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Highlights 

• Random Forest was used for predicting sediment transport in sewer pipes. 

• The Random Forest results outperformed the predictions of the previously 

reported models. 

• Overfitting was avoided with the new Random Forest based model. 

• Volumetric sediment concentration is the most important parameter for predicting 

self-cleansing in sewers. 
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Predicting non-deposition sediment transport in sewer pipes using 

Random Forest 

Abstract 

Sediment transport in sewers has been extensively studied in the past. This paper 

aims to propose a new method for predicting the self-cleansing velocity required 

to avoid permanent deposition of material in sewer pipes. The new Random Forest 

(RF) based model was implemented using experimental data collected from the 

literature. The accuracy of the developed model was evaluated and compared with 

ten promising literature models using multiple observed datasets. The results 

obtained demonstrate that the RF model is able to make predictions with high 

accuracy for the whole dataset used. These predictions clearly outperform 

predictions made by other models, especially for the case of non-deposition with 

deposited bed criterion that is used for designing large sewer pipes. The volumetric 

sediment concentration was identified as the most important parameter for 

predicting self-cleansing velocity.   

Keywords: non-deposition; random forest; sediment transport; self-cleansing; 

sewer systems.  

1. INTRODUCTION 

Designing sediment-carrying sewer systems is a well-known field of research in hydraulic 

engineering. This interest is explained by the problems related to the presence of material 

in the systems. Due to the varying environmental conditions (i.e. loading and sediment 

characteristics and intermittent flow), the risk of building up a permanent sediment 

deposit increases during dry weather seasons. These deposits lead to problems such as 

reduced pipe capacity, increased roughness, and premature overflows. As an example, 

Ackers et al. (2001) showed that the presence of a permanent deposit at the bottom of 

sewer pipes increases hydraulic roughness and reduces discharge capacity by about 20%.  
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The most common criterion to avoid permanent deposit of material in sewer pipes 

is known as non-deposition. Several authors (Safari et al., 2018; Vongvisessomjai et al., 

2010) have classified this criterion into two subgroups: 1) Non-deposition without 

deposited bed and 2) Non-deposition with deposited bed. Both groups are based on the 

presence of sediments at the bottom of the pipe. In the first case, high water velocities 

produce an individual and separate movement of the particles by slicing or rolling over 

the pipe invert, i.e. without deposited bed. In contrast, the second case is seen when lower 

water velocities are presented and the particles are grouped and move as a transitional 

deposited bed. 

In the case of ‘without deposited bed’, traditional criteria of minimum velocities 

and shear stress values are commonly found in water utilities standards and industry 

design codes. Generally, these standards and codes suggest values ranging from 0.30 m 

s-1 to 1.0 m s-1 for minimum velocity and from 1.0 Pa to 4.0 Pa for shear stress (Montes 

et al., 2019; Nalluri and Ab Ghani, 1996; Vongvisessomjai et al., 2010). Several authors 

(Merritt and Enfinger, 2019; Nalluri and Ab Ghani, 1996) have shown how traditional 

threshold values lead to over-design of small diameter pipes and under-design of large 

diameter pipes (as a rule-of-thumb, pipes with diameter greater than 500 mm). 

Consequently, large sewers commonly require frequent removal of sediment deposits 

(Ackers et al., 2001) because of the minimum self-cleansing value adopted during the 

design stage. A unique design value is inadequate; hence sediment characteristics and 

hydraulic conditions must be included in the definition of the self-cleansing design 

criterion.  

According to Safari and Aksoy (2020), existing traditional self-cleansing criteria 

can be up to 20% different from laboratory-scale measured values. The channel cross-

section is relevant in the choice of the self-cleansing criterion. For example, rectangular 
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cross-sections require lower velocities compared to V-bottom or U-shape channels. Even 

criteria based on the Shields diagram, such as the Camp criterion, seem to be inadequate 

to define the self-cleansing value due to the non-inclusion of sediment concentration.  

The above has motivated extensive experimental research (Ab Ghani, 1993; El-

Zaemey, 1991; May, 1993; May et al., 1989; Mayerle, 1988; Montes et al., 2020a, 2020b; 

Ota, 1999; Perrusquía, 1991; Vongvisessomjai et al., 2010) aiming to collect data and 

developing models for predicting the self-cleansing velocity as a function of sediment 

characteristics and system hydraulics, based on the concept of non-deposition. These 

studies have been carried out at laboratory scale under well-controlled and steady flow 

conditions, using non-cohesive sediments. Different authors collected data in pipes with 

different materials (e.g. concrete, acrylic or PVC, among other materials) and internal 

diameters, ranging from 100 mm to 595 mm. In the end, all these studies proposed a 

model for predicting the self-cleansing conditions in practice that was either developed 

with their own experimental data or using the benchmark data reported in the literature. 

Most models developed are regression-based and include the group of input parameters 

that most affect the prediction of the self-cleansing velocity (Ackers et al., 2001; Ebtehaj 

and Bonakdari, 2016a; May et al., 1996). Most of these models are in the form of: 

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 𝑎𝐶𝑣

𝑏 (
𝑑

𝑅
 𝑜𝑟 

𝑑

𝐷
)

𝑐

𝜆𝑒𝐷𝑔𝑟
𝑓 (

𝑊𝑏

𝑌
 𝑜𝑟 

𝑦𝑠

𝑌
 𝑜𝑟 

𝑦𝑠

𝐷
)

𝑔

(
𝑃

𝐵
)

ℎ

 (1) 

where 𝑉𝑙 is the self-cleansing velocity, 𝑑 the mean particle diameter, 𝑔 the gravity 

acceleration coefficient, 𝑆𝑠 the specific gravity of sediments, 𝐶𝑣 the volumetric sediment 

concentration, 𝑅 the hydraulic radius, 𝐷 the pipe diameter, 𝜆 the channel friction factor, 

𝐷𝑔𝑟 the dimensionless grain size (= (
(𝑆𝑠−1)𝑔𝑑3

𝜈2 )

1

3
), 𝜈 the water kinematic viscosity, 𝑊𝑏 

the sediment deposited width, 𝑃 the wetted perimeter, 𝑦𝑠 the sediment deposited 

thickness, 𝐵 the water surface width, 𝑌 the water level and 𝑎, 𝑏, 𝑐, 𝑒, 𝑓, 𝑔 and ℎ regression 
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coefficients. Other parameters as 𝑉𝑡 the threshold velocity required to initiate movement 

(= 0.125(𝑔𝑑(𝑆𝑠 − 1))
0.5

(𝑌/𝑑)0.47) and 𝑆𝑜 the pipe slope have also been included in 

regression models (May et al., 1996; Montes et al., 2020a). 

