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11 Abstract

12 In recent years, there has been a widespread deployment of 

13 submersible fluorescence sensors by water utilities. They are used to 

14 measure diagnostic pigments and estimate algae and cyanobacteria 

15 abundance in near real-time. Despite being useful and promising 

16 tools, operators and decision-makers often rely on the data provided 

17 by these probes without a full understanding of their limitations. As a 

18 result, this may lead to wrong and misleading estimations which, in 

19 turn, means that researchers and technicians distrust these sensors. In 

20 this review paper, we list and discuss the main limitations of such 

21 probes, as well as identifying the effect of environmental factors on 

22 pigment production, and in turn, the conversion to cyanobacteria 

23 abundance estimation. We argue that a comprehensive calibration 

24 approach to obtain reliable readings goes well beyond manufacturers’ 

25 recommendations, and should involve several context-specific 
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26 experiments. We also believe that if such a comprehensive set of 

27 experiments is conducted, the data collected from fluorescence 

28 sensors could be used in artificial intelligence modelling approaches  

29 to reliably predict, in near real-time, the presence and abundance of 

30 different cyanobacteria species. This would have significant benefits 

31 for both drinking and recreational water management, given that 

32 cyanobacterial toxicity, and taste and odour compounds production, 

33 are species-dependent. 

34 Keywords: Artificial Intelligence; Cyanobacteria; Fluorescence; 

35 Remote sensors; Water quality; Water resources management

36

37 1 Introduction

38 Cyanobacteria are considered to be among the most interesting 

39 organisms for ecological and phycological studies (Beutler et al. 

40 2003), in addition to being some of the oldest organisms on Earth. 

41 They are primary producers and some of them produce toxins and/or 

42 taste and odour compounds (Carmichael 2001, Schopf 1996, 

43 Waterbury et al. 1979). There is evidence to suggest that climate 

44 change may  increase the frequency and magnitude of cyanobacterial 

45 blooms (O’Neil et al. 2012).

46 Submersible fluorescence sensors can rapidly provide an estimate of 

47 the biomass of algae, including cyanobacteria. Studies have shown 

48 that sensors correlate well with algal and cyanobacterial biomass 

49 measures in laboratory experiments, and thus they have been 

50 recommended as sensitive tools for real-time in-situ water 

51 management (Bastien et al. 2011, Brient et al. 2008, Gregor and 
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52 Maršálek 2004). However, there have been challenges with the 

53 calibration of these sensors, particularly in highly turbid 

54 environments, or when species composition changes rapidly, either 

55 spatially or temporally. The use of remote fluorescence 

56 instrumentation, combined with curve-fitting techniques, provides a 

57 possible means to determine the presence of different groups of algae 

58 in a sample (Hodges et al. 2017). The premise for this application, 

59 however, is that the fluorescence excitation spectra must be constant 

60 for each algal species (Beutler et al. 2002). This appears to be the 

61 case for algal groups, typically referred to by researchers studying 

62 algal fluorescence as green (chlorophytes), brown (predominantly 

63 diatoms, dinoflagellates and golden brown flagellates), or mixed 

64 algal assemblages (Beutler et al. 2002). However in the case of 

65 cyanobacteria (referred to as the blue group), the spectrum changes 

66 with environmental conditions (Beutler et al. 2003). This not only 

67 hinders the ability to differentiate different cyanobacterial species, 

68 but also undermines the reliability of such probes in estimating the 

69 total biomass of cyanobacteria. Therefore environmental and 

70 technological interferences need to be accounted for.

71 This review examines environmental factors and technological 

72 limitations that can affect both the cyanobacterial spectra, and 

73 accurate measurement of biomass with commonly available in-situ 

74 fluorescence probes. If these factors can be accounted for, such tools 

75 would provide a more reliable means of monitoring blooms. In 

76 addition, the use of algorithms and models derived from fluorescence 

77 sensors’ data could be used to provide estimates about which 

78 cyanobacterial species are likely to be present, with links to the 
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79 prediction of the risk of presence of toxins, or taste and odour 

80 compounds.

81 This review firstly examines how environmental factors affect the 

82 pigment content of algal species. These factors complicate the 

83 conversion of probe readings to cyanobacterial biomass. Next, the 

84 technical constraints hindering an accurate reading, and inherent 

85 interferences made in the fluorescence measurements, are examined. 

86 The second part of the review assesses the feasibility of rapidly 

87 estimating the relative contribution of different species to the total 

88 biomass, as well as predicting toxin or taste and odour risks. Table 1 

89 provides a list of the relevant literature analysed and cited based on 

90 the topic discussed.

91 Table 1 - List of relevant references based on topic

Topic Relevant literature cited
Environmental 
interferences: 
Chlorophyll-a 
and 
phycocyanin 
yields

Bryant (1982)
Alpine and Cloern (1985)
Everitt et al. (1990)
Lee et al. (1995)
Mackey et al. (1996)
Henrion et al. (1997)
MacColl (1998), Rapala (1998)
Beutler et al. (2002)
Beutler et al. (2003)
Izydorczyk et al. (2005)
Bryant (2006)
Pemberton et al. (2007), Seppälä et al. (2007), Gregor et al. (2007)
Brient et al. (2008), Randolph et al. (2008)
Millie et al. (2010), Ziegmann et al. (2010), Richardson et al. (2010)
Allan et al. (2011),  McQuaid et al. (2011), Erickson et al. (2011) Bastien et 
al. (2011)
NSW Office of Water (2012), Chang et al. (2012), Zamyadi et al. (2012)
Bowling et al. (2013), Horváth et al. (2013)
Sobiechowska-Sasim et al. (2014)
Kudela et al. (2015), Korak et al. (2015), Zieger (2015)
Hodges (2016b), Zamyadi et al. (2016a)
Hodges et al. (2017), Steiner et al. (2017), Kong et al. (2017)
McBride and Rose (in press)
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Instrument 
limitations and 
opportunities

Beutler et al. (1998)
Beutler et al. (2002)
Beutler et al. (2003)
Gregor and Maršálek (2004)
Seppälä et al. (2007), Pemberton et al. (2007), Gregor et al. (2007)
Brient et al. (2008)
Millie et al. (2010), Ziegmann et al. (2010), Richardson et al. (2010)
Pobel et al. (2011), Bastien et al. (2011), Dennis et al. (2011), Pomati et al. 
(2011), Hashemi et al. (2011)
NSW Office of Water (2012)
Bowling et al. (2013), Horváth et al. (2013), Pomati et al. (2013)
Sobiechowska-Sasim et al. (2014)
Hamilton et al. (2015), Zieger (2015)
Zamyadi et al. (2016a), Bowling et al. (2016), Hodges (2016b), Zhou et al. 
(2016)
McBride and Rose (in press)

