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Acronyms and abbreviations:

DOM Dissolved organic matter
CDOM Coloured dissolved organic matter
NOM Natural organic matter

DOC Dissolved organic matter

RSD Relative standard deviation
TT Triger threshold

HPC Heterotrophic plate count

LoD Limit of detection

EEMs Excitation-emission matrices
PLS Partial least squares

O-PLS Orthogonal partial least squares
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Abstract: Treated drinking water may become contateid
while travelling in the distribution system on theay to
consumers. Elevated dissolved organic matter (D@ive tap
relative to the water leaving the treatment plantipotential
indicator of contamination, and can be measureditbesly,
inexpensively and potentially on-line via fluoresce and
absorbance spectroscopy. Detecting elevated DOMire=y
potential contamination events to be distinguistieth natural
fluctuations in the system, but how much naturaiaten to
expect in a stable distribution system is unknolvrthis study,
relationships between DOM optical properties, nhcb
indicator organisms and trace elements were iryesstil for

households connected to a biologically-stable dngpkwvater

distribution system. Across the network, humic-like

fluorescence intensities showed limited variati®®sD = 3.5 -

4.4%), with half of measured variation explained by

interactions with copper. After accounting for qcleimg by
copper, fluorescence provided a very stable backgtsignal
(RSD < 2.2%) against which a ~2% infiltration ofilseater

would be detectable. Smaller infiltrations would detectable

in the case of contamination by sewage with a gtron

tryptophan-like fluorescence signal. These findingdicate
that DOM fluorescence is a sensitive indicator atev quality
changes in drinking water networks, as long as ntiate

interferents are taken into account.
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1. Introduction

Between leaving a treatment plant and arriving fe t
consumer’s tap, drinking water enters the distidsuhetwork
where it resides for periods that typically rangenf hours to
days. During this time, the drinking water may heeo
contaminated via a range of processes. Microbia¢maguality
can deteriorate in networks due to regrowth ora@mtnent of
untreated water through damaged pipes, presenttenimally
serious health risks to consumers (WHO 2014). & Uimited
States during 1971-2006, around 10% of diseasereakb
caused by unsafe drinking water have been attdbute
deficiencies in the distribution network (Crauraet2010).

Microorganisms in drinking water distribution sysi® are
either part of the indigenous community or entex fystem
where the pipe network integrity is compromised.cidbes
living in soil pore-waters can be entrained throwghacks in
pipes and joints during negative pressure everg€lievallier
et al. 2003). Inside the pipes, heterotrophic bacteatilise
available organic substrate in the water as a soofcarbon,
nutrients and energy. Changing flow conditionsha hetwork

can also dislodge biofilms harbouring pathogeniecggs and
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create conditions that favour opportunistic spequegentially
including pathogens (Manuel et al. 2007).

Obtaining rapid and affordable assessments of theohial
quality of drinking water is a famously intractaljeoblem.
Microbial indicator species includirtgscherichia coli (E. coli),
coliforms, Enterococcus spp. and total bacterial counts are
frequently monitored as proxies for pathogens tlaa¢
expensive or impractical to measure. Although tres@nce of
E. coli and coliforms indicates contamination, their alogen
does not preclude the presence of other harmfansgs (Wu
et al. 2011). Microbial biomass is typically measirvia
heterotrophic plate counts (HPCs), which quantifiesteria
that grow by consuming organic nutrients, i.e. alsfnaction
of total microorganisms in drinking water. The adtgpecies
guantified by HPC depends on cultivation mediuncubmation
temperature and incubation time (Allen et al. 206D C levels
are not regulated, although abundances above S0fhicare
considered of potential concern, mainly due to rietence
with the analytical detection of total coliformsPB analyses
typically take several days to implement assumingvedl-
equipped laboratory (Allen et al. 2004), hinderiagrapid
response to adverse measurements. Faster, culihviedie
methods for assessing microbial biomass exist,udich
adenosine tri-phosphate (ATP) and flow cytometry caunts

(FC), but these methods are still relatively compl®
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implement and interpret, preventing their widesgreae for
monitoring distribution networks (Hammes et al020Van
der Wielen and Van der Kooij 2010).

Dissolved organic matter (DOM) is a heterogeneouxsure
of carbon-containing molecules present in all aguat
ecosystems. Globally, DOM plays a key role in carlamd
nutrient cycling, and as a substrate for micrograwth, is one
of the main risk factors promoting microbiologiggowth in
distribution networks (Camper et al. 2003). DOM icagt
properties (absorbance and fluorescence) are widsbg for
studying changes in DOM composition and concemmnati
(Murphy et al. 2013). Although neither spectroscapchnique
necessarily directly measures the small bioavalablecules
consumed by heterotrophic bacteria, numerous sudave
shown that optical measurements are neverthelassitige
proxies of the wider DOM pool and track subtle djesin
water quality (Stedmon et al. 2011, Stubbins e2@14). DOM
fluorescence is a sensitive tracer of sewage congdion,
correlating withE. coli abundances (Baker et al. 2015) and
nutrients (Baker and Inverarity 2004) across system

Absorbance spectroscopy is frequently used to tiaek
abundance of the coloured fraction of dissolvedanig matter
(CDOM) in drinking water treatment systems (Weishetaal.
2003), including in online applications (Chow et aD08).

