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This article examines the potential benefits of using Data Envelopment Analysis (DEA) for conducting
energy-efficiency assessment of wastewater treatment plants (WWTPs). WWTPs are characteristically
heterogeneous (in size, technology, climate, function ...) which limits the correct application of DEA. This
paper proposes and describes the Robust Energy Efficiency DEA (REED) in its various stages, a systematic
state-of-the-art methodology aimed at including exogenous variables in nonparametric frontier models
and especially designed for WWTP operation. In particular, the methodology systematizes the modelling
process by presenting an integrated framework for selecting the correct variables and appropriate
models, possibly tackling the effect of exogenous factors. As a result, the application of REED improves
the quality of the efficiency estimates and hence the significance of benchmarking. For the reader's
convenience, this article is presented as a step-by-step guideline to guide the user in the determination
of WWTPs energy efficiency from beginning to end. The application and benefits of the developed
methodology are demonstrated by a case study related to the comparison of the energy efficiency of a set
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of 399 WWTPs operating in different countries and under heterogeneous environmental conditions.
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1. Introduction

Growing economic, social and administration pressures for
improving energy efficiency has increased the interest of waste-
water agencies, utilities and operators in the application of
benchmarking procedures (Longo et al., 2016), which is considered
a crucial approach to reduce operational costs (Doherty et al., 2017)
and mitigate global warming (Wang et al., 2016). The European
Union (EU) Energy Efficiency Directive (Directive, 2012/27/EU)
launched in 2012, outlines the actions deemed necessary to address
the objective of “increasing energy efficiency in the EU”. This has
resulted in several measures, including the establishment of EU
wide and national energy utilisation targets and the obligation to
carry out energy audits periodically (Bertoldi et al., 2015). An
example of such growing awareness also in the wastewater sector
is ENERWATER, a project funded under the European Commission
that aims at the development of a standard methodology for
evaluation and improvement of energy performance in wastewater
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treatment plants (WWTPs).!

The management tools should address the WWTP's main goals,
i.e. the compliance with the water requirements using energy,
water and chemical resources in a cost-effective and sustainable
way (Silva et al., 2014). This requirement is not trivial since WWTPs
can perform different functions, e.g. removing chemical oxygen
demand (COD), nutrients such as nitrogen (N) and/or phosphorus
(P), or producing an effluent free of pathogens among others
(Rodriguez-Garcia et al, 2011). Furthermore, wastewater is
increasingly valued as a source of renewable resources (Fang et al.,
2016), therefore a sound assessment of WWTPs performance must
be capable to take into account the production of multiple outputs
besides clean water (e.g. energy, fertilizers, biopolymers). In a
water-resource efficiency context, Life Cycle Assessment (LCA) is
highly relevant for environmental authorities, regulators, and
utility managers aiming to comply with the requirement for sus-
tainable water management (Corominas et al., 2013). However,

1 ENERWATER - Standard method and online tool for assessing and improving
the energy efficiency of wastewater treatment plants. More information: http://
www.enerwater.eu/.
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given the centrality of the water-energy nexus, the present paper
will focus on energy efficiency as one of the priority areas of Eu-
ropean Commission, whose need for transparency will be one of
the main elements addressed in the next Water Directive
(European Commission, 2018).

From the aforementioned discussion, it seems clear that the
usual measures of energy efficiency based on relative simple per-
formance indicators and ratios of single input and output, such as
energy use per volume of treated wastewater, are inadequate for
evaluating the energy efficiency of WWTPs. Thanks to its ability to
i) handle multiple inputs and outputs, ii) identify efficient input-
output relations, and iii) identify sources and quantify inefficiency
in each of the compared units, Data Envelopment Analysis (DEA)
represents an attractive tool for performance assessment (Cook and
Seiford, 2009) and focusing on the last 10 years, the application of
DEA in energy efficiency analysis has increased. It currently rep-
resents the most widely used approach in published studies on
WWTPs benchmarking (Guerrini et al., 2016).

