pulse width to the fixed pulse parad 30 ms. In the
ozonation chamber, the ozone generated in the plagramber is
bubbled through the solution for additional pescioxidation, in
order to enhance the reactor efficiency withoutraxnergy input.
Solution samples for micropollutant analysis alertaafter passing
the ozonation chamber. The reactor standard settng different
from the ones used in previous work and are giverTable 1.
Information on the Zorflex® textile, on the methddr power
determination and on the measurement methods of aoid
conductivity is given in (Vanraes et al. 2015b).eThbtructural
formulas of all compounds are depicted in Figurantl their most
relevant physical and chemical properties are telis Table A.1 in
the Appendix. Initial solution of each micropollatawas made by
dissolving a concentration C(see Table 2) of the pesticide in
deionized water. Unless mentioned otherwise, nbaddition was

used.



160  2.2. Micropollutant concentration measurement method.

161 Alachlor and diuron concentration is measured byamseof an
162  Agilent GC-MS (HP 6890 Series GC System, 5973 Maaigctive
163  Detector) equipped with a cross-linked methyl siie column (ZB-
164 5MS, 30 m x 0.25 mm, 0.2oam film thickness; Phenomenex).
165 Before extraction, 19.00 g of the solution was hedically sealed in
166 20 mL vials, where alachlor was incubated for 5utes at 50 °C
167 and diuron for 1 minute at 30 °C using agitatiortr&ction of both
168 dissolved compounds was performed with a MPS-2 XYZ
169 autosampler equipped with a headspace-solid phaseextraction
170  unit (multi-PurposeSampler® or MPS®, Gerstel®, Miith and der
171  Ruhr, Germany). Extraction from the water matrixcurced on a
172  SPME fibre (75 um Carboxen/Polydimethylsiloxane RZRDMS),
173  fused silica fibre core, Supelco, USA), for 45 mawiat 50°C in the
174  case of alachlor and for 30 minutes at 30°C indhse for diuron.
175 The compounds were separated using Helium as thiercgas (flow
176 rate 1 mL min-1). For alachlor, the temperaturedgmat was 60 °C
177 (6 min) to 160 °C at 15 °C mifp held 11 minutes; then 7 °C/min to
178 205 °C for 0 min; then 25 °C/min to 250 °C for 5nmFor diuron,
179 the gradient was 35 °C (6 min) to 160 °C at 15 °@mheld 5
180 minutes; then 100 °C/min to 250 °C for 1 min. Timgector and
181 transfer lines were maintained isothermally at 260and 280 °C,
182  respectively. Both compounds are measured in $elelodn Mode
183  (SIM), alachlor at a retention time of 28.4 min asidron at 16.3
184 min. Calibration of the detector was made with 8ohs of known
185 concentration, from 1 to 100 pg/L. The integratedlkparea in the

186  obtained chromatogram was found to be linear wathcentration in
7
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this range for each micropollutant.

Analysis of a-HCH, PeCB and isoproturon was carried out with
Agilent GC-MS (6890 series GC system, 5973 MS) gisin
Chemstation software. Before analysis, 20 mL watamples were
extracted towards Ci&l, solvent by means of liquid-liquid
extraction.a-HCH and PeCB extraction was executed with addition
of 2 mL of CHCI,. The method was improved for isoproturon by
using a CHCI, volume of only 1 mL. The samples were shaken by
hand for 5 min in 22.5 mL sized vials. Afterwar@s6 mL of the
CH,CI, drop was separated by means of a micropipettibelcase of
a-HCH and PeCB, 2 grains of dry CaGlere added in order to
absorb any water traces in the sample. Splitleestion of 1 pL
sample occurred at temperature of 250°C and presduf8.4 kPa in
HP-5 MS column (0.25 mm x 30 m x 0.25 pm) with d¢ans He
flow of 1 mL/min. a-HCH and PeCB were measured with an
identical oven program. Oven temperature startd@at°C, rising to
195 °C at 25 °C/min and further rising to 210 °Cat°C/min with a
final hold of 1.5 min. Mass spectra were recorde&liM mode with
target ion 219 and qualifier ions 181 and 183 m thse ob-HCH
and with target ion 250 and qualifier ions 247 @5@ in the case of
PeCB (MS source at 230°C, MS quad at 150 °C, soldelay of 2
min). For isoproturon, splitless injection of 1 gample occurred at
temperature of 270°C and pressure of 68.1 kPa. @Qmeperature
started at 90 °C held for 1 min, rising to 190 4@ °C/min and
further rising to 270 °C at 20 °C/min with a fifadld of 2 min. Mass

spectra were recorded in SIM mode with target i4& a4nd qualifier
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ions 161 and 128 (solvent delay of 3 min). All atlirestrumental
settings were kept the same. Peaks-BIiCH, PeCB and isoproturon
were detected at a retention time of 5.13 min, 40@8and 4.06 min,
respectively. All three compounds were calibratedtfie range of 0
to 1000 pg/L, where linear dependence on concemtratas found.