Fluorescence 
measurement 
limitations

Schreiber et al. (1995)
Asai et al. (2001)
Gregor and Maršálek (2004)
Kostoglidis et al. (2005)
Gregor et al. (2007), Seppälä et al. (2007)
Brient et al. (2008), Sackmann et al. (2008)
Millie et al. (2010)
McQuaid et al. (2011), Bastien et al. (2011), Hashemi et al. (2011)
Chang et al. (2012), Zamyadi et al. (2012)
Bowling et al. (2013)
Korak et al. (2015), Wang et al. (2015)
Zamyadi et al. (2016a), Hodges (2016b), Bowling et al. (2016) Watson et al. 
(2016)
McBride and Rose (in press)

Estimating 
proportion of 
different algal 
groups, 
classes, species

Gieskes et al. (1988)
Everitt et al. (1990)
Mackey et al. (1996)
Henrion et al. (1997)
Pinckney et al. (2001)
Izydorczyk et al. (2005)
Millie et al. (2010)
Bastien et al. (2011)
Zieger (2015)
Kpodonu et al. (2016), Zamyadi et al. (2016a)
van der Linden et al. (2017)

Predicting taste 
and odour and 
toxicity risk

Hawkins et al. (2001)
Vézie et al. (2002)
Rohrlack et al. (2008), Henderson et al. (2008)
Everson et al. (2009)
Chapman (2010), Ziegmann et al. (2010)
American Water Works Association (2011), Bastien et al. (2011) Everson et 
al. (2011)
Li et al. (2012)
Leloup et al. (2013)
Kong et al. (2014), Wert et al. (2014)
Su et al. (2015), Wang et al. (2015), Korak et al. (2015)
Bertone and O’Halloran (2016), Willis et al. (2016)
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Zamyadi et al. (2016a), (Zamyadi et al. 2016b), Watson et al. (2016) 
Pivokonsky et al. (2016)

Relevant 
artificial 
intelligence 
modelling 
applications

Jaynes (1957)
Maier and Dandy (2000), Wallace and Hamilton (2000), Singh (2000)
Tanyimboh and Sheahan (2002)
Embleton et al. (2003)
Castelletti and Soncini-Sessa (2007), Uusitalo (2007), Hamilton et al. (2007)
Fenton and Neil (2008), Lee and Wentz (2008)
Johnson et al. (2010)
Mosleh et al. (2012), Chen and Pollino (2012)
Bertone et al. (2015), Rigosi et al. (2015)
Bertone et al. (2016a), Bertone et al. (2016b)

92

93 2 Environmental interferences: Chlorophyll-a and 

94 phycocyanin yields

95 The functioning principle for estimating algal and, more specifically, 

96 cyanobacterial biomass using fluorometry relies on the determination 

97 of diagnostic pigments, with a focus on chlorophyll a (chl-a), b and c 

98 and carotenoids, as well as phycobilins (such as phycocyanin and 

99 phycoerythrin).

100 Chlorophyll a, measured by in situ fluorometry, is a proxy for total 

101 algal biomass, as it is easy to calculate, and it is universally present in 

102 both prokaryotic and eukaryotic algae (Millie et al. 2010). Values 

103 have also been derived from water reflectance data monitored by 

104 satellites (Allan et al. 2011) and, along with other spectral data, were 

105 used to differentiate between two key cyanobacterial species (Kudela 

106 et al. 2015). However, typically chlorophyll fluorescence does not 

107 provide information on the algal community composition (Ziegmann 

108 et al. 2010). The closest that can be achieved in terms of community 

109 differentiation is at the algal class level using a range of excitation 

110 and emission fluorescence spectra, e.g., for green algae. In addition, 

111 many studies (e.g., Bowling et al. (2013), Brient et al. (2008), 
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112 Pemberton et al. (2007)), have not been able to establish a strong 

113 correlation between cyanobacterial biovolume and chl-a measured by 

114 in-situ fluorometry. 

115 Cyanobacteria contain phycobilisomes which absorb light in a 

116 different range to chl-a, i.e., between 550 and 650 nm, expanding the 

117 range of wavelengths which may be available for photosynthesis 

118 (Bryant 2006, Korak et al. 2015). In particular, phycocyanin (PC) 

119 and phycoerythrin (PE) are two fluorescent phycobilisomes that can 

120 be used to quantify cyanobacterial biomass, with PC most commonly 

121 measured using on-line fluorescence probes. The advantage of using 

122 phycobilisomes is that: (1) they only occur in cyanobacteria, 

123 allowing differentiation from other algae; and (2) they fluoresce at 

124 higher wavelengths than dissolved organic matter (DOM), thus 

125 reducing interference from these compounds, provided quenching 

126 effects (discussed later) are accounted for. PC is generally preferred 

127 to PE because PC is produced by all cyanobacteria while PE is 

128 produced only by some species (Bryant 1982, 2006). However, PE is 

129 more prevalent in benthic cyanobacteria because they have light 

130 absorption wavelengths aligned with the spectrum for bottom waters, 

131 due to differential absorption of light through the water column, 

132 resulting in blue-green light exposure (Korak et al. 2015, MacColl 

133 1998). Therefore PE could be useful for fluorescence probes 

134 specifically targeting benthic cyanobacterial detection. 

135 All cyanobacterial species have a specific range of chl-a and PC 

136 contents (i.e., quota) per cell (Brient et al. 2008, Richardson et al. 

137 2010, Seppälä et al. 2007, Sobiechowska-Sasim et al. 2014), usually 

138 proportional to the cell volume (Brient et al. 2008), and have 
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139 different ratios of pigments (Ziegmann et al. 2010). Average cell 

140 volumes can be estimated based on species by using tables, databases 

141 and calculators readily available online (e.g. (DELWP)). Such 

142 averages can be subject to variations, with previous studies finding 

143 cell volumes considerably lower than values that have been reported 

144 in such commonly used standard cell size tables, especially in 

145 summer and autumn (NSW Office of Water 2012). Each 

146 cyanobacterial pigment has an excitation and emission spectrum, 

147 hence, based on spectral signature of a sample, it is possible to 

148 identify the different phycobilins and separate them from chl-a and 

149 other background signals (Seppälä et al. 2007). A summary table of 

150 pigment ratios, based on literature data, is provided in Mackey et al. 