Most of above studies for both non-deposition criteria, have developed predictive 

models which tend to be overfitted to their own experimental data. This problem can be 

seen especially in the earlier works, where no advanced techniques were used to develop 

regression models. For example, several authors (Montes et al., 2020b; Safari et al., 2018) 

have pointed out that early work of Mayerle’s (1988) has developed a model that shows 

high accuracy prediction with its data and poor prediction when other datasets are used. 

In contrast, recent regression-models, which used novel techniques such as Evolutionary 

Polynomial Regression – Multi-Objective Genetic Algorithm (EPR-MOGA) and Least 

Absolute Shrinkage and Selection Operator (LASSO) have demonstrated better 

prediction results (Montes et al., 2020a, 2020b).  

In order to address the above overfitting issue in regression models, new Machine 

Learning (ML) and Artificial Intelligence (AI) techniques have been introduced for 

predicting the self-cleansing velocity based on the concept of non-deposition sediment 

transport. Examples of models developed for the ‘without deposited bed’ case include 

using techniques such as Artificial Neural Network (ANN) (Ebtehaj and Bonakdari, 

2013), Support Vector Regression (SVR) coupled with the Firefly Algorithm (Ebtehaj 

and Bonakdari, 2016b), the Group Method of Data Handling (GMDH) (Ebtehaj and 

Bonakdari, 2016a), neuro-fuzzy inference system combined with the Particle Swarm 

Optimisation (ANFIS-PSO) (Ebtehaj et al., 2019), Decision Trees (DT), Generalised 

Regression Neural Network (GRNN), Multivariate Adaptive Regression Splines (MARS) 

(Safari, 2019) and Extreme Learning Machine (ELM) (Ebtehaj et al., 2020). For the other 

case of ‘non-deposition with deposited bed’, fewer ML/AI type models have been 
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developed. Examples include models based on Particle Swarm Optimisation (PSO) 

algorithm (Safari et al., 2017), Gene Expression Programming (GEP) (Roushangar and 

Ghasempour, 2017) and Multigene Genetic Programming (MGP) (Safari and Danandeh 

Mehr, 2018).   

The above models, developed using different ML/AI techniques (for both non-

deposition criteria), have improved the prediction accuracy of self-cleansing velocities 

and addressed the issues of model overfitting but only partially. As noted by Zendehboudi 

et al. (2018), these models still tend to have rather limited extrapolation capabilities 

meaning that once they are applied to datasets that were not used for their training they 

tend to underperform. Also, the ML/AI based models developed so far are largely black-

box type models (e.g. ANN) meaning that, unlike white-box type regression models, they 

suffer from low interpretability of physical significance of model inputs (i.e. explanatory 

factors), and interactions with the model output.  

The aim of this paper is to overcome above deficiencies using the Random Forest 

(RF) technique for predicting self-cleansing sewer velocities. RF (Breiman, 2001) is a 

flexible and interpretable supervised ML technique that combines the results (outputs) of 

multiple individual decision trees to make a prediction of interest. Due to its good 

characteristics and easy application, it has been a widely used for addressing many other 

problems in water engineering. Tyralis et al. (2019) showed a full review of studies in 

which RF was successfully applied to water resources problems. 

Using the RF technique, a new predictive self-cleansing model is developed and 

presented here for both non-deposition criteria (with and without deposited bed). This 

model aims to increase prediction accuracy whilst avoiding overfitting issues and 

enabling interpretability of results obtained. The new modelling technique is compared 

to ten literature models using multiple datasets.  
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2. DATA  

2.1. Non-deposition without deposited bed data 

Several experimental data were collected from the literature to implement the RF 

method. Mayerle (1988) studied the sediment transport in a 152 mm diameter pipe and in 

two rectangular channels of 311.5 mm and 462.3 mm bottom width (𝑊) using granular 

sands ranging from 0.50 mm to 8.74 mm. Ab Ghani (1993) collected 221 data in 154 mm, 

305 mm and 450 mm diameter pipes, testing sands between 0.46 mm and 8.40 mm. Ota 

(1999) used a 225 mm concrete pipe with a constant slope of 0.002, varying the 

volumetric sediment concentration between 4.2 ppm to 59.4 ppm. Vongvisessomjai et al. 

(2010) used two circular PVC pipes of 100 mm and 150 mm diameter to study the bedload 

and suspended load transport. Montes et al. (2020a) collected experimental data in a 242 

mm acrylic pipe using granular material with a mean particle diameter of 0.35 mm and 

1.51 mm. Montes et al. (2020b) carried out 107 experiments in a 595 mm PVC pipe, using 

sediments ranging from 0.35 mm to 2.6 mm. 

2.2. Non-deposition with deposited bed data 

For the non-deposition with deposited bed, El-Zaemey (1991) studied the 

sediment transport in a 305 mm diameter pipe, using granular particles ranging from 0.53 

mm to 8.40 mm. Perrusquía (1991) carried out experiments in a 225 mm diameter pipe, 

varying the sediment concentration from 18.7 ppm to 408.0 ppm. Ab Ghani (1993) 

collected the deposited bed data only in the 450 mm concrete pipe and using granular 

sand with a mean particle diameter of 0.72 mm. May (1993) extended their previous study 

(May et al., 1989) and collected experimental data with sediment thickness varying from 

57.6 mm to 129.6 mm. Finally, Montes et al. (2020b) carried out experiments in a 595 

mm PVC pipe, considering a relative sediment thickness (𝑦𝑠/𝐷) between 0.13% and 
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1.11%. Table 1 outlines the characteristics of the data used for developing the RF 

algorithm. 

[Table 1 near here] 

As shown in Table 1, a total of 664 and 454 data are available for the development 

of models without deposited bed and the deposited bed criteria, respectively.  

3. MEHODOLOGY 

3.1.  Random Forest Model 

Random Forest model developed here predicts the particle Froude number (𝐹𝑟
∗) as a 

function of several well-known dimensionless explanatory factors (Kargar et al., 2019; 

Vongvisessomjai et al., 2010):  

𝐹𝑟
∗ =

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 𝑓 (𝐶𝑣, 𝐷𝑔𝑟 ,

𝑑

𝑅
, 𝜆,

𝑦𝑠

𝐷
) (2) 

 Random forest (RF) is a bagging algorithm for regression and classification 

problem proposed by Breiman (2001). This is a low-variance method, which randomly 

split the training data and the input variables predictors to build a set of 𝑏 decision trees 

(𝐵𝑡). The results of all decision trees generated from bootstrapped training samples 

(𝑇𝑏(𝑥; 𝛳𝑏)) are then averaged, i.e. the final result (𝑦̂(𝑥)) is the average of the output of 

all decision trees (as shown in Eq. (3)). This procedure ensures the reduction of the model 

variance and consequently, the reduction of the risk of overfitting. A simplified 

conceptual diagram of the RF method is shown in Figure 1. 