Fluorescence spectroscopy is a much more sensitive



99 technology, and additionally tracks compositionbamges in
100 DOM (Stedmon et al. 2011). However, studies of iiscence
101 in drinking distribution systems are very few. Hdynbkt al.
102 (2010) surveyed houses serviced by two separatebdison
103 systems (potable and recycled non-potable), andleded that
104 network cross-connections would be detectable fmeasuring
105 fluorescence intensities at the tap. However itaiento be seen
106 if organic matter fluorescence in drinking watetwaks is
107 Dboth stable and predictable enough to offer a staseline to
108 identify contamination at point-of-use; and if tisggnal is
109 correlated to microbial abundances and other chamic
110 constituents in distribution systems.

111 Trace metals leached from pipe materials can patgnt
112 interfere with spectroscopic measurements of DOMrinking
113 water. In the presence of transition metals sucinoas copper
114 and aluminium, metal-DOM complexes can form whibkab
115 more strongly than un-complexed DOM while fluoresgcless
116 (Senesi et al. 1991, Yan et al. 2013). Corrosiorcést iron,
117 galvanized iron and steel pipes are the main sewt&on in
118 drinking water (WHO 2014). Copper is seldom used fo
119 municipal network pipes but is frequently used ous$ehold
120 plumbing and fixtures. The suppression or quencbhindOM
121 fluorescence by various metal ions has been studiectural
122 aquatic systems (Ryan 1982, Yamashita and Jaff&)2&0d

123 wastewaters (Reynolds and Ahmad 1995). Howevers it
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uncertain whether metals would interfere to anynisicant
extent with DOM spectroscopic measurements in idigion
systems where concentrations of DOM and metalsbath
low.

Chlorine is frequently applied at the end of drimkiwater
treatment to limit regrowth and other microbialkgsin the
distribution network. In chlorinated networks, reags
between organic matter and chlorine break downrel®@®M
molecules, decreasing aromaticity and fluorescentamsities
and shifting fluorescence emission spectra (Beggd. €009,
Korshin et al. 1999). The effect of chlorine exp@swon
fluorescence intensities approximately follows apanential
decay curve, with rapid losses occurring at sheattion times
(minutes to hours) followed by gradual losses aglexposures
(Beggs et al. 2009). Chlorine could therefore lm®m@founding
factor for comparing fluorescence measurementshattap,
particularly when chlorine doses are high and itistion times
vary greatly.

In this study, relationships between DOM opticalparties,
microbial indicator organisms and trace elementeatrations

were investigated in a drinking water distributiogtwork. The

purpose was to assess whether DOM optical propertie

measured at the tap correlate with, and are patesurrogate
indicators of, abundances of microbial indicatoe@es. The

study area had no reoccurring chemical or bioldgwater



149 quality issues, allowing determination of baseloaditions in
150 the network and thresholds to be established foogmeising
151 significant changes in water quality. Also, sinbere is much
152 interest in using DOM optical properties for onlineater
153 quality monitoring, we investigated whether tradeneents
154 sourced from within the pipe network interfere wilfOM

155 optical measurements at the tap. If significanerifierences
156 occur, this may seriously limit the interpretatiof online
157 DOM measurements if trace elements are not mowitatehe

158 same time.

159 2. Material and methods

160 2.1. Sampling and analytical methods

161 A municipal drinking water distribution network wentral
162 eastern Sweden was surveyed. The Gavle distribgystem
163 forms a 486 km network of predominantly iron anaspic
164 (polyethylene) pipes. The plant receives groundryadjusts
165 the pH with sodium hydroxide, and chlorinates bef@leasing
166 it into the distribution system. Due to the groumdev source,
167 the outgoing drinking water is moderately hard ¢oah and
168 magnesium hardness > 60 mglNaCIlO is dosed at 0.3-0.4
169 mgL™ producing total chlorine in the outgoing water G-
170  0.15 mgL*. Residual chlorine at the plant reacts rapidlyhwit
171 the NOM in the water to produce total chlorine camtcations
172 (total chlorine = residual chlorine + chlorine derdausually

8



173 around 0.01-0.06 mgl in the taps of buildings along the
174 network. Thus the levels of free residual chlorfRRC) in the
175 network are much lower than is typical (>0.2 rifyto ensure
176 adisinfection effect at the point of use (WHO 214

177 Drinking water samples were collected in winter ¢Baber
178 1-2, 2015) at 87 locations in houses and publiddings
179 connected to the distribution system. Samplingtiooa were
180 selected so as to encompass the entire range ef vegidence
181 times experienced by households on the network-50.5).
182 Water samples were obtained from taps in the kitche
183 bathroom, after first flushing for 5 min. Replica@mples (n =
184 2) were collected at a subset of sites (n = 10)assess
185 experimental and analytical reproducibility; thesere both
186 collected and measured completely independentlyoné
187 another. Samples for microbial analyses and tuspidi
188 measurement were collected in sterile plastic (HDPd®tles,
189 DOM (dissolved organic carbon (DOC), absorbanceqg an
190 fluorescence) samples in ashed amber glass b@@s1), and
191 trace metal samples in acid-washed polyethylenestubOM
192 and metals samples were filtered on-site throughfipshed,
193 0.45 pm cellulose acetate filters; lab tests indicated no
194 measurable fluorescence after flushing with 120ahMilli-Q.
195 Absorbance and fluorescence samples were analysed a
196 Chalmers within 48 h of sampling. Trace metal samplere

197 acidified to 1% v/v with high purity HN@and analysed within



198 15 days. DOC samples were acidified to pH = 2 vhih-
199 purity HCI, stored at 4 °C, and analysed within tmonths.
200 Microbial samples and turbidity were analysed tbkotving
201 day at a commercial analytical laboratory (Eurdfins