The results of DEA applied to WWTPs have highlighted that
exogenous factors (any factor that is not under the direct control of
the management is exogenous to the WWTP system) need to be
included in the analysis to obtain well-grounded comparisons of
WWTPs sets (Picazo-Tadeo et al., 2009; Carvalho and Marques,
2011; Guerrini et al., 2016; Fuentes et al., 2017). The reason is that
without controlling for exogenous factors, the efficiency estimates
generated by DEA will be potentially biased as inefficiency in DEA is
assumed to be fully attributable to managerial decisions, while
exogenous factors are not under control of the management. A
large part of the works that introduce exogenous factors in DEA
efficiency analysis focuses on two-stage approaches (Liu et al.,
2016). The method proposed by Simar and Wilson (2007) is a
recognized statistical model of general applicability that led to
valid, accurate inference in DEA framework (Badin et al., 2014). The
basic idea is to estimate efficiency scores in the first stage consid-
ering only the space of inputs and outputs, ignoring the exogenous
factors. Then in the second stage, a bootstrap-based algorithm is
used to assess the impact of the exogenous factors and obtain valid
and accurate inference for bias correction of the efficiency esti-
mates. However, the complexity of the aforementioned methods
and the considerable number of open choices, may lead to non-
comparable results depending on the user and the rigour in the
application of DEA and regression analysis, with the risk of biasing
the evidences on which decisions and energy policies are made.

Systematic procedures have been recognized as the best manner
to address complex procedures in several fields (Lazzaretto and
Tsatsaronis, 2006; Fernandez-Arévalo et al., 2014; Gurevitch et al.,
2018) for their ability to be transparent, reproducible and address
well-defined questions in a robust way. Therefore, the main
contribution of the present paper is to bring the ideas together in
the context of DEA applied to WWTPs and formulate them more
clearly, to offer some clarification and direction on these matters,
and to present a good case study. In order to do so, a new general
methodology is introduced for carrying out energy efficiency
quantification at WWTPs in a systematic and rigorous way
featuring DEA, thereby increasing the quality of the efficiency es-
timates and hence the effectiveness of benchmarking.

2. Context and previous work
DEA is a technique that essentially quantifies the efficiency of
2 In the field of wastewater treatment a DMU is a WWTP and its evaluation of

performances is defined as the ability of the plant in converting at least one input
(i.e. energy) to outputs (i.e. the kg of COD removed).

entities of interest, called decision-making units (DMUs)? (Charnes
et al., 1978), which eventually allows identifying the best per-
formers in the use of resources, pointing out where the potential
gains may be made from possible improvements in efficiency, and
helping the non-performers to achieve their potential. A DEA
model estimates the efficiency of a DMU relative to the other DMUs
identifying a best practice frontier with a simple restriction: all
DMUs lie on or below the efficiency frontier (Cooper et al., 2011).
Using linear combinations of inputs and outputs, DEA determines
how efficient a DMU is at producing an output and/or utilizing an
input, compared to similar DMUs.

Efficiency for a set of DMUs can be estimated by the CCR> DEA
(Charnes et al., 1978). For p inputs, q outputs and n DMUs, we can
determine the input oriented efficiency of the data matrix of input
and output vectors (X, Y), by solving for each observation the
following constrained linear programming problem:

min 0
0.1

subject to

Oxy > X
szyk (l)
A>0.

where the index k represents a given observation, X is the matrix of
inputs, Y is the matrix of outputs, and 2 is vector of weights given to
each observation. Problem (1) can be interpreted as combining
plants (by weights 1) to produce an output level at least equal to
plant k (YA >y,) and then selecting the combination with the
minimum input level (6x; > X A for minimum #). Solving the linear
programming problem (1) k times generates the efficiency indices
0k, one for each DMU. WWTPs with efficiency scores 6, <1 are
inefficient, since they are capable of reducing their input(s) without
affecting the amount of output(s). On the other hand, efficient
WWTPs receive efficiency score ¢, = 1. Output oriented efficiency
can be estimated by solving a similar linear programming problem
(1) with a different set of restrictions (Cooper et al., 2011).

DEA, as originally proposed, is a methodology for evaluating the
relative (in)efficiencies of a set of homogeneous DMUs (Charnes
et al,, 1978). From this assumption, we can derive the following
three requirements for the correct application of DEA at WWTPs:

1. The plants under consideration perform the same function(s).

2. The factors (both inputs and outputs) characterizing the per-
formance of all plants in the group are identical, except for
differences in intensity or magnitude.