Naphthalene was used as internal standard.

3. Results and discussion

3.1. Conductivity and pH

The formation of aqueous radicals and other spebieglasma
treatment induces a change in conductivity and pind each
experiment. Figure 2a gives an example of bothtiesiyparameters
as a function of treatment time, where the initi@hductivity of 350
nS/cm was prepared by addition of NBEye2H,O to demineralized
water. As can be seen, conductivity grows graduaiwards
approximately 1.3 mS/cm during 30 min, while pH psaabruptly
towards a value around 3 in the first 2.5 min @atment time,
followed by a slight further decrease. The end eslof conductivity
and pH after 30 min were found to be rather inddpan of initial
conductivity and pH. When the solution is only realated through
the ozonation chamber, hence without direct contacthe active
plasma region, the sharp pH drop at the start @fettperiment does
not occur, as shown in Figure 2b. The latter expeni is performed
by recirculating a separate 500 mL solution of diied water
through the plasma chamber. This difference isampt with the
formation of aqueous nitrites and nitrates in thesma chamber

through the dissolution of nitrogen oxides formadhe plasma by

9



240 reactions of dissociated,Mind Q. During this process, Hons are
241 generated in the water phase, as described witbvihall reactions
242  (Lukes et al. 2014):

243 NO, - +NO, - +H,0 — NO; + NO3 + 2H* (8.1)
244 NO-+NO, - +H,0 — 2NO; +2H™ (8.2)
245  Other species can contribute to pH and conductoiignge as well,
246 including @ and HO,. Figures 2c-d show the end values of both
247  solution parameters for different power settingbere duty cycle is
248 varied. It was found that power variation at fixédty cycle has a
249  very limited effect on the final pH value. Incraagithe duty cycle,
250 on the other hand, has a stronger effect, causiregliaction of the
251 end pH, due to more abundant formation of nitrié@&l nitrates.
252 Accordingly, end conductivity is influenced strond®y duty cycle
253  than by power at fixed duty cycle and is lineantggortional to both.

254

255  3.2. Kinetic analysis for removal of 5 micropollutants

256 In this section, the reactor’s performance is itigased in detail as a
257 function of operational parameters and working doos. To this

258 end, removal experiments are performed in parétlel5 selected
259  micropollutants with diverse properties (see Tahl&), to gain a

260 comprehensive view and to uncover compound-relisgees, if any.
261 More statistical information of these experimergsaund in Table
262 B.1in the Appendix.

263

264 Figure 3 shows the removal of each micropollutanden the

265 standard conditions of Table 1 in air atmosphere tfe three

10
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292

situations (i) with plasma generation, (ii) withquilasma generation
but with Zorflex® and air bubbling and (iii) withbuplasma
generation in absence of Zorflex®, but with air blifg. The
corresponding nonlinear least squares exponeittialgfis found by
means of the Levenberg-Marquardt algorithm. Tablenfists the
reciprocal time constant™ or pseudo-first-order reaction rate
constant k for each removal experiment, as dedfroed the fitting,
as well as the initial concentration of each micibgant. As
expected, the most volatile compoundsiCH and PeCB, decline
fastest by air bubbling alone, while the most iawd¢ compound,
isoproturon, does not evaporate at all. Surprigingl/aporation of
diuron is relatively high. This is possibly dueao inaccuracy in the
reported Henry law constant H of diuron, as thisieas solely based
on calculations (Giacomazzi and Cochet 2004) anéxperimental
confirmation was found in literature. Apart fromidtdeviation, the
observed order of volatility PeCB &HCH > diuron > alachlor >
isoproturon in our experiments agrees well with lttezature values

of the Henry law constant.

When Zorflex® is added in the reactor, strongeraeahis observed
for all micropollutants. Alachlor and isoproturoppear to be the
most efficiently removed compounds by adsorptiavijowved by

diuron. PeCB, on the other hand, is adsorbed leHitiently in

addition to evaporation. With the assumption thaperation and
adsorption have an accumulative effect, these wvagens can be
explained as follows. According to Moreno-Castifiaur features of

an organic compound regulate its rate of adsorptionactivated

11
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carbon (Moreno-Castilla 2004):

1. molecular size;

2. acid dissaociation constant pKa, in case it is acteblyte;

3. solubility;