151 (1996). Hodges (2016a) and Hodges et al. (2017), as well as Zamyadi 

152 et al. (2016a) also summarise several studies of pigment ratios for 

153 different species. Differences in pigment content and ratios arise 

154 because each species has a different cell size and geometry (Alpine 

155 and Cloern 1985, Lee et al. 1995). For instance, filamentous species, 

156 unlike unicellular species, might form dense clumps (especially in 

157 the field), producing nonlinear responses due to the surface cells 

158 absorbing a large portion of the light (Hodges 2016a). This is not 

159 always the case, however, since other studies involving blooms of 

160 filamentous species have shown a linear correlation between 

161 cyanobacterial biomass and PC fluorescence (Seppälä et al. 2007). 

162 Adding further complexity, pigment ratios within species are affected 

163 by light regimes, nutrients, physiological status (e.g. growth stage) 

164 and strain dominance, as well as other environmental conditions 

165 (Beutler et al. 2002, Mackey et al. 1996, Seppälä et al. 2007, 

166 Zamyadi et al. 2016a, Ziegmann et al. 2010). Therefore, although 
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167 correlations between PC fluorescence and total cyanobacterial 

168 biovolume can be determined, they are usually applicable only to 

169 periods when there is a high proportion of cyanobacteria amongst the 

170 algal assemblage (e.g. Randolph et al. (2008); Brient et al. (2008), 

171 Hodges (2016a), McQuaid et al. (2011); Izydorczyk et al. (2005)). 

172 More sophisticated models are needed to account for the many 

173 potentially confounding factors that disrupt this relationship. 

174 Studies in the laboratory using traditional spectrophotometric 

175 analysis of cultures of Microcystis aeruginosa and Dolichospermum 

176 circinale have found the highest PC cell content during the 

177 exponential growth phase (0.004 and 0.018 RFU/cell respectively), 

178 with the content reduced by 50% during stationary phase (0.002 and 

179 0.009 RFU/cell respectively) (Chang et al. 2012). Other studies have 

180 shown that PC only dominates in the latter stages of growth 

181 (Ziegmann et al. 2010). This is consistent with Gregor et al. (2007), 

182 who determined that older cells have higher PC fluorescence. Other 

183 studies have found that the PC content is lowest when cyanobacteria 

184 growth rates are highest (Lee et al. 1995). Hence there is no 

185 agreement between studies on when PC content is likely to be higher, 

186 suggesting species and methodological differences in PC quotas. In 

187 addition, it is important to take into account the relationships between 

188 PC extraction efficiency and cyanobacteria concentrations, with 

189 previous studies showing how the PC/chl-a ratio often decreases in 

190 more diluted samples (Horváth et al. 2013).

191 Light history is also an important factor affecting pigment content of 

192 algae, including cyanobacteria (Erickson et al. 2011). PC content is 

193 often higher following exposure to low light (Gregor et al. 2007). 
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194 This is because in low light environments, cells accumulate 

195 photosynthetic antenna pigments to allow them to capture more light, 

196 whilst when light is not limiting, the photosynthetic pigments are 

197 reduced to prevent excessive excitation energy and cell damage 

198 (Seppälä et al. 2007). Under high light intensities, non- 

199 photochemical quenching also occurs, leading to lower pigment 

200 fluorescence (McBride and Rose in press). These findings are also in 

201 line with Beutler et al. (2003), who showed that PC/chl-a ratios were 

202 higher at lower light intensities. Hence, in periods of high light 

203 intensity, surface cyanobacteria may produce less PC, and thus a 

204 fluorometric probe reading could underestimate the cyanobacteria 

205 biomass. To avoid the issue, only night readings can be considered, 

206 while disregarding daytime measurements (McBride and Rose in 

207 press). 

208 Despite these findings, there does not seem to be agreement on the 

209 effect of light intensity on PC production (Zamyadi et al. 2016a), 

210 with several other studies not finding any significant effect related to 

211 previous light exposure (Beutler et al. 2002, Brient et al. 2008, 

212 Zamyadi et al. 2012). Other studies have measured an increase in the 

213 fluorescence signal following exposure to ambient light compared to 

214 dimmed ambient light (Zieger 2015). Ambient light was also shown 

215 to result in higher PC yields for Aphanizomenon sp. (Hodges 2016a), 

216 recently renamed to Chrysosporum sp. Differences in PC content can 

217 also be found between natural and artificial light, suggesting that 

218 culture studies in the laboratory may lead to inaccurate results 

219 depending on the light intensities and spectra of the light source 

220 (Brient et al. 2008). The effect of irradiance seems to also be species-
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221 specific (Hodges 2016a), with the characteristic chl-a/marker 

222 pigment ratios affected by the history of light exposure (Everitt et al. 

223 1990). 

224 Nutrients can affect the pigment content of cells. For instance, a lack 

225 of nitrogen can lead to PC degradation in cyanobacterial cultures 

226 (Rapala 1998). Beutler et al. (2003) found that increasing phosphate 

227 and nitrate concentrations increased the PC/chl-a ratio in 

228 cyanobacteria. PC can also be released into the water during blooms, 

229 then rapidly degraded (Izydorczyk et al. 2005, Steiner et al. 2017). 

230 Differences between in-situ and laboratory experiments have also 

231 been noted, although some studies have found high similarity 

232 (Bastien et al. 2011, Brient et al. 2008, Hodges 2016a, Kong et al. 

233 2017). 

234 There are opportunities to estimate cyanobacteria composition from 

235 fluorescence emission spectrum patterns. Henrion et al. (1997) 

236 asserted that although the intensity of the fluorescence spectrum can 

237 change due to some of the factors outlined above, the pattern of the 

238 fluorescence spectrum does not change; thus principal component 

239 analysis of excitation-emission matrices (EEM) of surface water can 

240 be used to identify the cyanobacterial composition of the sample. 

241 Nevertheless, measuring EEM is time consuming (Ziegmann et al. 

242 2010), compared to in-situ fluorescence probes.