3. All the plants perform under the same set of environmental
conditions.

Requirements 1 and 2 may be easily not met when comparing
WWTPs since i) plants can provide the same function (e.g.
removing P) using different inputs (e.g. electricity, chemicals) or ii)
use the same input (e.g. electricity) to provide different services
(e.g. removing COD or nutrients). Examples of such mis-
specifications are the inclusion of P removal rate as DEA output
without including as an input the resource consumed for its
removal (e.g. chemicals for P precipitation) (Dong et al., 2017) or the
exclusion of the removed N when (at least part of) the plants in the
analysed set carry out also N removal on top of COD removal
(Guerrini et al., 2017). In such cases, unless the heterogeneity

3 From the initials of authors Charnes, Cooper and Rhodes.
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among inputs and/or outputs is properly taken into account, users
are likely to have a misleading picture of the true energy efficiency
of WWTPs and might make misguided decisions when investing on
energy efficiency measures.

The last fundamental requirement of DEA is that DMUs operate
within a homogenous environment. However, this assumption
seldom holds in the wastewater sector in which the efficiency is
influenced by several factors beyond managerial control. The inclu-
sion of exogenous factors when estimating WWTPs efficiency has
recently been tackled (Gomez et al., 2017; Guerrini et al., 2017).
Although bias-corrected efficiency estimates (i.e. obtained from the
two-stage DEA) are commonly perceived to be of better quality than
efficiency estimates obtained with a single-stage DEA, the inference
of the impact of the exogenous factors on the efficiency measures has
to be carefully conducted because otherwise the results of the
analysis may not be accurate. For example, earlier studies (Gomez
et al., 2017; Guerrini et al., 2017) did not consider several regres-
sion model building issues such as the minimum required sample
and multicollinearity. Furthermore, effective detection of outliers is
critical for achieving useful results in benchmarking exercise. While
outlier detection has been carried out by Gomez et al. (2017) by
identifying observations that are “too good” relative to the DEA
frontier (hereinafter referred to as “frontier outliers”), when two-
stage DEA is considered, outliers that represents extreme observa-
tions with respect to the explanatory variables (i.e. exogenous fac-
tors) included in the regression model (hereinafter referred to as
“regression outliers”) might also distort the second stage results and
cause misleading conclusions (Johnson and McGinnis, 2008).

Therefore, in light of the above considerations, a rigorous and
systematic methodology for carrying out energy efficiency quan-
tification using DEA is demanded. The Robust Energy Efficiency
DEA (REED) methodology here presented overcomes these limita-
tions by considering composite indicators to reduce heterogeneity
and allowing comparability among the reference data set of
WWTPs, using a systematic approach to select relevant input/
output variables, and taking up a number of refined diagnostics for
checking the adequacy of the second-stage regression model.
Thorough examination of these properties is vital for properly
capturing the effect of the exogenous factors on the WWTP effi-
ciency as well as obtaining robust DEA efficiency scores. The use-
fulness of the presented REED methodology is demonstrated step-
by-step on a comprehensive set of 399 plants. First, the user is
guided through the data collection step, including the selection of
inputs/outputs and exogenous factors, outlier detection and other
validity checks, etc. Then, an appropriate DEA formulation (or
model) is selected, possibly tackling the effect of the exogenous
factors. Finally, the model results are refined and validated.

3. Robust energy efficiency DEA (REED) methodology

The REED methodology is based on decomposing the process of
efficiency determination in a logical sequence of interconnected
tasks (Fig. 1). This strategy involves four phases defined below: i)
data collection and preparation, ii) model selection, iii) efficiency
estimation, and iv) model refinement and validation. Clarifying
comments to each of the steps are included in the methodology
description as “remarks”.

3.1. Data collection and preparation

3.1.1. Data collection

Data collection involves obtaining data on the operation of a set
of plants (e.g. influent and effluent characteristics) and the related
energy consumption. Furthermore, for WWTP analysis, other types
of variables reflecting WWTP characteristics must be included to

account for known or potential influence on energy efficiency (see
exogenous factors selection in section 3.3.1).