202 In the laboratory, CDOM fluorescence and absorbaver®
203 measured in a 1-cm quartz cuvette using an Aqualog
204  spectrofluorometer (Horiba Scientific). Excitatiemission
205 matrices (EEMs) were obtained with 3 s integratimme for
206 excitation wavelengths 220-600 nm at 3-nm intervalsl
207 emission wavelengths of 240-800 nm at 2.3-nm iierv
208 Blank EEMs were acquired daily from ultra-pure watealed
209 in a quartz fluorometer cell and from MilliQ wat&EMs were
210 spectrally corrected for instrumental biases andcentration
211 effects according to established methods (Murphgl.e2010).
212 DOC was measured using a Shimadzu TQ¢gVcarbon
213 analyser, using the non-purgeable organic carboRO®)
214 method (EN 1484: 1997).

215 Concentrations of ten metals (Al, Cd, Cr, Cu, Fe, Min,
216 Ni, Pb and Zn) were determined by inductively ceadpblasma
217 mass spectrometry (ICP-MS) using a Thermo Scient@iAP
218 Q spectrometer. The instrument was operated irdatdrmode
219 for all elements, except for Fe and Ni which wenalgsed in
220 kinetic energy discrimination (KED) mode with He @dlision
221 gas.

222 Microbial analyses were performed according to ckiath

10
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methods. Culturable heterotrophic bacteria counterew
determined using the ISO HPC meth6d22-M (ISO 6222:
1999) which involves incubation at 22°C for three seven
days.E. Coli and coliforms were enumerated by the IDEXX-
Colilert method andEnterococcus spp. by the IDEXX-
Enterolert method. Turbidity was measured using $I&eEN
ISO 7027 method. In historical surveys of the dsition
system (unpublished data), culturable microorgasisamd
slow-growing bacteria abundances were generallpvbelO
and 100 cfu/ml, respectively.

Chlorine was not measured during this survey; hamnev
routine monitoring data are collected approximategnthly
and indicate very low residual chlorine in the natkv In
samples collected immediately before and aftergursey (n =
13), total chlorine was 0.03 mg/L (median) with aximum of
0.04 mg/L at monitoring sites with distribution & of 8-41
hr; these numbers thus represent upper limits fdorine
residuals at the monitoring sites. These low valaes
consistent with long-term datasets archived with 8wedish
Geological Survey (Vattentaktsarkivet 2016): in 2@2D15
total chlorine was typically below 0.05 mg/L (9Qiarcentile =
0.08 mg/L, n = 400) at monitoring stations along tietwork.
In this study, we use the chlorine reaction timeagsoxy for
chlorine residuals (Korshin et al. 2002). For alinples in this

study, the chlorine reaction time exceeded 57 h@uksdays);
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therefore, it is expected that the Cl residualghat time of
fluorescence analysis were well below the upperitdim
indicated by the routine monitoring datasets.

To simulate the contamination of drinking water gapby
soil, and determine detection thresholds for obsgrthe
contamination, a serial dilution was performed ofl svater
added to drinking water. Soil was obtained fromudoan area
at a depth of approximate 1 m and its organic cartuntent
estimated by loss of ignition. The stock soluti@rg(soil in 1 L
of tap water) was mixed on a magnetic stirrer fdr2then
filtered through cellulose acetate (0.45 um). Tiheatidn series
was prepared by diluting the stock solution usindjii@® for
13 dilution factors between 1 and 1/200. Fluoreseeand
absorbance were measured the same day and DOQ tithe
days.

2.2. Statistical methods

2.2.1. Relative standard deviation and detection limits

Independently-measured replicate samples were tsed
assess experimental and analytical error. Relasiteandard
deviations (RSD = standard deviation/mean) aregaddent of
scale and were used to compare how precisely difter
variables could be measured. Analytical detectionts were
calculated as three times the standard deviatiotriplficate
blanks. Trigger thresholds (TT) were also deterhirdefined

as the threshold for recognising a significantigveted level of

12



273 atracer, for example due to its entrainment innévork via a

274  cracked pipe (equation 1).

275 TT=x+3 (1)

276 In equation 1;ands are the average and standard deviation
277 of measurements from samples collected across thaew

278 network.

279 2.2.2. PARAFAC model

280 The fluorescence measurements generated a three
281 dimensional dataset of EEM®& (= 87, after averaging data
282 from experimental replicates). Within each EEM, theasured
283 trilinear data can be modelled as the sum of adidnnumber
284 of independently-varying fluorescence signals (Bi897).
285 These independent signals can be quantified usimg t
286 PARAFAC algorithm, which identifies the best-fitin
287 excitation and emission spectra for each independgmal
288 (termed a ‘component’) and its relative concenbratin each
289 sample. PARAFAC modelling was implemented on the
290 corrected dataset using teWay and drEEM toolboxes for
291 MATLAB according to established methods (Anderssom
292  Bro 2000, Murphy et al. 2013). Modelling perform&ih non-
293 negativity constraints on all modes.

294 PARAFAC models were investigated with two to seven

295 components, and split-half analysis, jack-knifiagd residual

13



296 analysis used to select the most appropriate moteis
297 process identified four independently-varying signa
298 producing a four-component PARAFAC model and their

299 intensities (F1-F4) in each sample (Murphy et GlL3).