243 3 Instrument limitations and opportunities

244 As outlined in Millie et al. (2010), the use of in-situ spectrometers 

245 and fluorometers has become common practice for water monitoring 

246 programs. In vivo fluorometers typically work by using a LED light 
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247 source associated with a given volume of water in front of the optical 

248 window, and measuring the emitted fluorescence from excitation of 

249 phytoplankton cells using a detection filter located perpendicularly to 

250 the excitation source. Spectrofluorometric probes, through real-time 

251 monitoring, are a useful tool to detect rapid spatiotemporal changes 

252 in cyanobacterial biomass, compared to conventional low-frequency 

253 sampling (Hamilton et al. 2015, Pobel et al. 2011). In terms of 

254 accuracy, in-vivo fluorescence is typically less precise than extracted 

255 in vitro fluorescence (McBride and Rose in press), and fluorometric 

256 and spectrofluorometric methods are more sensitive than 

257 spectrophotometric measures (Millie et al. 2010, Sobiechowska-

258 Sasim et al. 2014). Zamyadi et al. (2016a) have reviewed the 

259 available information on in-situ fluorescence instrumentation for 

260 cyanobacterial detection.

261 Fluorometric probes can have a number of advantages compared to 

262 other methods, e.g. online real-time lake profiling, and can provide a 

263 good estimate of the total cyanobacterial biovolume (Bowling et al. 

264 2016). Despite this, the readings are affected by several interferences, 

265 and so far they cannot identify specific species (Zamyadi et al. 

266 2016a). In addition, previous studies found that probe accuracy 

267 decreases when determining cell densities, rather than biovolume, 

268 due to the presence of heterogeneous mixtures of species with 

269 different cell sizes (Bastien et al. 2011, Bowling et al. 2016). 

270 Furthermore, the probes require reliable cleaning systems to 

271 guarantee consistent levels of accuracy and reliability over time 

272 (Brient et al. 2008, NSW Office of Water 2012). Some probes have 

273 also been found to be unable to detect fluorescence below certain 
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274 lower thresholds (e.g. 2.6 µg/L (Hodges 2016a)). Some sensors also 

275 consistently underestimate cyanobacterial biomass (Bastien et al. 

276 2011).

277 Issues can also arise due to the limitations of the manufacturer’s 

278 machine calibration, which is typically performed using cell counts 

279 of a specific cyanobacterial species, e.g. Microcystis aeruginosa. 

280 Such species-specific calibration can be of limited use in any 

281 waterbody where a mix of species is present (Bowling et al. 2013, 

282 Hodges 2016a). One problem that needs to be overcome is the lack of 

283 proper laboratory-based PC determination methods, due to low PC 

284 extraction efficiency (Seppälä et al. 2007). More recently improved 

285 extraction methods have been demonstrated (Horváth et al. 2013). 

286 Calibration with different algal species with a range of biovolumes is 

287 recommended, as performed in Brient et al. (2008). Alternatively, a 

288 mixed assemblage, representative of the monitored site, can be used 

289 to relate fluorescence to a site-specific biovolume (McBride and 

290 Rose in press).

291 Several fluorescence devices have been developed in an attempt to 

292 characterize the species composition of algal/cyanobacterial samples 

293 (see Ziegmann et al. (2010)). Five different wavelengths were used 

294 by Beutler et al. (1998) in order to mathematically estimate the 

295 composition based on the antenna pigments of the five main groups 

296 of algae, with further studies building from those findings (Beutler et 

297 al. 2003, Beutler et al. 2002, Gregor and Maršálek 2004). Some 

298 studies have found that this approach underestimates cyanobacterial 

299 concentrations under certain conditions (Pemberton et al. 2007). 

300 Other in-situ multi-wavelength fluorometric devices have been 
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301 proposed (Beutler et al. 2002, Richardson et al. 2010). Using several 

302 wavelengths covering the excitation spectra for the main pigments 

303 present in major groups of phytoplankton can be suitable to monitor 

304 natural phytoplankton communities which have variable composition 

305 spatially and temporally (Gregor and Maršálek 2004); however, if 

306 focusing on cyanobacteria only, production of PC and other pigments 

307 is affected by several factors, such as nutrients and light, so these 

308 spectra could be expected to differ with spatial-temporal variations 

309 (Beutler et al. 2002). This implies that more work is necessary to 

310 compensate the readings for these factors and make such probes more 

311 reliable. Additionally, in-situ instrumentation to simultaneously 

312 measure the parameters causing the variability (e.g. water 

313 temperature, turbidity, etc.) would be required to correct the readings.

314 Fluorescence synchronous scans (SyncScans) were used by 

315 Ziegmann et al. (2010) as an alternative, faster, on-line method, to 

316 determine whether the age of cyanobacteria affects the fluorescence 

317 spectrum. The downside of using specific wavelengths is that certain 

318 cyanobacterial pigments have maxima at slightly varying 

319 wavelengths, often varying with the age of the cells (Ziegmann et al. 

320 2010). There is, in fact, evidence that some signal overlaps can occur 

321 at wavelengths > 660 nm (Seppälä et al. 2007). Furthermore the peak 

322 wavelength of the PC emission spectrum seems to vary slightly based 

323 on species (Beutler et al. 2003, Beutler et al. 2002, Gregor et al. 

324 2007, Seppälä et al. 2007). This is because the spectroscopic 

325 properties change based on the cellular content and abundance of 

326 phycobiliproteins, and the number and type of phycobilin 

327 chromophores (Seppälä et al. 2007). 
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328 Some probes are more effective at dealing with the issue of pigment 

329 wavelength variability than others, due to a broad wavelength bypass 

330 (e.g. 640-680 nm). The downside of this is that it can lead to greater 

331 incidence of interferences and false positives, as described below 

332 (Section 4). The selection of the optimal optical window is therefore 

333 challenging. Spectral studies with pure cultures or representative 

334 cyanobacterial species should be performed before defining the 

335 optimal optical window for a certain location and/or purchasing a 

336 particular commercial probe (Seppälä et al. 2007). This approach was 

337 used by Zhou et al. (2016) to determine the optimal wavelength for a 

338 particular cyanobacterial research application.

339 Flow cytometers can provide estimates of cell counts as well as 

340 morphology of different algal species, and some of these can be used 

341 in-situ (Dennis et al. 2011, Pomati et al. 2011, Pomati et al. 2013). 

342 Flow cytometers, combined with fluorescence excitation spectra, 

343 have been considered as a potential means for rapidly distinguishing 

344 between different algal groups (Hilton et al. 1989). Additionally, 

345 recently microflow cytometers have been developed (Hashemi et al. 