𝑦̂(𝑥) =
1

𝐵𝑡
∑ 𝑇(𝑥; 𝛳𝑏)

𝐵𝑡

𝑏=1

 (3) 

[Figure 1 near here] 
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In this paper, the R package ‘RandomForest’ (Liaw and Wiener, 2002) was used 

for constructing both non-deposition, without deposited bed and deposited bed, self-

cleansing models. The number of predictors considered at each split (mtry) and the 

number of trees in the forest (𝐵𝑡) are the parameters that define the structure of the RF 

regression model. The mtry parameter is estimated by using the rfcv() function, which 

shows the cross-validation performance for each number of predictors. In addition, the 

optimal number of trees is defined as the value that minimises the Mean Square Error 

(MSE) value of the training data. These parameters are estimated and the results are 

shown in Figure 2. According to this figure, the optimal number of features (i.e. the 

random predictors used in each tree) are three and four non-dimensional parameters for 

the cases of without deposited bed and with deposited bed, respectively. Similarly, the 

optimal number of trees is 471 for without deposited bed and 229 for with deposited bed.  

[Figure 2 near here] 

Cross-validation is carried out during the training stage using out-of-bag (OOB) 

samples. As mentioned above, the method randomly bootstraps the training sample, that 

is, some of the training data are left out to build each decision tree. Only two out of three 

parts of the total training data are used to build the tree (Breiman, 2001). Based on this, 

data not included in the bootstrapped sample (OOB data) are predicted, and the prediction 

error is averaged over the trees that do not include these data (OOB Error). 

3.1.1.  Splitting of training and testing data 

The whole benchmarking data collected from the literature are used for both training and 

testing stages of the RF model. Usually, 75% of the data is used during the training stage 

of the model and the other 25% to validate the results. According to Safari (2020), the 

range of variation in the training data has direct implications for model performance (i.e. 

accuracy). As a result, the model can show overfitting issues and poor extrapolation 
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capabilities when narrow datasets are used in the training stage (i.e. data with a low range 

of variation).  

Checking the non-overfitting of the RF model is carried out by using several sizes 

in the training and testing data (i.e. changing the percentage of data used as training and 

testing) and by verifying the error, defined by the Coefficient of Determination (R2) (as 

shown in Eq. (14)). For this, ten different combinations of percentages are defined (i.e. % 

of the training data : % of the testing data = [5:95, 15:85, 25:75, 35:65, 45:55, 55:45, 

65:35, 75:25, 85:15, 95:5]), randomly changing the ranges of the training and testing data, 

and developing 100 RF models for each combination. As a result, 1000 RF models are 

trained and the error is estimated for both training and testing stage. Using this 

information, several boxplots are constructed showing the R2 variation for each stage. 

Figure 3 shows how the model error decreases as the training sample size increases. For 

example, when only 5% of the whole dataset is used for training the model and the 

remaining 95% for testing it, the error varies between 0.84 and 0.96, for the training stage, 

and between 0.39 and 0.73 for the testing stage. This clearly shows that the model is 

under-trained; however, when the ratio is greater than 50:50 the error tends to be constant 

and slightly variable for both stages. Ratios greater than 90:10 tend to generate 

unsatisfactory results for the testing stage, i.e. the model is over-trained and shows high 

variation in the error, i.e. overfitting, (as shown in Figure 3b). Based on this, a 

combination of 75:25 is taken as optimal for implementing the model.  

[Figure 3 near here] 

The variation of the data used for training and testing dataset is presented in Table 

2.   

[Table 2 near here] 
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Using the above considerations, the RF model is implemented with the optimal 

parameters defined in Figure 2 and using the ranges of variation of the training data 

outlined in Table 2. The full data collected from the literature are shown in the 

Supplementary material. Table S1 and Table S2 show the data for non-deposition without 

and with deposited bed, respectively, and the corresponding RF particle Froude number 

predictions. The implemented code for the RF method is shown in Figure 4. An example 

of one of the 471 decision trees generated by the RF model, for the non-deposition without 

deposited bed, is shown in Figure S1, in the Supplementary material. 

[Figure 4 near here] 

3.1.2.  Measure of feature importance 

Note that in this paper, a decrease in model accuracy when the jth variable is 

permuted (i.e. the percentage of the increase in the MSE, %𝐼𝑛𝑐𝑀𝑆𝐸) is considered as a 

measure of the importance of a model input variable. This index shows the strength of 

each explanatory variable based on the reduction of the MSE. The step-by-step to 

calculate the %𝐼𝑛𝑐𝑀𝑆𝐸 is shown as follows (Hastie et al., 2009): 

(1) Calculate the MSE of the OOB-sample data in each tree of the forest (𝑀𝑆𝐸𝑏). 

(2) Randomly permute the value of the jth explanatory variable and calculate the MSE 

(𝑀𝑆𝐸𝑗). 

(3) Finally, calculate %𝐼𝑛𝑐𝑀𝑆𝐸 for each explanatory variable as: 

%𝐼𝑛𝑐𝑀𝑆𝐸 = 100 ∙
𝑀𝑆𝐸𝑗 − 𝑀𝑆𝐸𝑏

𝑀𝑆𝐸𝑏
 (4) 

 As a result, the more the %𝐼𝑛𝑐𝑀𝑆𝐸 increases for a variable, the more important 

it is.  
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3.2. Performance Assessment 

3.2.1.  Models used for comparing the RF results 

In order to evaluate the RF model performance, it is compared to several literature 

models. The models selected for comparison are the replicable white-box models with 

high prediction accuracy reported in the literature and two black-box models where the 

implementing code is provided in the original papers. Other black-box models cannot be 

evaluated due to the limited replicability shown by these models (e.g. ANN). Based on 

this, in the case of non-deposition without deposited bed, seven models selected are the 

EPR-MOGA model (Montes et al., 2020a), the GEP model (Kargar et al., 2019), the 

MARS model (Safari, 2019), the May et al. (1996) model, the Safari and Aksoy (2020) 

model, the ANFIS-PSO model (Ebtehaj et al., 2019) and the ELM model (Ebtehaj et al., 

2020). In the case of non-deposition with deposited bed, three models used for 

comparison are the PSO model (Safari and Shirzad, 2019), the LASSO model (Montes et 

al., 2020b) and the MGP model (Safari and Danandeh Mehr, 2018). The EPR-MOGA, 

LASSO, May et al. (1996) and Safari and Aksoy (2020) are the regression type models 

whilst GEP, MARS, ANFIS-PSO, ELM, PSO and MGP models make use of ML/AI 

techniques. 