300 2.2.3. PLS model

301 Multivariate calibration is often used for processntrol
302 when it is necessary to predict variables (Y) Hrat expensive
303 or time-consuming to measure from a set of comdlat
304 variables (a matrix of X variables) that are meadumore
305 easily. In the context of drinking water monitorjnigwould be
306 desirable to predict microbial abundances from onemore
307 easily-obtained chemical measurements. Partialt lsgaare
308 (PLS) regression is often used for multivariatebcation since
309 it performs well even when the number of predictanables is
310 high and some variables correlate with each otdren the
311 PLS model is orthogonalised (O-PLS), all variatemrrelated
312 to the response variable is compressed in the fatnt
313 variable, which greatly simplifies interpretatiofirygg and
314 Wold 2002). In this study, slow-growing bacteriasathe only
315 microbial indicator detected at abundances thatewsigh
316 enough to be included in statistical analysesptaiér microbial
317 indicator species had high frequencies of non-dietecO-PLS
318 was therefore used to predict slow-growing bactéyijpfrom

319 twelve water quality variables (X, containing, IF,, Fs, Fs, Al,

14
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Cu, Pb, Zn, Mn, Fe, DOC, absorbance at 254 ngas(A O-

PLS regression was implemented using the PLS_Taolbo

MATLAB (ver. 8.1, Eigenvector Inc.). Before applgrPLS,

all predictor variables were transformed using @@x-Box

power transformation to improve adherences to amabr
distribution; thereafter, each variable was autiestaReplicate
measurements were averaged prior to modelling.

An iterative process was used to develop the PL8eino
Initially, a model was created using all of the rheal data
available with the aim to predict slow-growing e
abundances across all sites (N=87). Subsequehtly,ntodel
was refined by removing the variables that hadtledkience
on the model (lowest VIP). Still, this model haevipredictive
power and was not robust during cross-validatibnvds then
attempted to develop a model only for sites in sbatheast
parts of the distribution system (N=37) since thdssd
generally higher bacterial counts and fewer nomast This
also produced no robust patterns. Finally, a tergtahodel was
developed for the southeast distribution system3INafter
excluding five sites with low microbial abundandgs 25%
percentile, <7 cfu/ml) and one site with high leage on the
model, and retaining only four parameters as ptedic
variables (&, Fe, As4 Pb).

Metal complexation model

15
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There are no established models for estimating |FDeDiV
complexation parameters from absorbance data. Tidelyv
used models for estimating the binding parametémetal-
ligand complexation from fluorescence data are Bhan-
Weber model (Ryan 1982) and modified Stern-Volmedet
(Hays et al. 2004). Both assume 1:1 metal to ligemahplex
formation. The Ryan-Weber model assumes a linear
relationship between the formed complex and fluoeese
guenching, which may not reflect the full complgxdf the
binding mechanism (Hays et al. 2004). In the medifttern-
Volmer model, a nonlinear relationship is assumed,
parameterized by a quenching constanf))(kand an initial
fraction (f) of fluorescence contributing to quemgh This
Stern-Volmer model was used to estimate the binding
parameters between PARAFAC components and copghrsin

study (equation 2).

Fo 1 1

Fo—F _ [KmCm * 3 2)

In equation (2), F and ¢Fare fluorescence intensities
corresponding to the measured total copper coratentrG, in
samples containing copper, or in the absence ofpap
respectively. k; and f are the conditional stability constant and
the fraction of initial fluorescence affected by talebinding.
The Ky andf values were determined in this study from the

relative fluorescence intensity of each componequétion 2)

16



368 plotted against the inverse concentration of copper

369 Effect of chlorine

370 Chlorine residuals decrease as a function of r@adime,

371 and while rapid changes occur at short reactioedimt longer
372 exposure times (e.g. a day or more), the rate ahgh can be
373 assumed to be linear (Korshin et al. 2002). We naeffithe

374 chlorine reaction time for a given sample as tmeetidelay
375 Dbetween chlorination at the plant and fluorescemtalysis in

376 the laboratory, which is assumed equal to the sdmtso
377 distribution time and the delay between sampling analysis.
378 To investigate whether chlorine exposure could hlagen a
379 confounding factor in fluorescence measurements)erge

380 linear models were used to model fluorescencefasdion of

381 chlorine reaction time, both in the presence amdathsence of

382 a potential interaction with copper.

383 3. Results

384 3.1. Microbial and chemical water quality

385 3.1.1. Microbial indicators

386 Abundances of microbial indicator species were low
387 below detection limits across the entire distribntinetwork.
388 Escherichia. Abundances of E. coli, coliforms and
389 Enterococcus spp. were below detection limits (< 1 per 100 ml)
390 at all sites. Slow-growing bacteria abundancesedabietween
391 0-110 cfu/ml, and culturable microorganisms betw&eB0

17



392 cfu/ml. Due to fewer non-detects, slow-growing leaiet was
393 used as the primary indicator of microbial abunéamnc all
394 statistical analyses. Among paired replicate samplee RSD

395 of slow-growing bacteria abundance averaged 31%I€TH).

396 3.1.2. Trace metals

397 All trace metals were detected at concentration$ lvetow
398 the health limits recommended by the World Health
399 Organization (WHO 2011) (Table 1). No health linetdst for
400 Fe, Al and Zn due to the very low concentrationstlodse
401 metals in drinking water relative to levels thatoguce
402 toxicological effects. Coefficients of variationrfeach metal
403 are presented in Table 1. Variation among replicate
404 measurements of Al, Pb, Cd and Cr was high (RSI®%)5
405 and concentrations were near the analytical detedimits.
406 For all other trace metals, RSD was below 17%.