4. nature of substituents, in case it is aromatic.
The molecular size determines the compound’s aiiiysto the
micro-pores of the carbon. The pKa value contidoésdissociation of
an electrolytic compound into ions, dependent otutem pH.
Consequently, adsorption of the resulting orgawic is strongly
regulated by electrostatic interaction with therglea on the carbon
surface. Since all selected micropollutants in giudy are similar in
size and nonionic, differences in their adsorptate are supposed to
be regulated predominantly by other factors, sughhair solubility
and their substituents. Each molecule’s water sigiplfsee Table
A.1 in the Appendix) is directly related to its mg@hobicity, which
dictates how easily it is rejected by the aqueailstion and thus
how readily it is accepted by another phase cant¢he solution.
Clearly, solubility is not the dominant factor, sinthe best soluble
compounds, alachlor and isoproturon, are adsorbece mapidly,
while the most hydrophobic moleculeg;HCH and PeCB, are
adsorbed worst. The amount of electron-withdravdhlprine atoms
on the aromatic ring of a micropollutant, on thkesthand, seems to
strongly regulate the adsorption rate. Namely, tedeewithdrawing
or electron-donating substituents on the aromaiif are expected to
affect then-n dispersion interaction between the aromatic rihthe
compound and the aromatic structure of the graphkyers

(Moreno-Castilla 2004). Possibly, donor-acceptortenactions

12
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between the compound’s aromatic ring or substituant! functional
surface groups such as carbonyl can also play & fhe five
chlorine atoms present in PeCB strongly decrease diectron
density in the ring, which explains its low ads@apton Zorflex®.
Alachlor and isoproturon, in contrast, have antetecrich aromatic
cycle because of the absence of direct chlorinatiution. Diuron
has a very similar molecular structure to isopratyrbut with two
chlorines attached to the ring, corresponding toveer adsorption
rate. This is in good agreement with the obseresdlts, suggesting
that the above mentionedi-n dispersion or acceptor-donor
interactions are the dominant mechanisms for atisorgn our

experiments.

When plasma is turned on, all micropollutants amoved to higher
extent. The additional removal process by plasmaaton is
strongest for isoproturon, diuron and alachlor, l&vki-HCH and
PeCB appear most recalcitrant to oxidation by ptagenerated
aqueous oxidants. It should be emphasized, nomsthelthat
decomposition processes occur in the vapor phaseelis under
influence of gaseous oxidants. A detailed studyhistopic is made
by Ognier et al., who used an AC powered coaxiaDDactor
similar to ours but without additional bubbling ftreatment of 4
volatile compounds: acetic acid, phenol, ethanall drheptanol
(Ognier et al. 2009). When plasma was switchednoieir reactor,
an increase was observed in mass transfer of eakthgmt from the
liquid to the gas phase, proportional to the cqesling Henry law

constant. This mass transfer increased was atdbiat the intense

13
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mixing in the liquid film and the reaction of thelfutant with active
species in the gaseous phase, in agreement withutational fluid
dynamic modelling results. The same authors alsasored a
minimum of 95 % decomposition of these compoundshim gas
phase. Accordingly, decomposition in the gas pheess found to be

significantly more effective that decompositiortlie liquid phase.

Energy efficiency of plasma reactors is often egped by the energy
yield G, (in g/kWh) for 50% pesticide removal, which isadated

by adapting the formula from (Hijosa-Valsero et2§l13),

kCoV
2P In(0.5)

G50 = - (83)

where A = 3.6 x 1DJ/kWh is a unit conversion factor, k is reaction
rate constant (in™§, G is initial concentration (in g/L), V is treated
water volume (in L) and P is applied power (in \@}, is, however,
not recommended as comparative parameter for mreaatergy
efficiency, since it strongly depends on initiallptant concentration
Co. Therefore, we used electrical energy per orded Eiefined as
the number of kilowatt hours of electrical energguired to reduce a
pollutant's concentration by 1 order of magnitu@8%) in 1 ni of
contaminated water (Wohlers et al. 2009),

EEO = In(10) x P
3600 XV Xk

(8.4)
Table 2 gives the energy vyieldsdzand electrical energy per order
EEO of the overall removal for each micropollutamtour reactor.
The input energy required for 90% reduction incesai® the order:
diuron < isoproturon < alachlor < PeCBo<HCH. With the used

reactor settings, it takes about 7 times as muehggrto remove the

same amount of-HCH from the solution as compared to diuron,
14
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indicating that EEO values in our reactor for diéiet compounds
can vary over almost one order of magnitude. Whth ihclusion of
more micropollutants, this range is likely to exgafurther. As

should be noted, the contribution of the oxidatiyrproducts to the
overall micropollutant concentration in our read®expected to be
negligible, based on HPLC-TOF-MS analysis. More ailied

information on the by-product analysis will be psbed in a

separate paper.