3.1.2. Inputs and outputs selection

DEA searches for units that minimize inputs and/or maximizes
outputs to define the efficient performance. In other words, the
resources used or required are usually the inputs and the outcomes
are the outputs. In a WWTP, the outcomes are the quantities of
pollutants removed from the water, e.g. COD, nutrients, pathogens,
etc. depending on the function of the plant, while the inputs are the
resources used for their removal (e.g. electricity and chemicals).

As the choice of variables is an area likely to suffer from user
subjective preferences it is important to complement engineering
knowledge with the use of a systematic method for selection of
relevant inputs and outputs. This purpose makes the work pro-
posed by Ruggiero (2005) to be very suitable framework for
selecting DEA variables. This method is based on the fact that if a
potential output (input) is omitted from the DEA model, then that
output (input) will be positively correlated with the measured ef-
ficiency. This rule can be implemented using the regression model:

EE = a+ B2 + B3y3 + ... + Bmym + &, (2)

where EE is the efficiency as given by DEA including only x and yq,
and y, through y, are the potential outputs that could have been
included in the model. Only if the parameters §; are greater than
zero, statistically significant at given level of significance (i.e.
a = 0.10) and have the proper signs (i.e. negative for outputs) is y;
added to the model. The procedure is repeated, identifying one
variable at a time and stops when there are no further variables
with significant and properly signed coefficients.

Remark. For WWTPs, potential inputs commonly include electricity,
energy carriers (e.g. gas, fuel) and chemicals. Potential outputs include
the removal of COD, N and P (in kg removed per day), pathogens (in
M-108 eduction), €tc. In case of heterogeneity of input/output variables
(i.e. requirements 1 and/or 2 in section 2 are not fulfilled) a composite
indicator can be used in order to allow comparability. Requirement 1
can be overcome by joining the removal of COD, N and P in a single
output expressed as total pollution equivalent (TPE) according to
Benedetti et al. (2008).% It is also possible to lump the different energy
sources into a single input when they all refer to the same function (e.g.
pollutant removal) by using the Cumulative Energy Demand (CED)
(Huijbregts et al., 2006) to obtain the equivalent of primary energy
consumption of a product over its entire lifecycle, as proposed in a
publicly available deliverable of H2020 ENERWATER Project
(ENERWATER, 2018). Using the CED the chemicals used for P removal
can be converted into primary energy in order to be directly compa-
rable with other sources of energy, e.g. electricity.

Moreover, since the paradigm of wastewater treatment is changing
towards the recovery of resources in addition to the treatment of
wastewater, it may be convenient to consider the production of biogas,
struvite or reclaimed water as outputs. Although we have limited the
application of REED to energy efficiency, such a methodology would be
readily extendable to other criteria such as capital and operational
costs, space and environmental impacts; most of these criteria would
be identified as inputs.

3.1.3. Preliminary checks

3.1.3.1. Size of the data sample. Two conflicting considerations are
found when trying to define the right sample size. On the one hand,

4 Alist of possible weights for the calculation of the TPE is reported in Longo et al.
(2016).
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there is a tendency to increase the size of the dataset given that it is
more likely that a large sample will contain high performance
plants that would determine the efficiency frontier. On the other
hand, a large set of plants has a lower probability of homogeneity
within the set, and the results may be affected by some exogenous
factors that are not of interest. Besides, the size of the WWTPs
sample also depends on the number of inputs and outputs previ-
ously selected. A suggested rule of thumb is that to achieve a
reasonable level of discrimination the number of units needs to be
at least 2 p x g where p x q is the product of the number of inputs
and outputs (Dyson et al., 2001). In general, a higher number of
observations is required for the two-stage approach (see section
3.3.1).

3.1.3.2. Detection of frontier outliers. The accuracy of process data
in WWTPs can be a significant barrier to benchmarking. Many data
accuracy detection methods based on advanced statistical analysis
can be used in the wastewater sector, such as mass balances, arti-
ficial neural network and principal component analysis (Doherty
et al., 2017). However these methods are often unfeasible in
WWTP benchmarking due to their high data requirements. As any
deterministic frontier method, DEA is sensitive to extreme values
and outliers. The super-efficiency test (Andersen and Petersen,
1993) can be used to individuate possible outcomes of recording
or measurement errors, which is an approach widely used in non-
parametric analysis. Based on this test if an efficient observation is
an outlier that has been contaminated with noise then it is more
likely to have an output (input) level much greater (lower) than
other observations. Those observations with higher than a pre-
selected screen super-efficiency scores should be eliminated.