407

408

Tableltobeinserted here.

409 3.1.3. Turbidity, DOM and DOC

410 Turbidity was low across the entire distributionvmerk (0 —
411 0.27 FNU; average 0.14 FNU), and below detectiof.1(<

412 FNU) at almost one third of sites. Spectroscopiasaeements

18



413

414
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419

420

421

422
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424

425

426

427

428

429

430

431

432

433

434

(absorbance and fluorescence) indicated low vditialn the

concentration and composition of optically-activeOld

(Figure 1). Across the network, absorbance variedtrat short
excitation wavelengths (Figure 1a) and fluoresceaicshort
excitation and emission wavelengths where prot&m-|
fluorescence is observed (Figure 1b). Overall, dizsmce was
more variable than fluorescence (RSD = 10% fofs,A

compared to 4% for humic-like peaks).

Figure1tobeinserted here.

A four-component PARAFAC model explained 99.9% of
the total variance in the fluorescence EEM datéSigure 2).
Based on published interpretations of componentls similar
spectral properties (Coble 1996), the first threemponents (E
314/408 nm E 359/443 nm and4# 389/508) represent humic-
like DOM and component 4 (F 290/351) represents
tryptophan-like DOM. Each fluorescence components wa
present at intensities exceeding the method detedtnits in

every sample.

Figure2to beinserted here.

Variation in fluorescence intensities could notdxglained

by differences in chlorine reaction time. In gemhelinear

19



435 models of fluorescence intensities regressed agaimsrine
436 exposure time and/or copper, chlorine exposure a@rptained
437 no more than 5% of total variability in any fluocesce
438 component (R< 0.05), compared to copper, which explained
439 56 - 63% of total variability for the humic-like mgponents (F1
440 - F3) but less than 1% of the variability in theotein-like
441 component (Supporting Information, Tables S1-S4).

442 DOC concentrations varied from 2.5 to 8.8 mg/L asrthe
443  distribution network, with mean and median concarans of
444 4.5 ppm and 3.5 ppm, respectively (Figure 3a). Tdistinct
445 DOC distributions could be observed; one with lovO©®
446 similar to DOC in the outgoing water from the pléat4 mg/L)
447 and a second which was normally distributed withamef
448 approximately 7 mg/L. No geographical pattern cole
449 detected that explained these two distributions.th& same
450 time, the result could not be explained by contatiam or by
451 analytical error as samples were analysed in ranolaier, and
452 replicate samples spanned both distributions afidreld by at
453 most 16% (see the Supporting Information). Instéaig, result
454  indicates that an additional source of DOC wasepresither in
455 the distribution network or else in the househafiemetwork,
456 potentially including plastic piping and rubber Isean tap
457  fittings.

Figure 3 to beinserted here.
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3.2. Effect of water residence time on water quality

No correlation was observed between water residaénce
and any of the individual chemical or microbial qaeters
measured in the distribution system (Figure 3).0Als0
variation in chemical or microbial parameters coube
attributed to the time of day when sampling toolacgl
However, qualitative trends were observed for some
parameters. When sites were divided in three grdwgwsng
low (< 25" percentile, <7 cfu/ml), medium (95-75"
percentile, 7-40 cfu/ml) or high>{5" percentile > 40 cfu/ml)
slow-growing bacteria abundance, sites with higlowsl
growing bacteria were often located in the southezgion of
the distribution network (Figure 4a). Also, whervided in
groups representing lowc17 h), medium (17-29 h), or high (
29 h) water residence times, sites with long remidetimes
mainly clustered in the same region (Figure 4b). this
southeast region, the average travel time was ald®$ours
longer than at other locations and the average-glowing
bacteria abundance was almost 1.7 times greater thea

average for the remaining sites.

Figure4to beinserted here.

3.3.  Predicting microbial abundance from chemical

variables
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Four chemical variables (protein-like fluorescemgeAzsy,
Fe and Pb) were most useful for predicting slowagng
bacteria abundances in the southeast network where
distribution times were longest. The PLS model bkt
southeast network explained 33% of the measuradtiaar in
slow-growing bacteria abundances and 61% of thesured
variation in these four chemical parameters (RMSEZYV,
RMSEC=2.1, N=31). Only tentative conclusions cardbaevn
from the model due to its restricted geographieage and
relatively low predictive ability (R, = 35%). Along the only
axis relevant to predicting microbial abundancessAand
protein-like fluorescence were negatively corralate slow-
growing bacteria. This could occur if these autolio bacteria
exerted top-down control on the abundance of prdike
fluorophores, or if protein-like fluorescence anacterial
abundance were both influenced by a third paramatérin
opposite directions. Bacteria abundances were ipelsit
correlated with Fe, which is a potential food seufer some
types of autotrophic bacteria (Kirchman et al. 2060t was

not a significant ingredient in the HPC growth mexi

3.4. Copper and fluorescence/absorbance interaction

Copper concentrations were negatively correlatatl each
of the three humic-like fluorescence components) Wearson

correlation coefficients of 77 - 78% (Figure 5ablEaS5h). At

22



504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

the same time, a positive correlation was obseiwetveen
absorbance and copper concentrations (Figure Sipp& did
not correlate with protein-like fluorescence. Facle humic-
like component, the modified Stern-Volmer modelvyied a
reasonable fit to the fluorescence data, with cogpelaining
37 - 49% of the measured variation in fluorescantensities.
This fit is illustrated for component, fin Figure 5. A better fit
to the dataset was obtained using a linear-fit/86 - 62%) or
a power-regression model {R= 62 - 63%). Assuming the
Stern-Volmer model, the log}values for the three humic-like
components in this study are comparable with vatepsrted

in earlier studies (Table 2).