346 2011), as well as prototype devices combining a microflow cytometer 

347 and a multi-channel fluorometer, to allow for distinction between 

348 cyanobacteria and other algal phyla by exciting them at different 

349 wavelengths (Zieger 2015). Another opportunity consists of 

350 modifying current spectrofluorometers for flow-through applications, 

351 but they are rarely available or used, as they are currently not 

352 sufficiently sensitive, nor robust or cheap (Seppälä et al. 2007).

353 4 Fluorescence measurement limitations
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354 Given that chl-a and PC emission wavelengths are similar (685 and 

355 650 nm respectively) for probes with a broad wavelength bypass (e.g. 

356 ± 20 nm), this might cause false detections of cyanobacterial cells 

357 (see Zamyadi et al. (2016a)). This has been deemed to be the main 

358 source of interference by some studies (Zamyadi et al. 2016a), but 

359 negligible by others (Bowling et al. 2013). Narrower bandwidths 

360 would be required; this can be achieved by using higher quality 

361 sensor materials for the sensors’ glass and filters, which however are 

362 associated with higher costs (McBride and Rose in press). A 

363 simultaneous monitoring of eukaryotic algal fluorescence could help 

364 deal with the spectra overlap (Gregor et al. 2007), and the 

365 development of ad-hoc instrumentation with different excitation 

366 wavelengths could help to account for interference due to eukaryotic 

367 algae (Asai et al. 2001). 

368 Studies using a submersible fluorescence PC probe have also shown 

369 that turbidity >50 NTU can make fluorescence in-situ PC 

370 measurements ineffective (Bowling et al. 2013). Turbidity is 

371 typically due to a combination of algae and non-algal suspended 

372 particles, hence a proper calibration model accounting for the 

373 interaction between the two variables is needed (Bowling et al. 

374 2013). The causal agent of the turbidity is also to understand as 

375 different sources have different levels of interference with 

376 fluorescence readings. For example, in a previous study where sieved 

377 soil of a specific different grain size was gradually added to a 

378 cyanobacterial culture, small particles (≤ 0.1 mm) decreased the 

379 fluorescence reading by 12.3% at a concentration of 0.1 g/L, while 

380 large particles (0.3 mm) reduced the reading by less than one-half, to 
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381 5.9%, at the same concentration (Brient et al. 2008). In general, 

382 simultaneous measurement of PC, chl-a and turbidity is 

383 recommended in order to account for these errors (Gregor and 

384 Maršálek 2004) and allow for the development of real-time 

385 compensation models.

386 Cyanobacterial colonies can emit less fluorescence per cell than 

387 solitary cells because the probe excitation beam does not access cells 

388 in the inner regions of the colony, and because of scattering of light 

389 (Bowling et al. 2013, Gregor and Maršálek 2004, Hodges 2016a). 

390 Large colonies might also lead to noisy fluorescence signals and 

391 broader confidence levels (Seppälä et al. 2007). This was 

392 demonstrated with Microcystis colonies (Chang et al. 2012), although 

393 in other studies (McQuaid et al. 2011) it was stated that in vivo PC 

394 fluorescence might overestimate cyanobacterial abundance when 

395 biovolumes are high. Some studies have found that a better 

396 correlation between PC fluorescence and biomass could be achieved 

397 at higher rather than lower cyanobacterial concentrations (Gregor et 

398 al. 2007). In order to avoid saturation of the PC fluorescence signal 

399 during blooms, researchers have experimented with technological 

400 modifications to the probe; for instance Brient et al. (2008) have 

401 fitted a shutter to reduce the probe’s emitted signal, and thus 

402 increased the fluorescence signal by six times without affecting 

403 linearity. However, there has been little work to specifically examine 

404 the effect of colonial cyanobacterial on fluorescence measurements 

405 (Hodges 2016a).  

406 Species morphology may also lead to a heterogeneous distribution of 

407 cells (Hodges 2016a) causing inaccuracies in the results. Ultrasonic 
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408 devices, coupled with fluorometers, have been proposed as a 

409 mechanism to disaggregate colonies, and bring about a relatively 

410 homogeneous cell distribution (Bastien et al. 2011). Additionally, PC 

411 can be produced from lysis of cyanobacterial cells, or from 

412 cyanobacterial picoplankton not identified by microscopy (Brient et 

413 al. 2008). This may explain why fluorescence probe readings may be 

414 better correlated with species with larger cell sizes compared with 

415 smaller ones (Bowling et al. 2016). Some tools, such as microflow 

416 cytometers, are able to detect and characterize picoplankton 

417 (Hashemi et al. 2011) and thus could potentially be used in 

418 combination with conventional PC fluorescence probes to correct the 

419 readings of the latter. 

420 A number of correction techniques have been proposed for certain 

421 fluorescence PC probes (Zamyadi et al. (2016a). They include a 

422 correction for biases due to chl-a resulting from other phytoplankton, 

423 and turbidity when estimating the abundance of a specific species 

424 (Microcystis aeruginosa) (Chang et al. 2012, Zamyadi et al. 2012). 

425 Additionally, corrections can be made for variations in 

426 cyanobacterial biovolume, cellular agglomeration and particle size, 

427 assuming spherical colonies and uniformly distributed cells (Chang 

428 et al. 2012). By applying these models together the error was reduced 

429 by over 90% (Zamyadi et al. 2016a). In addition, the sensor manuals 

430 for the same probe stated that (1) 1 ng L-1 of chl-a causes an 

431 interference of 77 cells mL-1 of falsely detected cyanobacteria, and 

432 (2) for each NTU of turbidity (i.e. non-fluorescent particles), the 

433 related scattering effect would be equivalent to 21 cells (Zamyadi et 

434 al. 2016a). However, this very precise specification appears to 
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435 oversimplify the quantification of such interferences, as these, for 

436 instance, would be likely dependent on cyanobacteria species and the 

437 composition relating to agents generating turbidity. 

438 Other sources of interference include water temperature, with warmer 

439 waters reducing fluorescence (Hodges 2016a), and the presence of 

440 benthic algae (Zamyadi et al. 2012) which are reportedly difficult to 

441 quantify (Watson et al. 2016). There are, however, certain probes 

442 suitable for detection of benthic algae (Brient et al. 2008). In terms of 

443 boundary effects, it is also important to account for a potential 

444 decrease in signal next to a boundary, i.e., bottom or sides of bottles. 