3.2.1. Effect of pH and salt addition

As this work mainly focuses on reactor charactéinza and
optimization, the influence of the water matrixliastrated only for
isoproturon. Figure C.1a in the Appendix shows deeomposition
of the pesticide for different initial pH. In théasdard experiment
mentioned above, the initial pH was 5.03. ReductérpH to 4.2
with addition of HSO, has little effect on the oxidation rate, but
further decrease to 2.08 leads to significant imeneent of the
degradation process. This is possibly due to thendtion of
peroxymonosulfuric acid (3%Q;), also known as Caro’s acid, via the
reaction (McDonogh and Sanders 1995)

H,S0, + H,0, — H,S0s + H,0 (8.5)
Peroxymonosulfuric acid is one of the strongestiamts, which is
able to decompose organics non-selectively witledox potential
comparable to the one of the hydroxyl radical (8piet al. 2015).
As an additional explanation, the lower pH leadshigher HO,
stability, which can cause stronger isoproturon odgmosition.

Increase of the pH to 7.2 with addition of NaOH wglees the
15
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oxidation of isoproturon, while further increase & pH of 10
enhances the decomposition process again. Singeotsoon is
relatively reactive to ozone, with reported valoékos from 141 to
2191 M' s (Table A.1), its degradation in our reactor isgly
influenced by the stability of aqueous. @levation of pH is known
to gradually lower the stability of ozone, explaigithe initial
decrease. It is, however, less known that in higttkaline solution,
starting from addition of 5 M NaOH, ozone stabildpruptly rises
again (Eriksson 2005, Heidt and Landi 1967). In ¢hse that this
stage of high @stability has not been reached yet at pH = 10rd¢he
established decomposition rate can alternativelyexgained with
the peroxone process. Namely, the peroxone ratstaanincreases
with pH and can take the upper hand in isoprotutecomposition

above a certain pH value (Catalkaya and Kargi 2009)

The influence of salt addition is shown in FigurellC In the
accuracy of the measurements, addition of }dB and NaSQ, did
not have any visible effect on isoproturon decoritms NaHCQ,
however, significantly lowered the oxidation ra@arbonate is an
effective OH scavenger through the reaction (Eaks2005):

C0%2~ + OH -— CO3 + OH™ (8.6)
Therefore, the reduction in the reaction rate ie tiu inhibition of
OH radical attack. As the above results indicaitesctl attack by OH
radicals plays a significant role during the degtamh of isoproturon

at the standard conditions.
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427  3.2.2. Effect of initial concentration

428 EEO is a comparative parameter of preference factoe energy
429 efficiency in organic removal. A priori, it is moelvisable to carry
430 out such comparison for a fixed initial pollutamincentration g; to
431 exclude any concentration related effects. In jachowever, it is
432 useful to experimentally investigate the influencg the initial
433 pollutant concentration on its removal rate andstiom the EEO
434 value. As shown in Figure C.2 and Table C.1 inAlppendix, this
435 influence is relatively small for our reactor. Witlecreasing § a
436 drop in EEO is observed fow-HCH, alachlor, diuron and
437  isoproturon. This is in good agreement with theeolstion of many
438 other authors. Table A.2 in the Appendix enlistsrgported effects
439 of a decreasing initial concentration of a watetlytant on its
440 decomposition rate constant that have been founiiterature on
441 plasma reactors. For 25 cases dealing with differeactor types,
442  decreasing gcaused an increase in decomposition rate. Frelguent
443  authors explain this concentration effect with acrdase in
444  competition for OH radicals between the pollutamienules as well
445 as their by-products, assuming a constant condemtraof OH
446  radicals or other dominant oxidants. With the idtrction of EEO as
447  a physical quantity for energy efficiency, Cateraktalready stated
448  this for advanced oxidation processes in generatefCet al. 2000),
449 as shortly reviewed for pharmaceutical compound®/agureanu et
450 al. 2010). The magnitude for this effect is, howewxtremer for
451 higher concentrations, while the concentration affean become
452  negligible for lower concentrations. A nearly cargtdecomposition

453 rate has for instance been observed for the lovescantration
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ranges of 0.1 to 0.3 mg/L pEstradiol in DBD over water in (Gao
et al. 2013), 1.9 to 3.3 mg/L rhodamine B in theD&pray reactor
of (Nakagawa et al. 2003), 5 to 10 mg/L acid bléer2ated by DC
glow discharge (Ghodbane et al. 2014) and 5 to @0 rparaquat
under gliding arc (Fouodjouo et al. 2013). Thislaxys the relatively
small deviations in our experiments. Accordinglfe tstrongest
relative change of the oxidation rate and thusBOHs observed for
a-HCH, the compound with highest initial concentrati(see Table

C.1).