The equations used by above ten models are as follows:  

EPR-MOGA: 

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 5.6𝐶𝑣

0.16 (
𝑑

𝑅
)

−0.58

𝑆𝑜
0.14𝐷𝑔𝑟

0.02 (5) 

GEP:  

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
=

3.05𝐶𝑣
0.16

atan (atan (√𝑑
𝑅))

+ atan(3.41 − ln(𝐷𝑔𝑟))

+ atan (tan ((8.37 − 7.99𝜆 +
𝑑

𝑅
𝜆)

2

)

2

) + ln (((
𝑑

𝑅
)

3

)

2𝜆

) 

(6) 
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MARS:  

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 7.26 − 1.75 ∙ 𝑚𝑎𝑥(0, 𝑑/𝑅 − 0.12) + 2

∙ 𝑚𝑎𝑥(0,0.12 − 𝑑/𝑅) + 15.89 ∙ 𝑚𝑎𝑥(0, 𝐶𝑣 − 0.44) − 16.42

∙ 𝑚𝑎𝑥(0,0.44 − 𝐶𝑣) + 0.47 ∙ 𝑚𝑎𝑥(0, 𝐷𝑔𝑟 − 0.29) − 7.25

∙ 𝑚𝑎𝑥(0, 𝜆 − 0.3) − 16.03 ∙ 𝑚𝑎𝑥(0, 𝐶𝑣 − 0.01) + 3.7

∙ 𝑚𝑎𝑥(0, 𝐷𝑔𝑟 − 0.12) − 4.33 ∙ 𝑚𝑎𝑥(0, 𝐷𝑔𝑟 − 0.08) + 0.43

∙ 𝑚𝑎𝑥(0, 𝜆 − 0.59) + 6.75 ∙ 𝑚𝑎𝑥(0, 𝜆 − 0.28) + 1.67
∙ 𝑚𝑎𝑥(0, 𝑑/𝑅 − 0.07) 

(7) 

May et al. (1996): 

𝐶𝑣 = 0.0303 (
𝐷2

𝐴
) (

𝑑

𝐷
)

0.6

(1 −
𝑉𝑡

𝑉𝑙
)

4

(
𝑉𝑙

2

𝑔𝐷(𝑆𝑠 − 1)
)

1.5

 (8) 

Safari and Aksoy (2020): 

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 4.83𝐶𝑣

0.09 (
𝑑

𝑅
)

−0.32

𝐷𝑔𝑟
−0.14 (

𝑃

𝐵
)

0.20

 (9) 

ANFIS-PSO: 

No equation. The Matlab code can be found in Ebtehaj et al. (2019). 

ELM: 

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= [

1

(1 + 𝑒𝑥𝑝(−𝐼𝑛𝑊 ∙ 𝐼𝑛𝑉 + 𝐵𝐻𝐼))
]

𝑇

∙ 𝑂𝑢𝑡𝑊 (10) 

where 𝐼𝑛𝑊 and 𝑂𝑢𝑡𝑊 are the input and output weights, 𝐵𝐻𝐼 the bias of the hidden 

neurons and 𝐼𝑛𝑉 the input variables (i.e. 𝐶𝑣, 𝑑/𝑅, 𝐷2/𝐴, 𝑅/𝐷, 𝐷𝑔𝑟, 𝑑/𝐷 and 𝜆). Full 

details of the values chosen for each parameter are shown in Ebtehaj et al. (2020). 

PSO: 

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 3.66𝐶𝑣

0.16 (
𝑑

𝑅
)

−0.40

(
𝑦𝑠

𝑌
)

−0.10

 (11) 

LASSO: 

𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 5.83𝐶𝑣

0.144 (
𝑑

𝑅
)

−0.305

𝜆−0.059𝐷𝑔𝑟
−0.169 (

𝑦𝑠

𝐷
)

−0.104

 (12) 

MGP: 
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𝑉𝑙

√𝑔𝑑(𝑆𝑠 − 1)
= 1.96 − 0.61𝜆 − 0.51𝐶𝑣 + 1.18𝐷𝑔𝑟

0.50𝜆1.50

+ 0.61 (2𝐶𝑣 +
𝑑

𝑅
)

0.50

− 2.45 (
𝑑

𝑅
)

1/8

 

(13) 

3.2.2.  Performance Indices 

The RF model performance is evaluated and compared to above ten models using 

three performance indicators. These are the Coefficient of Determination (R2), the Root 

Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE), defined 

as follows: 

𝑅2 = 1 −
∑ (𝐹𝑟𝑂𝐵𝑆

∗ − 𝐹𝑟𝑀𝑂𝐷
)

2𝑛
𝑖=1

∑ (𝐹𝑟𝑂𝐵𝑆
∗ − 𝐹𝑟𝑂𝐵𝑆

∗̅̅ ̅̅ ̅̅ ̅)
2𝑛

𝑖=1

 (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐹𝑟𝑂𝐵𝑆

∗ − 𝐹𝑟𝑀𝑂𝐷
)

2
𝑛

𝑖=1

 (15) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐹𝑟𝑂𝐵𝑆
∗ − 𝐹𝑟𝑀𝑂𝐷

𝐹𝑟𝑂𝐵𝑆
∗

|

𝑛

𝑖=1

 (16) 

where 𝐹𝑟𝑂𝐵𝑆
∗  is the particle Froude number observed data, 𝐹𝑟𝑀𝑂𝐷

 the particle Froude 

number estimated by RF algorithm (or other predictive model), 𝑛 the number of data  and 

𝐹𝑟𝑂𝐵𝑆
∗̅̅ ̅̅ ̅̅ ̅ the mean of observed particle Froude number data.  