445 This effect has been identified in previous work (Brient et al. 2008), 

446 although in other studies, sediments did not create interferences 

447 (Hodges 2016a). Coloured dissolved organic matter (cDOM) with 

448 similar fluorescence properties to PC and chl-a can  also interfere 

449 with analyses (Millie et al. 2010), greatly increasing the light 

450 attenuation in the water column (Kostoglidis et al. 2005) and thus in 

451 turn affecting pigment yields. The presence of humic substances can 

452 also create a fluorescence output causing an over-estimation of chl-a, 

453 especially when chl-a concentrations are low (Gregor and Maršálek 

454 2004). Other studies have reported that interferences with DOM lead 

455 to severe quenching of phycobiliprotein fluorescence (Korak et al. 

456 2015), requiring modelling of nonlinear relationships between 

457 concentrations and fluorescence. Wang et al. (2015) demonstrated 

458 that some DOM components (specifically, protein-like compounds) 

459 can be quenched by other DOM components (humic-like 

460 compounds), making it difficult to quantify and account for this 

461 effect. Some of the existing multi-wavelength fluorescence probes 
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462 have, however, incorporated diodes emitting light around the 370 nm 

463 value, in order to excite, and automatically adjust for, the presence of 

464 DOM (Gregor and Maršálek 2004).

465 Irradiance affects the so called fluorescence quenching and is 

466 associated with a reduction of the maximum fluorescence yield. For 

467 instance, the ratio between fluorescence and chl-a could present a 

468 variation as high as 10-fold when in-vivo fluorescence measurements 

469 are normalised to concentrations of extracted chl-a (as explained in  

470 Sackmann et al. (2008) who based the variation estimate on previous 

471 studies). In in-vivo experiments, fluorescence variations can occur 

472 due to different mechanisms, complicating a straightforward 

473 assessment (Schreiber et al. 1995). Two types of fluorescence 

474 quenching exist, being (1) photochemical, and (2) non-photochemical 

475 fluorescence (Sackmann et al. 2008, Schreiber et al. 1995). The latter 

476 represents, in general terms, the decrease in fluorescence quantum 

477 yield (Sackmann et al. 2008). The systematic reduction of 

478 fluorescence signal vs chl-a ratio with high solar radiation can be 

479 generally termed as daytime fluorescence quenching; such 

480 fluorescence signal reduction can be as high as 80% in surface waters 

481 in summer and can be present at depths greater than 50 m in coastal 

482 waters (Sackmann et al. 2008). Interestingly, Sackmann et al. (2008) 

483 found correlations between quenching and solar radiation very 

484 similar to relationships from previous research conducted elsewhere.  

485 This means that there would be potential for the development of a 

486 “universal” compensation model to account for this phenomenon.  

487 5 Estimating the proportion of different cyanobacteria 

488 species
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489 Techniques and algorithms need to be developed to estimate the 

490 composition and quantity of different groups of algae, or more 

491 specifically, between different cyanobacteria species in field samples 

492 (Millie et al. 2010) and as part of sediment cores (Kpodonu et al. 

493 2016), because PC sensors per se cannot provide insight into 

494 cyanobacterial species differentiation or toxin content (Bastien et al. 

495 2011, Izydorczyk et al. 2005). Algorithms, such as three-way 

496 principal component analysis, have previously been used to 

497 determine algal groups (Henrion et al. 1997), where five mono-

498 species cultures were used, representative of the different main 

499 groups of phytoplankton (i.e. chrysophytes, cryptophytes, 

500 chlorophytes, diatoms and cyanobacteria). However, the analysis was 

501 based on excitation-emission matrices from data collected with 

502 laboratory instrumentation. Two decades ago, the computer program 

503 CHEMTAX was developed to estimate the relative abundance of 

504 certain algal groups based on measurement of chl-a and other 

505 carotenoid pigments using wavelengths in the visible spectrum, high 

506 performance liquid chromatography (HPLC) (Mackey et al. 1996) 

507 and factor analysis. This was re-applied in later studies (Pinckney et 

508 al. 2001). This method is more accurate than field-based methods, 

509 but time consuming, and relies on good-quality data and consistent 

510 ratios between pigments. CHEMTAX was based on previous work 

511 where phytoplankton classes were estimated from specific ratios 

512 between chl-a and other pigments, through multiple regression 

513 analysis (Everitt et al. 1990, Gieskes et al. 1988). This continues to 

514 be a widely used method throughout the world but cannot be applied 

515 to data collected remotely from sensors, as it relies on HPLC and 

516 spectrophotometric detectors.
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517 More recently, different algal phyla have been characterised 

518 spectrally, and a prototype monitoring tool, working at different 

519 wavelengths (initially, 12 LEDs, to excite all of the most important 

520 algal pigments) was developed. It is able to distinguish the presence 

521 of cyanobacteria compared to different algal phyla, following 

522 principal component analysis (Zieger 2015). In this case, several 

523 pigments were considered in order to characterize each algal phyla, 

524 given the ability of the sensor to work at several wavelengths and 

525 excite each specific pigment. The use of this technique requires the 

526 deployment of monochromatic light to avoid the excitation of 

527 multiple pigments at the same time (Zamyadi et al. 2016a, Zieger 

528 2015), and as a consequence this can lead to the underestimation of 

529 pigment content, especially due to the potential for variations in 

530 fluorescence peaks between different phyla or even species, as 

531 mentioned previously. 

532 If the focus is only on cyanobacteria, a simpler approach can be 

533 developed that relies only on the PC reading, through a risk 

534 assessment/scenario analysis approach. In this case the PC reading is 

535 transformed into hypothetical cell counts of different cyanobacterial 

536 species, based on PC cell quota estimates found in the literature (van 

537 der Linden et al. 2017). Despite the fact that the method does not 

538 directly infer the species present in the sample, it deploys a “worst-

539 case scenario” approach, providing an early warning trigger of the 

540 need for more intensive monitoring. The PC cell quota estimate still 

541 needs to take into account the background environmental conditions 

542 since, as described above, these affect pigment content. 

543 6 Predicting taste and odour, and toxicity risk
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544 Although the main purpose of fluorescence probe readings is to 

545 trigger monitoring and management actions based on estimated cell 

546 counts, there is potential to use them also for the estimation of taste 

547 and odour (T&O), or toxin production risk (Zamyadi et al. 2016a). 

548 For example, if the likelihood of the presence of different 

549 cyanobacteria species could be estimated, models could then be 

550 developed to link the number of cells with the toxin (or T&O) cell 

551 quota values (Zamyadi et al. 2016a). In their review, Watson et al. 