The above results and discussion imply that, gdiger#terature
values of the oxidation rate constant for micrapilhts in plasma
reactors are underestimations for realistic sitwetiin urban and
rural wastewater treatment plants, where conceomigtup to a few
microgram per liter are usually measured. Even iospital
wastewater, concentrations are in general only onger of
magnitude higher (Verlicchi et al. 2010). Thereforge want to
accentuate the importance of experimental reseaitthrealistic or
sufficiently low micropollutant concentrations asthe present work,
in order to gather energy efficiency data that mrenrepresentative
for real-world applications. It should be takerimiccount, however,
that the raw wastewater’'s matrix will influence gueous oxidative

chemistry, likely increasing the total energy dethan

3.2.3. Effect of power at constant duty cycle
Applied power in our reactor can be changed inwags: by varying

the momentary power and by adjusting the duty cyidhke duty cycle
18
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DC of the power source is defined as the fractiinte in which the
power is active. Figure C.3 and Table C.2 in theoéix present
the results for variation of the momentary powea éiked duty cycle
DC = 0.15. As expected, increasing power leadsédnegal to a
higher oxidation rate, in agreement with other DBfactors (see
Table A.3 in the Appendix). Far-HCH, PeCB and isoproturon,s§
drops and EEO rises slightly for higher power. Blacchlor, energy
efficiency remains constant in the accuracy ofrtieasurements, as
in the case of atrazine reported in our previoseaech (Vanraes et
al. 2015b). For diuron, there is a slight rise mergy efficiency when
power is increased. Table A.3 shows energy effigiedata as a
function of applied power for four AC powered DBPBactors with
discharge in air. Since the operational conditiohshese reactors,
including input power, are similar to our experirtggrthis data is
expected to be representative for our study, énd EEO are
calculated from the reported values of the reactiate constant,
power, initial concentration and solution volumescarding to these
data, there is no consistent trend of energy efficy as a function of
applied power. Since the four compounds in Tabl& Are
decomposed in very similar reactors, these resuiggest that the
effect of power might be specific for each compaundour reactor,
the influence of adsorption on Zorflex® is compospecific and
should be considered as well. In any case, thendigpey of EEO on
power seems to be rather limited, which is benafi@r applications
where removal rate needs to be controlled as atibmof the

influent micropollutant concentrations.

19



508 3.2.4. Effect of duty cycle

509 Figure 4 and Table C.3 in the Appendix presentetfect of duty
510 cycle on compound removal in our reactor. As seemnfthe
511 measured data, an increase in duty cycle leadshigher oxidation
512 rate in general, except for diuron, for which reovate remains
513 constant in the accuracy of the measurement. Nelesth, a higher
514  duty cycle results in a significant decrease inrgynefficiency. The
515 same effect has been found with the gas phase D&itor of
516  (Olszewski et al. 2014) with pulse-modulated AC powwhere
517 increasing the duty cycle from 25% to 100% loweredergy
518 efficiency 2.11 times. The authors explained thtetaeffect with
519 additional organic degradation during plasma offneti under
520 influence of long living reactive species such asa@d HO,. As
521 seen in section 3.1, a higher duty cycle resulta lower pH due to
522 stronger N@ and NQ formation. These anions and their conjugated
523 acids can inhibit oxidation by {and OH, which gives an alternative
524  explanation for the reduction in energy efficienal higher duty
525 cycle. This effect will be discussed in more detailsection 3.2.6.
526 The effect of duty cycle on the pollutant removancalso be
527 explained with significant gas temperature incregséhe plasma
528 zone, which inhibits @and HO, production.

529

530 3.2.5. Effect of feed gas

531 The removal of each micropollutant under air, argom oxygen
532 plasma is compared in Figure 5 and Table 3. Dregase used, but
533 significant vapor presence is expected in the plashamber due to

534  evaporation. Reactor performance is significanthhanced with
20
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oxygen, except foi-HCH. Unfortunately, no data is available on the
reaction rate constantgkand lky of a-HCH with ozone and OH
radicals, respectively. However, the isomyedCH is known to be
very resistant to ozonation witlyk< 0.04 M* st (Roche and Prados
1995, Yao and Haag 1991), while it is oxidized wid radicals
with reaction rate ¢ = 7.5 x 16 M* s* (Haag and Yao 1992).
According to Camel and Bermond, pesticides comaginseveral
chlorine atoms without unsaturated bonds, suclw-B<CH andy-
HCH, are generally unreactive to ozone, while preseof accessible
unsaturated cycles as in PeCB leads to higheriviéggiCamel and
Bermond 1998). Since ozonation plays a more doniir@e during
plasma treatment with oxygen than with air, thistlpaxplains the
decrease in oxidation rate faftHCH when the feed gas is changed
from air to oxygen. Argon plasma consistently perf® worse than
air plasma. Overall, the observed trends are irdgmyeement with
observations in literature (Hijosa-Valsero et abl12). The better
performance of @in comparison to air can be explained with
different effects:

* In the absence of nitrogen, less aqueous add OH
scavengers are generated, such as £IN@, and NO (see
section 3.2.6 for more details).