The Coefficient of Determination measures the percentage of the model variance 

that can be explained. This coefficient varies between 0 and 1, with a value of 1 denoting 

a perfect match between observed and modelled data. The Root Mean Square Error 

measures the standard deviation of the residuals. Note that a value close to 0 indicates 

high model prediction accuracy. Finally, the Mean Absolute Percentage Error assesses 

the model prediction accuracy (i.e. bias) as a percentage of the observed value. Value of 

0 indicates the perfect model where there are no differences between predictions and 
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observations.  

4. RESULTS 

The results obtained by using the methodology shown in the previous section are 

presented in Table 3 and Table 4, for without deposited bed and deposited bed criteria, 

respectively. Graphically, these results are shown in Figure 5 and Figure 6. As shown in 

these tables, for the MARS, ANFIS-PSO, ELM and MGP models, the outliers of the 

particle Froude number (i.e. 𝐹𝑟
∗ < 0.00 and 𝐹𝑟

∗ > 20.00) were removed. This is because 

these models can produce extreme values (e.g. 𝐹𝑟
∗ = -58.67 or 𝐹𝑟

∗ = 163.59, among 

others) that misrepresent the model comparison when evaluating the performance indices.  

[Table 3 near here] 

As it can be seen from Table 3, Random Forest model shows a better 

generalisation capacity than other models shown, as demonstrated in high prediction 

accuracy observed for all available datasets (0.88 > R2 > 0.98, 0.24 > 𝑅𝑀𝑆𝐸 > 0.73 and 

4.36% > 𝑀𝐴𝑃𝐸 > 11.09%). The following observations can be made from the 

performance of the other models evaluated:  

• EPR-MOGA, similarly to RF, shows good results but has inferior accuracy in 

large sewer pipes (R2= 0.86, 𝑅𝑀𝑆𝐸 = 1.03 and 𝑀𝐴𝑃𝐸 = 11.31%). In addition, 

EPR-MOGA model shows limitations for predicting the particle Froude number 

in non-circular sections (as shown in the Mayerle (1988) rectangular data). This 

equation shows good extrapolation capabilities because of the inclusion of the 

pipe slope as input feature for the self-cleansing prediction. 

• GEP shows acceptable results (0.79 > R2 > 0.87, 0.66 > 𝑅𝑀𝑆𝐸 > 0.89 and 11.45% 

> 𝑀𝐴𝑃𝐸 > 22.33%) for the datasets used for its development in circular channels 

(Ab Ghani, 1993; Mayerle, 1988; Vongvisessomjai et al., 2010) and poor 
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performance for other datasets (0.00 > R2 > 0.76, 1.00 > 𝑅𝑀𝑆𝐸 > 1.95 and 14.35% 

> 𝑀𝐴𝑃𝐸 > 37.92%). This model presents good performance for large sewer pipes. 

In contrast, for non-circular channels the model quickly loss accuracy.  

• According to Safari (2019), MARS model was developed by using the 

experimental data collected by Mayerle (1988) (in both circular and rectangular 

channels), May (1993), Ab Ghani (1993) and Vongvisessomjai et al. (2010). As a 

result, this model shows acceptable performance for these datasets (0.49 > R2 > 

0.87, 0.81 > 𝑅𝑀𝑆𝐸 > 1.15 and 13.63% > 𝑀𝐴𝑃𝐸 > 28.08%) but poor performance 

for the remaining datasets (R2 = 0.00, 1.48 > 𝑅𝑀𝑆𝐸 > 2.88 and 29.14% > 𝑀𝐴𝑃𝐸 

> 51.28%). Based on the above, and compared to the RF model, limited 

extrapolation capabilities are identified for the MARS model.    

• May et al. (1996) is the best regression-based equation reported in the literature 

(Ackers et al., 2001; Ebtehaj et al., 2014), as it was developed using several 

experimental datasets. This is the equation proposed by the Construction Industry 

Research and Information Association (CIRIA) for designing self-cleansing 

sewer pipes transporting coarser granular material as bedload (Ackers et al., 

2001). This model shows good performance for pipe diameters less than 500 mm 

(0.83 > R2 > 0.99, 0.13 > 𝑅𝑀𝑆𝐸 > 0.82 and 2.38% > 𝑀𝐴𝑃𝐸 > 11.61%). In 

contrast, limited extrapolation for large sewer pipes is identified as the low 

performance indices values obtained (R2 = 0.00, 𝑅𝑀𝑆𝐸 = 4.88 and 𝑀𝐴𝑃𝐸 = 

48.97%). This equation shows better performance than the RF model when 

compared to data from Vongvisessomjai et al. (2010), but lower accuracy when 

applied to the rest of the datasets.  

• Safari and Aksoy (2020) model is a competitive equation for predicting the self-

cleansing velocity in both circular and non-circular channels. This model shows 
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similar but inferior performance to EPR-MOGA model in small sewer pipes (0.67 

> R2 > 0.97, 0.25 > 𝑅𝑀𝑆𝐸 > 1.12 and 7.90% > 𝑀𝐴𝑃𝐸 > 15.60%), but in large 

sewers the accuracy is quickly lost (R2 = 0.34, 𝑅𝑀𝑆𝐸 = 2.26 and 𝑀𝐴𝑃𝐸 = 

23.46%). In contrast, this model outperforms the results, compared to other 

regression models (EPR-MOGA, GEP and MARS) and ML/AI models (ANFIS-

PSO and ELM), in non-circular channels  (R2 = 0.87, 𝑅𝑀𝑆𝐸 = 0.66 and 𝑀𝐴𝑃𝐸 = 

13.41%), which is a competitive performance compared to the RF model  (R2 = 

0.89, 𝑅𝑀𝑆𝐸 = 0.61 and 𝑀𝐴𝑃𝐸 = 10.05%). This is because of the inclusion of the 

𝑃/𝐵 relation as explanatory variable for predicting the particle Froude number. 

This model is competitive and shows good generalisation of the problem for 

designing sewers under the non-deposition without deposited bed criterion. 

• According to Ebtehaj et al. (2019), ANFIS-PSO model was developed by using 

the experimental data collected by Ab Ghani (1993), Ota (1999) and 

Vongvisessomjai et al. (2010). As a result, this model shows good performance 

for these datasets (0.88 > R2 > 0.97, 0.22 > 𝑅𝑀𝑆𝐸 > 0.74 and 3.62% > 𝑀𝐴𝑃𝐸 > 

10.34%). In large sewers and non-circular channels, the model losses accuracy 

(R2 = 0.00, 2.74 > 𝑅𝑀𝑆𝐸 > 3.01 and 30.56% > 𝑀𝐴𝑃𝐸 > 45.28%). This model 

produces some extreme values when the particle Froude number is calculated, 

especially in the Montes et al. (2020b) dataset. The RF model generates better 

results compared to this model. 