Figure5inserted here.

Table2inserted here.

The strong correlations between copper and fluerese
enabled the fluorescence data to be corrected dmper
guenching by calculating what fluorescence intéssitvould
have been in the absence of copper (i.e. at teecept [Cu] =
0). Fluorescence intensities across the network ewer
significantly less variable after copper correctian illustrated
by reduced coefficients of variation. Thus in thegence of
copper, the coefficients of variation were betw8e® - 4.1%

(Table 3). After correcting the fluorescence datng the
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Stern-Volmer model, RSD decreased to 2.2 - 2.4%ilewh
simple power or linear fitting reduced RSD everitfar to 1.3 -

2.2%.

3.5. Trigger threshold for detecting entrained contamisa

Trigger thresholdsT(T) for observing significant changes in the
levels of each chemical and microbial parameter the
distribution network are presented in Table 4. Retatrigger
thresholds TT;¢ = threshold/mean) for humic-like fluorescence
were low (1.1 - 1.3), reflecting high measuremeetysion and
stable fluorescence intensities across the netwakd
indicating that a sample with fluorescence intgneily 10%
higher than the network average could be identéigdeing an
outlier. Due to the highly variable DOC concentyas in the
distribution system, soil water entrainment woulavé been
undetectable on the basis of DOC. Trace metals Higlder
relative trigger thresholds than fluorescence (1.8.2) and
would need to change by a larger relative amoufarbehey
would be distinguishable from natural variation.r FElow-
growing bacteria withTT around 3.9, a sample would not
appear to be an outlier so long as microbial abooeks were
less than 390% of the network average (i.e. <1@80vdf in this
study). Trigger thresholds could not be determif@dother

microbial indicator species, due to too many notects.
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Table3inserted here.

Table4 inserted here.

4. Discussion

DOM optical properties are well-established watealdy
tracers including for the treatment of drinking erafMurphy et
al. 2011, Shutova et al. 2014, Stedmon et al. 20a&yvever,
few DOM data have been reported from point-of-use i
distribution networks, and it is unknown how mudrigability
can be expected from spectroscopic measuremenssabie
systems. The network in this study had no knownrabial
issues, according to both this study and long-téhimonthly)
monitoring by the municipality. All houses sampled the
network produced samples with non-detectable lew¢l&.
coli, enterococci and coliforms, together with low aburnzies
of culturable bacteria (3-day and 7-day HPC). Gligha
abundances of HPC bacteria vary widely in drinkimgter
distribution systems (< 0.029* cfu/ml) depending on a range
of factors including DOC and source water qualitgatment
efficiency, distribution time, disinfection residuaand pipe
condition (Allen et al. 2004). Elevated abundanoésslow-
growing bacteria were observed in this study indbetion of

the distribution network with longest water residentime;
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even so, concentrations were always below 110 d¢famal
never approached levels for concern. Only weaketatrons
were observed between DOM optical measurementsH&Hcl
bacterial abundances, and only at locations whesterw
residence time and microbial abundances were highes
suggesting that most observed variability was dusoise.

Due to a general lack of published reports on DOM i
distribution networks, few data could be locateddomparing
to the current dataset. Tryptophan-like fluoreseensas
previously measured in Australian potable and reclyevater
networks (Hambly et al. 2010), where it was asskesse a
tracer of cross-connections. Intensities in thatdgt were
measured in situ and reported in arbitrary unitscaonot be
directly compared with the current study, howeVer telative
standard  deviation of tryptophan-like fluorescence
measurements in the Australian study was approeim#tree
times higher than in the current study (RSD = 33% &1%,
respectively). This is not surprising, because itn-s
fluorometers are generally much less sensitive thamchtop
fluorometers and produce noisier data. Additionally
tryptophan-like fluorescence depends on microbietivigy
(Moran et al. 2000), which would have been supkssethe
winter temperatures in Sweden in comparison to raliah

conditions.

26



595 For any water quality tracer, the more predictalite
596 concentration within the distribution network, tleasier it
597 would be to detect contaminated water entraineautyin
598 damaged pipes. In the current study, fluorescerasetive most
599 sensitive tracer among the suite of parameters unegslue to
600 high measurement precision and low variability asrdhe
601 network. The minimum amount of contaminated water
602 detectable in practice depends upon the charaotsrisf the
603 contaminant and the drinking water: as the diffeechetween
604 the two end-members increases, smaller entrainneamsbe
605 detected. In the network, the averagdl&orescence intensity
606 was 0.4 RU. If mixed with our soil water sample €1.4 RU),
607 then the contaminated water would need to represetdast
608 4% of the total sample volume before it could beedied on
609 the basis of fluorescence. After taking copper eoftrations
610 into account, a 2% infiltration of soil water woulde
611 detectable. Note that if the fluorescence signdahefentrained
612 soil water decreases significantly due to intecadi with
613 copper, chlorine or other interferents, this wordduce overall
614 sensitivity for detecting an infiltration event Wlporescence
615 spectroscopy.