552 (2016) provided a list of the estimated geosmin and 2-

553 Methylisoborneol (MIB) production per cell of different 

554 cyanobacterial species, also citing several studies outlining how such 

555 production is itself affected by factors such as light, temperature or 

556 nutrients (see also Rohrlack et al. (2008); Li et al. (2012), Su et al. 

557 (2015)). Geosmin production has also been linked both positively 

558 and negatively to chl-a production, as outlined in Watson et al. 

559 (2016). It is known that geosmin is produced mostly by Nostocales 

560 and Oscillatoriales species, while MIB is produced by some 

561 Oscillatoriales (Chapman 2010), although less than 3% of known 

562 cyanobacteria species have been confirmed to be able to produce 

563 MIB and/or geosmin (American Water Works Association 2011).It 

564 should also be acknowledged that T&O is also produced by a range 

565 of bacterial species, which can confound estimates based on 

566 fluorescence (e.g. Jørgensen et al. (2016)). 

567 Previous studies linked the fluorescence intensity recorded by an in-

568 situ PC probe to the T&O compound levels (especially MIB) caused 

569 by Pseudanabaena (Zamyadi et al. 2016b). Similarly, other studies 

570 linked the production of geosmin and MIB to specific cyanobacteria 
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571 species and noted a correlation between T&O peaks and spikes in PC 

572 signal as measured by  an in-situ fluorescence probe for total algae 

573 (Bertone and O’Halloran 2016). These correlations would change 

574 remarkably in cases where the dominant species changes or where 

575 there is a mixture of different species with different T&O production 

576 yields. Thus the development of a T&O predictive model based on 

577 fluorescence readings should rely on a cyanobacterial species 

578 prediction model, and on T&O concentration data for different 

579 species; unless site-specific models are developed that are predicated 

580 upon the assumption that the same dominant cyanobacterial species 

581 are present at any given point in time. 

582 In terms of cyanobacterial toxin content, Ziegmann et al. (2010) 

583 linked the amount of toxins produced and released by a laboratory 

584 culture of Microcystis aeruginosa to different stages of growth using 

585 different maxima of a fluorescence excitation-emission matrix. They 

586 found that a signal at wavelengths of 315 nm (excitation) and 396 nm 

587 (emission), i.e. presumably protein-like substances, may be a useful 

588 indicator of cyanobacterial toxin levels. It may be difficult, however, 

589 to correctly measure the protein-like DOM due to quenching effects 

590 by other DOM components (Wang et al. 2015). Other studies have 

591 not been able to successfully correlate concentrations of cyanotoxins 

592 and cyanobacterial biovolume to in vivo PC fluorescence (Bastien et 

593 al. 2011). Additional complications in the development of a toxin 

594 prediction model for a reservoir are that: (1) toxin production is 

595 related to the species and in particular to the cell size (Hawkins et al. 

596 2001); (2) strains vary in their toxin cell quotas, e.g. 

597 Cylindrospermopsis raciborskii (Willis et al. 2016); (3) nutrients 
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598 such as nitrogen and phosphorus differentially affect the growth of 

599 toxic and non-toxic strains of cyanobacteria (Vézie et al. 2002); and 

600 (4) the breakdown rate of toxins can be influenced by depth-specific 

601 factors such as light, water temperature, salinity, nutrients or oxygen 

602 (Everson et al. 2009, Everson et al. 2011), and thus changes in depth 

603 may lead to decoupling between cyanobacteria concentrations and 

604 toxin concentrations. 

605 Both toxins and T&O compounds are components of algogenic 

606 organic matter (AOM). AOM is typically released by certain species 

607 of cyanobacteria and other algae as a by-product of photosynthesis 

608 (Pivokonsky et al. 2016), and its composition depends in turn on 

609 growth phase, species, age, and nutrient status (Henderson et al. 

610 2008, Kong et al. 2014, Leloup et al. 2013). In general, the presence 

611 of AOM is difficult to quantify as it is typically much lower than the 

612 background DOM (Wert et al. 2014). Hence it has been suggested 

613 that variations in fluorescent DOM readings could help in 

614 understanding AOM release (Korak et al. 2015), provided the 

615 remaining DOM amount does not change. 

616 7 Discussion

617 Figure 1 schematically summarises the findings of this review by 

618 representing how both the measured pigment readings, using either 

619 fluorescent probes or measured pigment amounts, are affected by a 

620 number of environmental variables that either cause interference or 

621 change the yield. Interestingly, cyanobacteria concentration and 

622 species greatly affect both the actual pigment concentrations, and the 

623 ability to correctly monitor them with fluorescent probes. 



ACCEPTED MANUSCRIPT 26

624  

625

Chl-a
concentration

PC
concentration

Chl-a/PC

Chl-a
MEASURED

PC
MEASURED

Chl-a/PC
MEASURED

+
-

+
-

Light

Water
Temperature

Nutrients

DOM

Cyanobacteria
species

Cyanobacteria
morphology

Cyanobacteria
concentration

TurbidityEukariotic
algae

Cell volume

+
+

Cyanobacteria
age

+- +

Varying maximum
wavelenght

-+
-

-

+
+

Picoplankton

+-
-

-
-

+ +

Cyanobacteria
colony

-
-

+

626 Figure 1 – A summary of parameters affecting chl-a and PC 

627 concentrations and their measurements. Green arrows indicate that 

628 the input positively affects the output (i.e., an increase in the input 

629 value implies an increase in the output value), red arrows imply that 

630 the input negatively affects the output (i.e., an increase in the input 

631 value implies a decrease in the output value), and blue arrows 

632 represent an unspecified link (i.e., there is insufficient, or contrasting, 

633 evidence in the literature regarding the way the input affects the 

634 output).

635

636 In-situ PC fluorometry has been recommended as a cyanobacterial 

637 bloom management tool in certain regions of the world, e.g. 

638 Australian locations (NSW Office of Water 2012). Importantly, 

639 several factors can affect the accuracy and reliability of in-situ 
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640 fluorescence probes, and a large body of research work has been 

641 conducted globally to quantify the effects of a number of these 

642 parameters. However, no study has yet been conducted which 

643 simultaneously quantifies the effects of most, if not all, of these 

644 variables to enable to correct measured chlorophyll and PC 

645 fluorescence values, and in turn quantify abundance and species of 

646 cyanobacteria. If such a comprehensive dataset can be developed, 

647 there would be potential to develop a predictive model providing the 

648 probability of having different cyanobacteria species in a reservoir, 

649 based on corrected readings of commercially available in-situ 

650 fluorescent PC and chl-a probes. To increase accuracy, such a model 

651 could also rely on other regularly monitored data (e.g. water 

652 temperature, nutrients, time of the year) and site-specific historical 

653 data of cyanobacterial species prevalence under different 

654 environmental conditions. A large amount of research work has been 

655 undertaken around the world to predict cyanobacteria blooms (which 

656 is out of the scope of this review – for information see e.g. Oliver et 

657 al. (2012)), and thus this knowledge and historical site-specific data 

658 could be incorporated in the proposed model.