• ELM was trained with the same dataset used for the ANFIS-PSO model. Not 

satisfactory results are obtained when this model is applied on the dataset 

considered in this study (0.00 > R2 > 0.55, 0.90 > 𝑅𝑀𝑆𝐸 > 3.1 and 19.54% > 

𝑀𝐴𝑃𝐸 > 39.30%). Same comments, as mentioned above for the ANFIS-PSO 

model, can be shown here.    
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[Figure 5 near here] 

[Table 4 near here] 

According to the results shown in Table 4 (deposited bed criterion), RF model 

outperforms the other models for the entire considered dataset. This model shows good 

accuracy levels (0.84 > R2 > 0.98, 0.32 > 𝑅𝑀𝑆𝐸 > 0.81 and 4.70% > 𝑀𝐴𝑃𝐸 > 12.10%) 

for all the range of variation of the hydraulics and sediment characteristics. Comments 

related to the other models studied are as follows: 

• PSO model was developed by using the experimental data collected by El-Zaemey 

(1991), Perrusquía (1991), May (1993) and Ab Ghani (1993). As a result, this 

model shows good performance for these datasets (0.56 > R2 > 0.78, 0.49 > 𝑅𝑀𝑆𝐸 

> 1.32 and 10.15% > 𝑀𝐴𝑃𝐸 > 16.26%). However, when the model is compared 

to the data collected in the large sewer pipe, the accuracy quickly decreases (R2 = 

0.00, 𝑅𝑀𝑆𝐸 = 3.06 and 𝑀𝐴𝑃𝐸 = 21.05%).  

• LASSO model reports good accuracy levels for all the datasets considered (0.62 

> R2 > 0.83, 0.50 > 𝑅𝑀𝑆𝐸 > 1.56 and 10.36% > 𝑀𝐴𝑃𝐸 > 14.26%). However, the 

accuracy is still inferior compared to the RF model. This model shows good 

extrapolation capabilities and generalisation of the problem.   

• MGP was developed by using the same experimental datasets of the PSO model. 

This model shows less accuracy compared to the PSO model (0.00 > R2 > 0.54, 

1.08 > 𝑅𝑀𝑆𝐸 > 5.54 and 13.07% > 𝑀𝐴𝑃𝐸 > 58.79%). In large sewer pipes, the 

model shows poor performance. In contrast to other models, the MGP was 

developed by using normalised values. Based on this, the range of variation used 

for training the model can potentially affect the final form/structure of the final 

expression shown by the MGP.  
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[Figure 6 near here] 

RF accuracy shown in the Montes et al. (2020b) data is especially important due 

to the relative sediment thickness (𝑦𝑠/𝐷) used at laboratory scale in that study. As Table 

1 shows, the sediment thickness used at laboratory scale ranging from 0.8 mm (for Montes 

et al. (2020b) data) to 129.6 mm (for May (1993) data), i.e. the variation of 𝑦𝑠/𝐷 is from 

1.1% to 20.0% of the pipe diameter. Values of 𝑦𝑠/𝐷 = 20% is an unrealistic consideration 

since the optimal sediment thickness design has been defined as 1% of the pipe diameter 

(May et al., 1989; Safari and Shirzad, 2019). Data collected by Montes et al. (2020b) 

seem to be the closer representation of the real conditions found in sewer systems. Based 

on this, RF is the model that best predicts the self-cleansing velocity for data close to real 

conditions.  

4.1. Variable importance  

RF model input variable importance is presented in Figure 7. As shown in this figure, for 

both non-deposition criteria the most important variable is the volumetric sediment 

concentration, followed by the dimensionless grain size and the relative grain size . This 

result is consistent with previous findings reported in the literature (Ackers et al., 2001; 

Ebtehaj et al., 2020). Less important parameters for predicting the particle Froude number 

and thus the self-cleansing velocity, are the relative sediment thickness and the channel 

friction factor, for the deposited bed criterion.  

Parameter importance shown by EPR-MOGA, Safari and Aksoy (2020), PSO and 

LASSO is quite different. In these techniques, the most important parameter is the relative 

grain size due to the highest values of the regression coefficients ((
𝑑

𝑅
)

−𝑐

;  0.305 < 𝑐 <

0.58), as shown in Eq. (5), Eq. (9), Eq. (11) and Eq. (12). The parameter importance for 

the GEP, MARS and MGP model is less intuitive because of the form of the equations, 
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as shown in Eq. (6), Eq. (7) and Eq. (13), which include logarithmic and inverse tangent 

functions for calculating the particle Froude number. Less comparable are the results 

shown by ANFIS-PSO and ELM since no practical equation is provided.  

[Figure 7 near here] 

Based on the above results shown in Figure 7, a good estimate of the volumetric 

sediment concentration seems to be essential for increasing the accuracy of the calculation 

of the particle Froude number and consequently the minimum self-cleansing velocity for 

both non-deposition criteria. In addition, hydraulic characteristics of the pipe (defined by 

the hydraulic radius) and the sediment characteristics (i.e. particle diameter and specific 

gravity) are proportionally important for model performance. 

5. DISCUSSION 

The prediction of self-cleansing conditions in sewers remains a challenge despite multiple 

models and equations developed and reported in the literature. Existing regression-based 

equations and AI/ML models show limited generalisation capabilities and overfitting 

problems. In this paper, a new approach for addressing these issues is proposed by using 

the Random Forest method.   

Due to the nature of the RF method, where the model variance is reduced by 

averaging the results from an ensemble of decision trees, the risk of overfitting is low. By 

using a reduced number of input features for constructing each decision tree in the forest, 

the correlation between base trees is avoided. This is an improvement of the method 

compared to a single decision tree, which can be overtrained (i.e. the tree learns the noise 

from the training data) and thus shows poor performance in the testing dataset. 

RF model showed good generalisation capabilities when the whole dataset is 

divided into 75% for the training stage and 25% for the testing stage. For this percentage 

of split data, the testing error presented a low variance. In contrast, by increasing the 
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number of data used in the training stage (e.g. 95% of the whole data) the testing error 

showed high variance, which is an indicator of an over-trained model with limited 

extrapolation capabilities (as shown in Figure 3b). Therefore, choosing the right 

percentage split is critical to avoid model overfitting. 

Variable importance analysis showed that the volumetric sediment concentration 

is the most relevant feature for predicting the self-cleansing velocity in practice for both 

non-deposition criteria, followed by the dimensionless grain size. The self-cleansing 

prediction is no conditioned by the channel material, as the low variable importance 

shown by the channel friction factor.  