616 In comparison to humic-like tracers, tryptopharelik
617 fluorescence exhibited higher measurement variaiR8D =
618 11%) even though its fluorescence was not quendhed

619 copper. This variability could not be attributed day other
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620 parameters monitored in this study, and probabilects the
621 higher lability as well as greater risk for contaation of this
622 peak by trace amounts of organic matter. To provide
623 comparable sensitivity to a humic-like tracer, toghan-like
624 fluorescence would need to be at least ten timgisehiin the
625 contaminated end-member than in the drinking wated-
626 ~member. This would not be unusual if the contantinaere
627 sewage, where tryptophan-like fluorescence intessit
628 frequently exceed drinking water levels by severalers of
629 magnitude (Baker et al. 2015, Sorensen et al. 2@.5¢oli
630 concentrations and tryptophan fluorescence in enwental
631 samples have been shown to correlate approximatedgrly
632 over a seven-log range (Baker et al. 2015). Iftsgtophan-
633 like fluorescence could be a sensitive tracer ofraamed
634 sewage due to its low detection threshold coupléat hgh
635 measurement precision.

636 Copper reduced the measured intensities of hurec-li
637 fluorescence in this study, as has been observetth@r aquatic
638 systems (Xu et al. 2013, Yamashita and Jaffe 2000&).main
639 source of copper is likely to have been the coormsif interior
640 copper plumbing in the buildings (WHO 2011). Copjpéso
641 represented around 0.7% of the pipe materialsamthnicipal
642 distribution system. Humic-like fluorescence variedersely
643 with copper across sampling sites, with copperarpig 63%

644 of the variation in fluorescence measurements uadbBnear
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645 regression model, compared with 43% for the modlifséern-
646 Volmer model. The modest fit of the Stern-Volmerdabmay
647 be due to relatively low copper concentrations his tstudy
648 (Cu/DOC < 1/50) compared to the ranges typicallydstd
649 (Cu/DOC < 1/25) (Reynolds and Ahmad 1995). Theiahit
650 fraction of fluorescence contributing to quenchiwgs also
651 smaller than previously reported, possibly due dmpetition
652 with calcium and magnesium ions for copper-bindsites
653 (Ryan 1982). The suppression of DOM fluorescencedpper
654 should thus be expected to vary between distribusigstems,
655 between sections of a network, and between neaubigirgs
656 on the network.

657 Water suppliers in some cities internationally hat®ady
658 made significant investments in online spectrophati@rs for
659 monitoring distribution systems, mainly using albsorce
660 spectroscopy (Anon. 2013). In this study, absorbamas a less
661 sensitive water quality tracer than was humic-flkerescence;
662 a 20% increase in A4relative to the system average would be
663 needed to trigger an outlier compared to a 10%ease for
664 fluorescence, although absorbance exhibits a sma#&ural
665 range. For online instrumentation, however, thenoglt choice
666 of online technology depends greatly on instrunmogt and
667 reliability. Also, although chlorine reaction time&as not a
668 confounding factor in this study due to a low ciderdose and

669 long exposure times, differential chlorine exposuweuld
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introduce artefacts that particularly affect onlith@orescence
monitoring, especially if chlorine doses are higimda
distribution times vary from hours to days.

For all parameters, since measurement variatioreases
over spatial and temporal scales, the detectiorshuld
calculated in this study would almost certainly noye if
comparing measurements at the tap with measurensnts
various local hubs located in network pipes, ingteé with
measurements from all households on the networis Whuld
limit spatial and temporal variation, the effects different
household plumbing, and different degrees of chéori
exposure. Also, by comparing network hubs with anether,
problems originating in the main pipe network couie

isolated more easily.

5. Conclusions

» Organic matter fluorescence measurements in a
functional and stable drinking water distributigrstem
were well above detection limit and exhibited high
measurement precision and low fluctuations acrbes t
network. Four independently varying fluorescence
components were detected.

» Potential contamination in the distribution

system that results in visible wavelength fluoresee

30



693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

exceeding the network average by 10% would beyeasil
detectable.

* In-situ fluorometers should be capable of
sensitively monitoring water quality changes in
distribution systems between source and consumers,
although issues related to reliability, sensitiviijpnd
calibration present technical hurdles worthy oftler
development and investigation.

 Trace metals can interfere with spectroscopic
measurements in the distribution system and inereas
detection thresholds for observing significant ademin
organic matter quality. It is therefore importat t
consider trace metals when investigating DOM
fluorescence as a potential tracer of contaminaiion

unfamiliar networks.
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Table 1. Water quality parameters in the drinkiragew distribution network. « = no data, - = noitim

Parameter Mit | Max® | Median® | RSD RSD between | Outgoing’ | LoD?® Heath
across replicates (%) limit #
sites (%) i
Median  Max
Fe (ng/l) 1 20 4 75 7 17 <20 0.74 -
Al (ng/l) 050 | 8 2 47 14 79 <10 1.72 -
Cu (pg/l) 10 500 50 87 3 14 <20 0.07 2000
Pb (ug/l) <0.01| 0.50 0.07 100 34 110 : 0.01 10
Zn (nofl) 2 100 5 170 1 11 : 0.04 R
Mn (ug/) | 0.05 | 2 0.40 100 7 10 <10 0.05 400
Ni (ng/l) 025 | 1.75 1.70 14 2 5 - 0.01 70
Cd (pg/l) 0.02 | 017 0.05 47 15 71 - 0.01 3
Cr (ngll) 008 | 1 0.24 54 15 75 - 0.04 50
Mg (mg/l) | 5.4 6.8 6.0 5 2 3 4 0.0005 -
F1(RU) 0.34 | 042 0.40 4 1 1.9 : 3e4 R
F 2 (RU) 025 | 031 0.29 4 1 1.4 : <led -
F 3 (RU) 0.19 | 023 0.22 4 0.7 1.1 : ded -
F 4 (RU) 0.13 0.23 0.14 11 4 14 . 1le-6 -
DOC (mg/l) | 2.5 8.9 35 41 8 13 2.5 0.16 -
A i(cm™) [ 0.04 | 0.08 0.05 10 2 19 - 0.001 -
Cl (mg/l) . . 0.03 . \ . 0.1
S.IOW- <1l 110 17 100 25 94 . 1 -
growing
bacteria
(cfu/ml)

! Data are from samples collected in houses aloagétwork.
2 Data reported by the WTP in the finished watevilegithe plant.
% Analytical limits of detection (LoD) were deterreith from procedural blanks.