* The higher @ content leads to highers@roduction in the
plasma chamber.

 With pure Q, aqueous nitrite and nitrate formation is
prevented (see section 3.1), resulting in a smallérdrop
and thus a better peroxone performance (Kalra.e2(dll,
Lukes et al. 2014).
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3.2.6. Single-pass experiments

Most plasma reactors described in literature opeiratbatch mode,
where the solution under treatment is located endide reactor
during the complete treatment time. Such reactaofigorations are,
however, unpractical for real-world applications e a large
volume needs to be treated in a short time. Inlithésof thought, it is
more attractive to use a reactor in single-passatipa, where water
is flowing through the system only once. Therefarnay, reactor was
modified to work in single-pass mode and micropalh removal is
investigated for three different configurations:

* a configuration where influent water exclusivelyovils
through the plasma chamber (only plasma);

* a cascade configuration where influent water fiitsivs
through the plasma chamber and subsequently flowsigh
the ozonation chamber (plasma before ozone);

* a cascade configuration where influent water fiitetvs
through the ozonation chamber and subsequently sflow
through the plasma chamber (ozone before plasma).

The latter is illustrated in Figure 6. To allow acate comparison
with the reactor in batch mode, all experimentsenenducted with
the same standard settings enlisted in Table 1l.orBefach
experiment of the cascade configurations, the dmmmahamber was
filled with the initial solution up to the same bt of 25.7 cm as
used in batch mode. During plasma treatment, sanaflthe effluent

solution were taken after the same treatment tiasees the batch
22
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mode experiments. All samples were analysed with-M&C to
determine the time-averaged micropollutant conegioin in the

effluent.

The removal percentages and corresponding EEO s/algegiven in
Table 4. EEO (in kwWh/f) is calculated with the formula introduced
by Bolton et al. for reactors in flow-through optwa (Bolton et al.

1996):

P

EEO = A X Fxlog(Co/Cy)

(8.7)

where P is applied power (in W), A = 3.6 x°1DkWh is a unit
conversion factor, F is the water flow rate’fshin the flow-through
system and gand G are the initial and final concentration (in g/L),
respectively. For all three flow-through mode cgofations,
operation without plasma resulted in the same reinpercentage
and is therefore given as one value. Surprisingiynoval without
plasma is most effective for PeCB, while this coompd was
observed to be the most resistant to adsorptidmatoh mode (see
Figure 3). As PeCB has very high volatility, thigpparent
contradiction can be explained with air stripping the plasma

chamber.

Using the hydraulic residence time of 4.20 min #ral reaction rate
constants from Table 2 for standard settings irctbahode, the
corresponding removal percentage in batch modelsulated, as
given in Table 4. According to the resulting remoparcentages,
single pass mode is performing as good as or bither batch mode

for removal of the different compounds.
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In Table 4, comparison of the reactor in absencéhefozonation
chamber to the cascade configuration from Figureittere plasma
gas bubbling precedes treatment in the plasma drandbearly
shows that energy efficiency approximately doubiesen the
ozonation chamber is added to the reactor. As dhioelnoted, this
cascade configuration performs considerably béteremoval of all
micropollutants than the reverse cascade configurafs the most
likely reason, this is because of more efficierdragion of untreated
solution as compared to plasma-treated solutionthim plasma
chamber, transfer of nitric oxides into the solmtiteads to the
formation of NQ, a known @ scavenger through the reaction

03 + NO; — 0, + NO3 (8.8)
with reported reaction rate of k = 1.6 — 5.0 ¥ M's’ (Damschen
and Martin 1983, Garland et al. 1980, Hoigné etl@B5, Penkett
1972). When the solution enters the ozonation clearafierwards,
the aqueous N is mixed rapidly throughout the solution under
influence of the bubbling, inhibiting the ozonatigmocess. The
transfer of nitric oxides into the solution by thebbling process in
the ozonation chamber is, on the other hand, velgtismall, as
confirmed by the limited decrease in pH (see Figbg Therefore,
ozonation has a stronger effect in the cascadegroaftion of Figure
6 than in the reverse setting. This scavenging ar@sm has been
reported before in water treatment processes withlasma (Lukes
et al. 2014). Additionally, aqueous OH radicalsddticed by means
of the bubbled plasma gas can be scavenged asbwakactive

nitrogen species through the reactions
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OH -+NO-— H* + NO; (8.9)

OH - +HNO; — H,0 + NO; (8.10)

OH - +NO; — OH™ + NO, - (8.11)
with reaction rates of k = 1.0 — 2 xf{M™s* (Seddon et al. 1973,
Strehlow and Wagner 1982, Treinin and Hayon 194 @) 5.3 — 14 x
10" M's* (Jiang et al. 1992, Katsumura et al. 1991) andekO=— 14
x 10 M's* (Adams et al. 1965a, b, Barker et al. 1970, Buxt889,
Lagager and Sehested 1993, Treinin and Hayon 18&€§)ectively.
The NQ- radical formed in Equation 8.11 has a redox gteof
1.04 V (Moniczewski et al. 2015, Squadrito and Prg002) and is
therefore significantly less reactive than the @Mical reagent with

a redox potential of 2.80 V.