RF results are compared to existing models reported in the literature and showed 

better performance for the whole dataset for both non-deposition without and with 

deposited bed criteria. This is explained by several factors, such as: 

• RF is able to better capture the non-linearity in the data compared to linear 

regression models (i.e. regression-based models proposed by May et al. (1996) 

and Safari and Aksory (2020)). The RF model also better captures complex 

interactions between features. This is because of RF model’s ability to capture 

effectively non-linear patterns in data. 

• RF showed a good bias-variance trade-off (i.e. low bias and low variance) for both 

non-deposition criteria. In contrast, existing non-regression models reported in the 

literature (i.e. MARS, ANFIS-PSO and ELM), and compared to the RF model in 

this paper, in some cases presented low bias and high variance (i.e. overfitting) 

for the non-deposition without deposited bed criterion, as shown in Figure 5. For 

the non-deposition with deposited bed criterion, the existing models (i.e. PSO, 

LASSO and MGP) showed high bias, since these models systematically 
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underestimate the particle Froude number in the testing dataset (as shown in 

Figure 6).  

• The range of variation used for training and testing the RF model is much larger 

than the dataset used in the literature for developing the existing predictive 

models. For example, the ANFIS-PSO and ELM were trained and testing with the 

Ab Ghani (1993), Ota (1999) and Vongvisessomjai et al. (2010) data (i.e. 290 data 

approx.). Given this, the RF model developed here is able to predict the particle 

Froude number for a larger range of variation of the input conditions. An example 

of this is shown in Figure 6 where the existing models reported for the non-

deposition with deposited bed criterion underestimate the particle Froude number 

for values above 9.0 (𝐹𝑟
∗ > 9.0).   

Despite the RF presented in this study outperforms the existing models reported 

in the literature, further tests with data collected in real sewers should be conducted. The 

cohesive effects of the deposited material must be included for future developments. 

Finally, further evaluation of the performance of the model in trapezoidal, ovoid, or U-

shape channels should be carried out to check the applicability of the model under these 

channel characteristics. 

6. CONCLUSIONS 

Random Forest based model was developed for predicting the self-cleansing velocity 

under the concept of non-deposition. This model was implemented using the experimental 

benchmark data reported in the literature. The RF model was compared to the following 

ten literature models: EPR-MOGA, MARS, MGP, ANFIS-PSO, ELM, LASSO, GEP and 

PSO, and two regression-based equations proposed by May et al. (1996) and Safari and 

Aksoy (2020). 
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The following conclusions are made based on the results obtained: 

(1) Random Forest model is able to predict the particle Froude number (i.e. minimum 

self-cleansing velocity) for the non-deposition self-cleansing design criteria with 

high accuracy on validation (i.e. unseen) data. This is due to the ability of RF to 

better generalise the analysed data, i.e. the ability to avoid model overfitting.  

(2) RF model prediction accuracy is consistently superior to ten other literature 

models considered here. This is likely due to the reason mentioned above but also 

the capability to better capture the complex interactions between input variables 

when compared to other models considered in this paper. This is especially 

relevant for the non-deposition with deposited bed case where the accuracy of RF 

model predictions is substantially higher than in other models (i.e. LASSO, MGP 

and PSO models).  

(3) The volumetric sediment concentration is the most important input variable for 

predicting the self-cleansing velocity in sewer pipes. A good characterisation of 

this parameter seems to be essential for improving the design of new self-

cleansing sewers. 

Based on the above, RF can be used for predicting self-cleansing velocity with 

high accuracy, especially for large sewer pipes with the presence of deposited bed. This 

technique can be used for designing self-cleansing sewer systems.  

Further testing of the RF and other self-cleansing models in real sewer systems is 

required to further validate these models in those circumstances and ensure their 

applicability in engineering practice. 

7. SUPPLEMENTARY MATERIAL 

Data used for training and testing the Random Forest method is shown in Table S1 and 
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Table S2 for non-deposition without and with deposited bed, respectively. In addition, an 

example of one of the decision trees considered by the RF method is shown in Figure S1. 
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Table 1. Data used for implementing data mining and regression models. 

Reference 
Non-deposition 

criterion 

No. of 

runs 

Pipe diameter or 

bottom width 

(mm) 

Flow 

Velocity 

(m/s) 

Pipe slope 

(%) 

Sediment 

Concentration 

(ppm) 

Sediment 

thickness 

bed (mm) 

Mayerle (1988) circular 
channel 

Without deposited bed 106 152 0.37 - 1.10 0.13 - 0.56 20.0 - 1275.0 - 

Mayerle (1988) 

rectangular channel 
Without deposited bed 105 311.5 and 462.3 0.41 – 1.04 0.09 – 0.64 14.0 – 1568.0 - 

Ab Ghani (1993) Without deposited bed 221 154, 305 and 405 0.24 - 1.22 0.04 - 2.56 0.8 - 1450.0 - 

Ota (1999) Without deposited bed 36 305 0.39 - 0.74 0.2 4.2 - 59.4 - 

Vongvisessomjai et al. 

(2010) 
Without deposited bed 45 100 and 150 0.24 - 0.63 0.20 - 0.60 4.0 - 90.0 - 

Montes et al. (2020a) Without deposited bed 44 242 0.24 - 1.05 0.20 - 0.80 0.3 - 875.7 - 

Montes et al. (2020b) Without deposited bed 107 595 0.41 - 1.41 0.04 - 3.43 1.3 - 19957.0 - 

El-Zaemey (1991) With deposited bed 290 305 0.39 - 0.96 0.05 - 0.44 7.0 - 917.0 47.0 – 120.0 

Perrusquía (1991) With deposited bed 38 225 0.29 - 0.67 0.20 - 0.60 18.7 - 408.0 45.0 – 90.0 

Ab Ghani (1993) With deposited bed 26 450 0.49 - 1.33 0.07 - 0.47 21.0 - 1259.0 52.0 – 108.0 

May (1993) With deposited bed 46 450 0.39 - 1.14 0.07 - 0.97 3.5 - 823.0 57.6 – 129.6 

Montes et al. (2020b) With deposited bed 54 595 0.73 - 1.53 0.46 - 5.42 389.0 - 10275.0 0.8 – 6.6 
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Table 2. Variation of the data for training and testing the RF model. 