4 Health limits are from WHO guidelines (WHO 2011).



Table 2. Conditional stability constants (log)and initial fractionf, calculated using the modified Stern-
Volmer model for humic-like fluorescence componentthis study, compared to similar components in
published studies.

Complexation parameters in thijs (Kirchman et al. 2000, (Xu et al. 2013)
study Yamashita and Jaffe 2008)
PARAFAC | log f PARAFAC Log f PARAFAC | log f
component| K,, component | Ky component | Ky,
Fy 6.24 | 0.12 Component1 4.91 0.54 Humic-like5.10 0.80
F 636 | 0.14 | Componenté 545| 0.3Q fuorescence
Fs 6.25 | 0.14 Component 2 4.81 0.61




Table 3. Variation (RSD x 100%) in fluorescenceisities across the distribution network. Uncogédata
are compared with dacorrected for quenching by copper using a modiB&stn-Volmer model, a linear model,
and a power-fit model.

Componen Uncorrect Stern- Linear Power
Fi: 3.6 2.2 19 19
F.: 3.8 2.2 2.1 2.0
Fs: 4.1 24 13 2.2

Fa: 11 - - _




Table 4. Trigger thresholds for detecting outlierthe drin
king water distribution network.

Parameter Network mear] Network TT TT/mean Min. | Max. | Median
std. dev.
Fe (ug/l) 5.4 41 177 |33 1 20 | 4
Al (ug/l) 2.8 1.3 6.7 2.4 050| 8 2
Cu (ugll) 69.1 61.4 253 3.7 10 500 | 50
Pb (ug/l) 0.08 0.09 035 |44 <0.01| 050| 0.07
Zn (ug/)) 8.4 14.6 522 | 6.2 2 100 | 5
Mn (ng/l) 0.38 0.41 164 |43 0.05 | 2 0.40
Ni (ug/l) 1.17 0.17 168 |14 025 | 1.75| 1.70
Cd (ng/l) 0.06 0.03 015 |25 0.02 | 0.17| 0.5
Cr (ug/l) 0.28 0.15 0.73 2.6 0.08 | 1 0.24
Mg (mg/l) 6.1 0.33 709 |1.16 54 | 68 | 6.0
F.RU)
- Uncorrected 0.40 0.014 0.44 1.1 0.34| 042 04
- Corrected for [Cu]| 0.44 0.009 0.46 1.06 0.42  0.46.440
F> (RU)
- Uncorrected | ) g 0.010 032 11 025 031 029
- Corrected for [Cu]
0.33 0.007 0.35 1.06 031 03% 033
Fs (RU)
- Uncorrected | 022 0.009 0.24 1.1 0.19| 028 0.22
- Corrected for [Cu]| g 55 0.005 027 | 1.07 0.24f 026 0.25
F.(RU) 0.14 0.02 0.19 1.3 0.13| 028 014
DOC (mg/l) 4.6 1.9 10.34 | 224 25 | 89 | 35
Ags, (cm™1) 0.05 0.005 0.06 | 120 0.04 | 0.08| 0.05
Slow - growing 120.3
30.9 29.8 3.9 <1 110 | 17
bacteria ¢fu/ml)
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Figure 1.Variation in optical properties across the distribution network. (a) Absor
spectra (grey lines) compared to the average spectrum (black lineyditggk
fluorescence; (c) standard deviation of fluorescence; observe the chaugdei
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Figure 2. Spectral properties of four independently-varying fluorescent contp¢ré -F4)
identified in the drinking water network. Inserts show excitation wavelemgti®rizontal axis
and emission wavelengths vertical axis
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Figure 3. The distribution of DOC, slow-growing bacteria, total fluorescéfrce-400 nm) and
A254 versus water residence time. Replicated samples are shown as fillesl lrstograms of tf
data are shown to the right of each plot
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Figure 4. Spatial distributions of (a) slow-growing (7-day) culturablesbiactand (b) water
residence time, at houses in the Gavle distribution network. Sites are ethasidbrding to
category ranging from high (darkest triangle) to low (lighteshtyi®). The water treatment plant
(WTP) is shown as a red circle. Sites within the southeast network are showeenclaslashed
square.
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Figure 5. Correlations between DOM optical measer@sand copper in the distribution
network. (a) Relative fluorescence intensity (femrence / 0.33) of component F2 versus
copper concentration. The solid line fits a powegression model (R2 = 0.62), the dashed
line a modified Stern-Volmer moddR{ = 0.43). Closed circles show uncorrected data and

open squares show corrected data assuming zerercomgsent under the power model. t (b)
AsssVversus copper concentratidgf,= 0.2.



Highlights:

A biologically-stable drinking water network exhibited stable chemical properties.
Copper leached from pipes quenched visible wavelength fluorescence.

Fluorescence would be sensitive tracer of entrained soil water or sewage.