Remark. In rare occasions, extreme observations can also represent
the best practices, making the WWTP(s) a reference for the others.
Furthermore, given the presence of heterogeneity in the reference set,
extremes values may be the results of the effect of some exogenous
factor (i.e. plant operating in a particular favourable environment may
appear much more efficient), and hence, worthy of further
investigation.

3.2. DEA model selection

3.2.1. Model orientation

As efficiency can be thought as output/input ratio, there are two
ways to increase the efficiency: input minimization or output
maximization (Cooper et al, 2011). The model orientation is
selected according to the objective of the analysis. For instance,
efficient N elimination is achieved when the lowest amount energy
is used to remove a given mass of N and comply with effluent
regulations. Hence, the goal is to minimize an input and DEA would
be input-oriented. In contrast, maximising an output such as the
production of biogas (or other resource recovery process) would
lead to the output-oriented DEA.

Remark. Despite the advent of resource recovery facilities, WWTPs
must comply with effluent requirements and therefore it is recom-
mended to use an input-oriented DEA unless the goal of the assess-
ment is exclusively focused on resource recovery.

3.2.2. Return to scale

The return to scale (RTS) concept (Banker et al., 2011) refers to
the rate by which output changes if all inputs are changed by the
same factor. If input and output increase proportionally by factor «
and g (i.e. I, = a I; and O, = 8 01), constant returns to scale (CRS)
applies if § = q, increasing returns to scale (IRS) if §>«, and

decreasing returns to scale (DRS) if § < a.

Remark. Prior studies indicate that increasing the plant size posi-
tively affects efficiency (Longo et al., 2016) and therefore IRS is the
recommended alternative for wastewater applications featuring the
use of single-stage DEA. In the case of two-stage analysis, CRS DEA
may be applied and the scale (in)efficiency may be taken into account
in the second-stage regression by including a proxy of the size (e.g.
flowrate, person equivalent) as exogenous factor.

3.3. Efficiency estimation

If requirement 3 is not fulfilled, i.e. some exogenous factor may
affect the efficiency estimation, WWTPs comparison can be done
using the two-stage DEA, as described below. The problem that
arise here is that the possible effect of the exogenous factors is not
know a priori. Hence, unless the user considers that the set of plants
is homogenous, it is suggested to apply the two-stage approach in
the first instance and to test for the presence of heterogeneity
depending on the significance of the coefficients of the second-
stage regression. If the coefficients are not significant one may
deduce that the homogeneity requirement is respected, and can
apply the basic DEA model (1) and obtaining the final DEA effi-
ciency estimates.

Remark. Regarding requirement 3, approaches based on one-stage
DEA have attempted to reduce heterogeneity by breaking the set of
DMUs into multiple groups, and then doing a separate DEA analysis for
each group. As an example, Lorenzo-Toja et al. (2015) divided in two
blocks their set of plants depending on whether or not tertiary treat-
ment was performed on top of conventional secondary treatment. This
approach is not applicable, though, for several factors or sources of
heterogeneity as it leads to a combinatory explosion of ever-smaller
subsets. The greater the number of splits required, the more difficult
it is to estimate meaningful efficiency as efficiency scores would be
artificially inflated (Cook et al., 2013).

3.3.1. Exogenous factors selection

The type and the number of exogenous factors to include in the
analysis depend on the characteristics of the dataset. Furthermore,
depending on the objective of the analysis, the user may be inter-
ested in selecting only some exogenous factors, e.g. to assess the
impact of regulatory constraints upon treatment efficiency. The
user in this phase should select all the factors whose effect on
energy consumption is beyond the control of the management and
for this reason whose inefficiencies are impossible to eliminate. The
number of factors is, however, limited in order to provide adequate
statistical power to detect meaningful effect of these factors. A
common rule-of-thumb suggests that 10 observations per exoge-
nous variable is the minimum required sample size for regression
model to ensure correct estimation of regression coefficients and
standard errors that display minimal bias (Harell, 2001).