Non-deposition 

criterion 
Stage 

No. of 

runs 

Channel geometry 

(mm) 

Flow 

Velocity 

(m/s) 

Pipe slope 

(%) 

Sediment 

Concentration 

(ppm) 

Sediment 

thickness bed 

(mm) 

Without 

deposited bed 

Training 498 
𝐷 = 100.0 – 595.0 

𝑊 = 311.5 – 462.3 
0.237 - 1.41 0.04 – 3.43 0.53 – 19957 - 

Testing 166 
𝐷 = 100.0 – 595.0 

𝑊 = 311.5 – 462.3 
0.237 – 1.24 0.04 – 2.74 1.00 – 13840 - 

With deposited 

bed 

Training 340 𝐷 = 225 - 595 0.294 – 1.53 0.05 – 5.42 3.50 - 10274 0.78 – 129.6 

Testing 114 𝐷 = 225 - 595 0.319 – 1.28 0.05 – 2.58 17.00 - 9101 1.78 – 120.0 
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Table 3. Accuracy of self-cleansing models for without deposited bed criterion using 

performance indices for training and testing dataset. Bolded values show best 

performance model. 

Dataset 
Performance 

Index 

Model 

RF 
EPR-

MOGA 
GEP MARS 

May et 

al. 

(1996)1 

Safari 

and 

Aksoy 

(2020) 

ANFIS-

PSO 
ELM 

Training 

R2 0.98 0.90 0.75 0.00 0.27 0.74 0.51* 0.30* 

RMSE 0.33 0.76 1.22 2.55 2.17 1.25 1.69* 1.95* 

MAPE (%) 4.88 11.54 23.52 34.16 17.49 17.21 19.32* 29.76* 

Testing 

R2 0.91 0.86 0.69 0.00 0.09 0.74 0.40* 0.32* 

RMSE 0.73 0.88 1.33 2.55 2.27 1.21 1.84* 1.92* 

MAPE (%) 11.09 12.35 26.43 36.57 19.15 17.24 20.95* 29.82* 

Mayerle (1988) 

circular 

R2 0.96 0.89 0.87 0.87 0.87 0.75 0.80* 0.42 

RMSE 0.45 0.75 0.81 0.81 0.82 1.12 1.00* 1.71 

MAPE (%) 5.62 8.90 14.77 14.03 11.49 14.91 17.92* 26.75 

Mayerle (1988) 

rectangular 

R2 0.93 0.38 0.30 0.81 - 0.87 0.00 0.47 

RMSE 0.49 1.44 1.54 0.81 - 0.66 2.74 1.33 

MAPE (%) 8.49 28.97 33.00 15.51 - 13.14 45.28 20.75 

Ab Ghani (1993) 

R2 0.97 0.96 0.83 0.72 0.90 0.81 0.88 0.38 

RMSE 0.36 0.43 0.89 1.15 0.67 0.94 0.74 1.69 

MAPE (%) 5.94 9.35 22.33 28.08 10.32 15.60 10.34 23.96 

Ota (1999) 

R2 0.97 0.98 0.44 0.00 0.96 0.97 0.97 0.55 

RMSE 0.24 0.20 1.00 1.48 0.27 0.25 0.22 0.90 

MAPE (%) 5.55 6.90 37.92 51.28 7.78 7.90 6.46 19.54 

Vongvisessomjai 

et al. (2010) 

R2 0.88 0.95 0.79 0.49 0.99 0.71 0.97 0.00 

RMSE 0.49 0.33 0.66 1.03 0.13 0.78 0.24 1.59 

MAPE (%) 6.56 5.78 11.45 13.63 2.38 13.34 3.62 28.50 

Montes et al. 

(2020a) 

R2 0.96 0.98 0.00 0.00 0.83 0.67 0.77* 0.00 

RMSE 0.31 0.25 1.64 2.37 0.67 0.94 0.75* 1.85 

MAPE (%) 4.36 4.94 28.15 49.73 11.61 15.39 12.39* 33.96 

Montes et al. 

(2020b) 

R2 0.94 0.86 0.76 0.00* 0.00 0.34 0.00* 0.00* 

RMSE 0.70 1.03 1.37 2.88* 4.88 2.26 3.01* 3.10* 

MAPE (%) 7.33 11.31 14.35 29.14* 48.97 23.44 30.56* 39.30* 

1 Model not valid for non-circular channels 
* Outliers removed  
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Table 4. Accuracy of self-cleansing models for deposited bed criterion using performance 

indices for training and testing dataset. Bolded values show best performance model. 

Dataset Performance Index 
Model 

RF PSO LASSO MGP 

Training 

R2 0.98 0.75 0.82 0.51* 

RMSE 0.32 1.30 1.13 1.69* 

MAPE (%) 4.70 14.36 13.07 28.78* 

Testing 

R2 0.91 0.70 0.83 0.29* 

RMSE 0.80 1.47 1.10 2.19* 

MAPE (%) 12.10 15.94 12.59 31.36* 

El-Zaemey (1991) 

R2 0.94 0.78 0.83 0.54 

RMSE 0.38 0.76 0.66 1.08 

MAPE (%) 6.49 14.28 11.97 30.19 

Perrusquía (1991) 

R2 0.84 0.65 0.62 0.00 

RMSE 0.33 0.49 0.50 1.29 

MAPE (%) 7.07 10.15 12.05 30.58 

Ab Ghani (1993) 

R2 0.91 0.56 0.74 0.51 

RMSE 0.60 1.32 1.01 1.40 

MAPE (%) 6.13 16.26 11.19 13.07 

May (1993) 

R2 0.90 0.63 0.64 0.54 

RMSE 0.62 1.18 1.16 1.31 

MAPE (%) 6.50 13.47 14.26 14.21 

Montes et al. (2020a) 

R2 0.93 0.00 0.73 0.00* 

RMSE 0.81 3.06 1.56 5.54* 

MAPE (%) 6.84 21.05 10.36 58.79* 

* Outliers removed 
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Figure 1. Simplified conceptual diagram of the RF method.  
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Figure 2. Selection of the optimal Random Forest parameters.  
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Figure 3. Variation of the training and testing error using different combination of 

percentages between the training and testing dataset. A) Training stage and B) Testing 

stage.  
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Figure 4. Random Forest code to calculate the particle Froude number in sewer pipes.    
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Figure 5. Performance of the models applied in the non-deposition without deposited bed 

testing dataset.  
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Figure 6. Performance of the models applied in the non-deposition with deposited bed 

testing dataset.   
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Figure 7. Variable importance estimated by RF model: A) without deposited bed; B) with 

deposited bed. 
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