659 In recent decades, artificial intelligence has been used in several 

660 applications, especially in the water industry, to solve complex 

661 problems. Modelling techniques, such as artificial neural networks, 

662 have been extensively applied and have enabled the optimization of 

663 water resource management (Maier and Dandy 2000), while a variety 

664 of data-driven or hybrid models have been developed to leverage 

665 remote sensors and historical data by achieving water treatment 
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666 operation optimisation and cost savings (Bertone et al. 2015, Bertone 

667 et al. 2016b). 

668 Pattern recognition is another technique which would also potentially 

669 suit the proposed research goal, as it could enable the decomposition 

670 of a “signal” (i.e. total chl-a and PC measurements of a field sample) 

671 into chl-a and PC contributions from different species. An early 

672 application of pattern recognition for classification of different 

673 phytoplankton species (including cyanobacteria) is represented by the 

674 work of Embleton et al. (2003), with the models able to classify the 

675 four different predominant species of a Northern Ireland lake, based 

676 on microscopy images of the samples. A very similar modelling 

677 attempt was performed later by Mosleh et al. (2012). Similarly, 

678 CHEMTAX represents an early attempt at algal class level 

679 classification; but it does not rely on in-situ fluorescence probes or 

680 fully account for interferences. Based on this review, it is argued that 

681 artificial intelligence approaches combined with a well-designed set 

682 of experiments and a large amount of site-specific historical data, 

683 would allow the development of a similar model, but that may further 

684 allow classification of cyanobacteria species based on in-situ data 

685 only (Figure 2).

686

687 Bayesian Networks (Fenton and Neil 2008) are also commonly used 

688 for risk assessment and analysis and have been also widely deployed 

689 in the water resource management area (Bertone et al. 2016a, 

690 Castelletti and Soncini-Sessa 2007). There are  applications in the 

691 cyanobacterial bloom management field (Johnson et al. 2010). 
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692 Bayesian Networks represent a modelling candidate for this research 

693 problem due to their ability to deal with missing data and uncertainty, 

694 through the use of conditional probabilities and the integration of 

695 experts’ opinion into the network (Chen and Pollino 2012, Uusitalo 

696 2007). Outputs from other models that can provide insights on the 

697 mechanisms causing and governing blooms (e.g. Wallace and 

698 Hamilton (2000)) can also be incorporated. Although Bayesian 

699 Networks have been applied to determine the probability of 

700 cyanobacterial blooms (Hamilton et al. 2007, Rigosi et al. 2015), 

701 they have not been developed in order to predict the likelihood of the 

702 presence of different, distinct algal groups or cyanobacteria species 

703 based on sensor data.

704 The entropy theory, specifically maximum entropy modelling, could 

705 also be used for this purpose. In simple terms, the principle of 

706 maximum entropy states that, among a number of potential 

707 combinations of modelling outputs satisfying all a system’s 

708 constraints, the best solution is the one maximising the Shannon 

709 entropy (Jaynes 1957). In terms of cyanobacterial species 

710 classification, it can be seen that a number of solutions (e.g. 

711 probability and numbers of different species) would exist that satisfy 

712 the same set of constraints (e.g. sum of species-specific PC signals 

713 must equal the total PC signal as per probe reading). Hence, 

714 maximum entropy modelling would facilitate the identification of the 

715 true solution. Entropy theory has been applied to several 

716 environmental and water resource problems (Singh 2000). For 

717 instance, Tanyimboh and Sheahan (2002) used maximum entropy 

718 principles to identify the best water distribution system design in 
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719 order to optimise the balance of cost and reliability. Another example 

720 is given by Lee and Wentz (2008), who used a Bayesian Maximum 

721 Entropy approach to assimilate soft data and better predict spatial 

722 water use variability. However, there is limited evidence of 

723 applications in the water quality field, and in particular for 

724 cyanobacteria prediction or management. 

725 In conclusion, all the proposed modelling approaches are valuable 

726 options in achieving the goal of data-driven cyanobacterial species 

727 classification prediction; the optimal model can be selected based on 

728 features of available data, or from a direct comparison of prediction 

729 accuracy over a test set of data. Regardless of the model choice it is 

730 evident that modelling options exist to potentially achieve such 

731 research goals.

732

733  

734

735 Figure 2 – Graphical conceptual representation of a cyanobacterial 

736 species classification model
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737 8 Conclusions

738 In this review paper we identified both impediments and 

739 opportunities for using online remote fluorescence probes for 

740 accurate and reliable monitoring of cyanobacteria in reservoirs. The 

741 technology has become cheaper and more accessible over time, but 

742 we have highlighted a number of environmental and technological 

743 impediments affecting the reliability of probe readings. We argue that 

744 unless these interferences and variability in pigment production are 

745 accounted for in a comprehensive calibration model, many of these 

746 probes provide unreliable information about cyanobacterial densities 

747 or biovolume, and little or no information about species.

748 On the other hand, research has shown that it is possible, in most 

749 cases, to quantify how those variables and processes affect the 

750 estimation of cyanobacterial species and abundance. Starting from a 

751 specific location, it is possible to conduct experiments to calibrate the 

752 readings to most of the conditions at that location. In addition, there 

753 is potential to use such experimental outputs, combined with 

754 literature data, as inputs to a complex predictive model. This would 

755 potentially combine pattern recognition algorithms and Bayesian 

756 Networks, to provide the likelihood of occurrence and biomass 

757 estimates of different cyanobacterial species, based on real-time 

758 fluorescence probe readings and other remotely collected data. Based 

759 on the predicted species, the risk of toxins, or taste and odour 

760 compound concentrations could also be estimated, thus assisting 

761 water resource managers and operators to be more effective and 

762 proactively manage cyanobacteria-related issues related to 

763 recreational and drinking water.
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Highlights

 Opportunities, methods and caveats for fluorescence 
monitoring of cyanobacteria 

 Artificial intelligence could exploit sensors data

 Potential for real-time prediction of relative abundance 
of cyanobacteria species