Remark. In WWTPs, exogenous factors may reflect differences in
technology choice (i.e. membrane bioreactors are known to be more
energy intensive in comparison with conventional activated sludge
processes), regulatory constraints (i.e. areas where further treatment is
necessary to comply with national and/or international directives),
urban infrastructure (i.e. combined or separate sewer), climate (i.e.
rain intensity and temperature) and so on. Whether a variable is
considered as exogenous is context dependent, depending on the
objective of the study and the stakeholder(s) involved. For example, the
WWTP size might be exogenous for a water utility running a WWTP
but not for a water regulation board considering merging of small
WWTPs into larger ones; effluent limits are exogenous to most
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stakeholders in wastewater sector but not to environmental regulatory
bodies which may wonder e.g. to what extent lowering the nitrogen
requirement will impact the WWTP energy consumption. REED is
therefore conceived as a flexible methodology that can accommodate
different user's objectives while being robust and repeatable, provided
that the goals of the REED analysis are clearly stated.

3.3.2. Bias-correction of DEA efficiency estimates
To evaluate the impact of exogenous variables, we propose a
modification of the method reported by Simar and Wilson (2007).
As efficiency is, by definition, bounded between zero and one we
the inverse of the first-stage DEA estimates of efficiency:
Z}E) = 0. This variable is left-bounded to one and can be regressed
g a left-truncated regression in the second stage. Overall, the
two-stage DEA is done as follows:

e

1. Compute the efficiency scores 0, k=1,...,
(first-stage) DEA linear programming problerz

n by solving the

(1
2 Transform the efficiency scores according to ’j = 0.
3 Regress 6k with respect to the exogenous factotrs Z using only the
subset of inefficient observations, i.e. observations with an in-
verse efficiency (0) greater than one: 6, = Z; + €. Note that
step (3) is the (second-stage) truncated regression where ( is a
vector of parameters to be estimated and ¢ €N (0, ¢2) describes
the random term. Obtain estimates of ¢ and o, namely ﬂ and 7,.
4. Loop over steps (4.1) to (4.3) L; times (i.e. 200) to obtain a set of
bootstrap estimates for ¢:
4.1 For each WWTP k = 1,...,n, draw ¢ from a normal distri-
bution N (0 2) with left truncation at (1 — Zkﬁ)

4.2 Compute 6 = Z,B + &

4.3 For input-oriented DEA, set for all WWTPs xk = xkA ,yk Yk
and compute ¢, by solvmg the linear programmmﬁ ‘problem
(1) replacing x; with x;.

5 For each WWTP k=1,...,n, compute the bias-corrected effi-
ciency estimator 0y = 0y — biasy, where
biasy = £-5°f 101 + Zib-

6 Regress 0, with respect to Z to yield estimates of ﬁ and ¢ aé

7 Loop over steps (7.1) tq (7.3) Lz times (i.e. 2000) to obtain a set of
bootstrap estimates § and o,

7.1 For each WWTP k =1,...,n, draw ¢, from a normal distri-
bution N (0 0) with left truncation at (1 kaﬁ)

7.2 Compute 6,< =78 + & o

7.3 Regress 6k with respect to Z to yield estimates of 6 and ¢ a

8. Finally, using the bootstrap values from step 7 and the estlmates
of 8 and @, construct confidence intervals for .

3.4. Regression model refinement and validation

In this section we take up a number of standard refined di-
agnostics for checking the adequacy of the regression model and
the final validation. These include methods for identifying problem
of multicollinearity, outliers and influential observations (i.e.
regression outliers).

3.4.1. Regression diagnostics

If the exogenous factors are correlated (i.e. multicollinearity
among explanatory variable exists), the regression coefficients
cannot be reliably estimated even though the model may reproduce
the sampled data. Variance inflation factor (VIF) (Kutner et al,
2004) is used in this framework to detect multicollinearity. A
value of VIF higher than 10 is taken as an indication that multi-
collinearity may be significantly influencing the regression esti-
mates. If highly correlated exogenous factors are detected, they
should be removed from the model.