Energy efficiency for micropollutant removal in theascade
configuration of Figure 6 is in the same order adgmitude as in
batch mode. As a negative effect, energy efficiedegreases in
flow-through mode with 22 + 5 % for isoproturon abd + 6 % for
diuron. As a positive effect, energy efficiencyrieases with 32 £ 10
% for alachlor, 56 + 10 % far-HCH and 96 = 16 % for PeCB. Since
the most persistent compoundsHCH and PeCB, are removed
significantly more effectively, while the EEO inase for
isoproturon is relatively small, these results &paafavor of the
flow-through system for general application. To &npowledge, this
is the first time that a comparison in energy é&ficy of organic
decomposition has been made between batch modsiagid-pass
mode of the same reactor. These results seem gesuthat EEO

values in batch mode are representative for theggrefficiency of
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an identical reactor in flow-through mode, at leastorder of
magnitude. Yet, it is uncertain whether this cangeeeralized for

other reactor types as well.
4. Conclusion

In this work, we have investigated a new type @fspia reactor for
water treatment, in which micropollutant decomgosit by
atmospheric dielectric barrier discharge (DBD) @mbined with
adsorption on activated carbon textile and withraatiubbling of
generated ozone. During treatment in the reactaiutien
conductivity gradually rises, while pH drops abtypin the first
minutes of treatment, to slowly decrease furthéerafards. Kinetic
analysis for the removal of five pesticides ledhe following new
insights:

» Energy efficiency for the removal in standard ctiods
ranges over one order of magnitude, from 3.9 t&\&&/n’,
with increasing value in the order diuron < isopron <
alachlor < PeCB «-HCH. The contribution of evaporation
as well as adsorption to the removal process ignoft
significant, but strongly depends on compound priogee

» As shown for isoproturon, the initial pH has a sgaffect
on the removal rate, which is explained with a ¢fegam
oxidation rates of ozonation and the peroxone @®ce

e Addition of the salts Na)PO, and NaSO, does not
influence the removal process, while NaH{@s an OH

radical scavenger, lowered the oxidation rate.
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Investigation of the removal energy efficiency afumction

of the initial micropollutant concentration showadtrongly
increasing trend of & and a slight increase in EEO for
higher concentrations, in agreement with resuttenfiother
authors. Energy efficiency displays limited changes no
clear trend under power variation at fixed duty leyc
indicating that removal rate can be increased Vitle loss

in efficiency.

Increasing duty cycle, on the other hand, resulis i
remarkably lower energy efficiency. This can belaxgd
with stronger formation of nitrites and nitrateshigh are
known scavengers of OH radicals or ozone. Alsg, ¢tain be
caused by shorter plasma off time and thus lesanorg
decomposition during the moments without power ingu
by O; and HO, inhibition due to plasma gas temperature
increase.

Generally, the oxidation process is enhanced whggem is
used as feed gas, except teHCH, most likely due to its
strong resistance to ozonation. Argon, on the otrard,
performs worse than air for removal of all compozaind

Using the reactor in single-pass mode, where wibers
through the treatment chambers only once, enhatioed
removal process of the most persistent compourd€H
and PeCB, while it performed only slightly worse &uron
and isoproturon removal. Comparison with singlespasde
experiments without the ozonation chamber proves th
energy efficiency approximately doubles with theitidn of
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ozonation chamber. Nonetheless, it is importantetothe
influent water flow through the ozonation chamhbestfand
only afterwards through the plasma chamber, sifee t
reverse cascade configuration gives consistentlysevo
energy efficiency. This is explained with scavemggiof
ozone by N@ ions, which are introduced into the solution

during direct plasma contact in the plasma chamber.
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Figure 1. Structural formulas of the pesticides used in wuosk.

Figure 2. Measured pH and conductivity data during experisien
with reactor settings as specified in Table l.idhitonductivity was
set at 350 pS/cm by addition of N#&D2H,O to demineralized
water. (a) and (b) pH and conductivity as a functibtreatment time
for applied power of 59 W. In (b), pH evolutionasmpared with an
experiment where the solution is subjected to péagias bubbling
alone. In the latter configuration, the investigaselution was not in
direct contact with the active plasma zone, butlarosolution was
recirculated through the plasma chamber in an tsdl&ircuit. (c)
and (d) pH and conductivity after 30 min treatmiéme for different

duty cycles.

Figure 3. Removal kinetics for the 5 micropollutants in tieactor
without plasma generation and in absence of Zarfler with air
bubbling (only evaporation), without plasma generat but with
Zorflex and air bubbling (evaporation + adsorptiang with plasma
generation in the standard settings (plasma sk The full lines

represent the best exponential fit.

Figure 4. Removal kinetics in the reactor with standardirsgst for

different duty cycles.

Figure 5. Removal kinetics in the reactor with standardirsgst for

different feed gases.



Figure 6. Cascade configuration of the reactor in singlespasde
where influent water first enters the ozonation nchar and

subsequently passes through the plasma chamber.



Table 1. Reactor standard settings for the experimentsisnvtork.

Experimental parameter Value/description
Voltage amplitude 7.9-8.4 kV
Input power See Table 3
AC frequency 47.8 kHz
Modulation frequency 33.3Hz
Duty cycle 15.0%
Treated volume 500 mL
Water flow rate 95.3 mL/min
Gas flow rate 1.00 SLM
Feed gas air
Inter-electrode distance 2.25 mm

Table 2. Initial concentration §; applied power, reciprocal of the time constaptfor only
evaporation, reciprocal of the time constanj for evaporation and adsorption, reaction ratenkrgy
yield G5, and electrical energy per order EEO for the radotstandard settings.

a-HCH PeCB alachlor diuron isoproturon
Co (ug/L) 215+6 67 +2 57+4 114+ 6 101 +3
Power (W) 49.9+1.38 489+1.7 40.3+0.3 39.7%0 41.0+1.0
1/ (10° s7) 76+ 3 314 +17 23+3 49 + 6 1.3+15
e (10*s?)  17.9+1.2 35+3 17 +2 17+3 11.0+1.0
k (10°sY 245+0.14 51+0.3 8.5+0.4 13.0+0.2 1034
Gso (Mg/kWh)  13.7+1.0 9.0+0.6 155+1.3 49 +3 .(BB1.8
EEO (kWh/nf) 26.1+1.7 122+0.7 6.1+0.3 3.90+0.09 502

Table 3. Energy vield G and electrical energy per order EEO for the redctstandard settings for
different feed gases.

a-HCH PeCB alachlor diuron isoproturon
Gso (Mg/kWh) air 13.7+1.0 9.0+£0.6 155+1.3 49+ 33.0+£1.8
Gz (mg/kWh) Ar 142+06 6.8+04 13.8+1.3 302 5.6 £0.7
Gso (Mg/kWh) Q 8.0+0.4 343+13 56+8 114 + 10
EEO (kwh/m) air 26.1+17 122+0.7 6.1+0.3 3.90+0.09 .150.2
EEO (KWh/m) Ar 25.1+0.7 16.2+0.8 6.9+04 6.3+0.3 36+
EEO (KWh/m) 0O, 44 + 2 3.22+0.08 1.7+0.2 1.67 +0.12

Table 4. Removal percentage and electrical energy per &H€ for the reactor in single-pass mode
for the different configurations. In the “no plashexperiments, neither plasma nor ozone was used.
For comparison, also the removal percentage ahyleaulic retention time 4.20 min and the EEO
value in batch mode are given, for the same stanskitings.

a-HCH PeCB alachlor diuron isoproturon
_ noplasma 31.7+1.2 75.7+£06 44605 6090 376+14
¢ _ only plasma 43.7+1.5 79.0+0.7 751+04 79B%
g S plasma before ozone 50+2 826+0.7 87%2 9auzB+ 75904
©  ozone before plasma 64.8+1.0 945+06 97.6x0.96.9+0.7 916+1.0
batch mode (4.20 min) 46.1+1.9 72+2 88.3+1.206.2+0.2 925+0.8
«_ only plasma 30.1£15 114+03 11.6+02 9@2
Q % plasma before ozone 184+1.1 99+04 8.0+x0.76.7x0.4 11.5+0.3
T E ozone before plasma 16.7 £ 0.7 6.2+0.3 4.6+0.34.6+0.3 6.5+0.3

batch mode (4.20 min) 26.1+1.7 122+0.8 6.130 390+0.09 51+0.2
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Highlights

¢ Anovel dielectric barrier discharge reactor is investigated for pollutant removal.

* Five persistent pesticides are used in low concentrations around 100 pg/L.

e Removal efficiency increases for decreasing duty cycle and pesticide concentration.
e Oxygen plasma is more effective than air and argon plasma.

e The reactor in single-pass operation performs better than in recirculating mode.