A second source of spurious influence on the regression co-
efficients is the presence of outlying or extreme observations.
When the two-stage DEA is used, outliers that represent particu-
larly bad performance as well as bad monitoring/reporting in the
explanatory variables (exogenous factors) may distort the second
stage results (Johnson and McGinnis, 2008). As a consequence it is
recommended that also in the second-stage (regression) analysis
outlier detection to be carried out. The studentized residual, DFFITS,
and Hat Matrix are three widely used methods to assess the
robustness of the fit (Kutner et al., 2004).

Remark. In case of multicollinearity, a regression coefficient does
not reflect any inherent effect of a particular variable but only a
marginal or partial effect. For instance, correlating overall energy
consumption w.r.t. both WWTP size and flowrate as exogenous factors
may result in finding that only size is relevant while flowrate appears
as non-significant. As both are highly correlated, the effect of the
flowrate is “shadowed” by the WWTP size.

Regarding regression outliers, if it is obvious that the outlier is due
to incorrectly entered or measured data it should be dropped from the
dataset. Otherwise, it remains ultimately to the user's judgement to
decide whether an observation should be taken out of a data set.
Removing outliers may provide more representative regression co-
efficients but it can dramatically narrow down the range of validity of
the analysis and eliminate the actual best practices.

3.4.2. Model validation

The final step of the analysis consists in the model validation,
also called sanity test/check, which refers to the evaluation of the
reasonableness of the regression coefficients, the plausibility of the
regression function, and the ability to generalize inferences drawn
from the regression analysis. In this phase the model needs to be
checked in detail for the effect from exogenous factors, what its
direction might be, and only finally, what the magnitude of the
effect might be. When possible, theory or previous empirical results
may be useful in determining whether the selected model is
reasonable.

4. Application of REED methodology for WWTPs energy
performance assessment

The usefulness of the REED methodology (Fig. 1) presented in
section 3 is demonstrated step-by-step by the estimation of energy
efficiency of a set of WWTPs so as to i) estimate the effect of the
exogenous factors on WWTP energy efficiency, ii) evaluate the
energy efficiency loss or gain caused by the exogenous factors, and
iii) rank a set of WWTPs according to their energy efficiency.

4.1. Data collection and preparation

4.1.1. Data collection

Data collection was carried out in the context of the H2020
ENERWATER coordination and support action, to provide an energy
database for benchmarking energy efficiency (ENERWATER, 2015).
The dataset used in this study was gathered i) by web-search en-
gines; ii) by collecting energy data from regional water agencies (in
particular from Germany, Spain and Switzerland); by private
communications. Those WWTPs with insufficient information were
omitted from the analysis, so the final dataset consisted of 399
WWTPs receiving municipal wastewater. Descriptive statistics for
all variables used in the analysis are given in Table 1. Both the
database and the computer code used in this case study are avail-
able upon request from the authors.

Energy consumption was gathered together with data related to
the operation, namely: population equivalent (PE) load basis, both
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Table 1

Descriptive statistics for the dataset used. Notes: Variables are estimated on the daily basis. The reference for categorical variables is the most common value (mode).
Variable Definition Obs. Mean SD Min Max
Input
E Electricity consumption (kWh) 399 2271 4628 18.58 36653
Outputs
coD COD removed (kg) 399 2414 5659 2.694 58318
N N removed (kg) 399 1459 365.9 0.089 4098
P P removed (kg) 399 27.17 65.18 0.003 704.5
Exogenous categorical variables
COUNTRY (Ref = Switzerland)
FRA France 19 / / / /
DEU Germany 79 / / / /
ITA Italy 15 / / / /
ESP Spain 111 / / / /
SECONDARY (Ref = Conventional activated sludge)
EA Extended aeration 150 / / / /
MHLOAD Medium/high rate activated sludge 25 / / / /
MBR Membrane bioreactor 9 / / / /
oD Oxidation ditch 18 / / / /
TF Tricking filter 20 / / / /
TFAS Tricking filter-activated sludge 5 / / / /
TERTIARY (Ref = No tertiary treatment)
YES Filtration or UV disinfection 41
Exogenous continuous variables
SIZE Actual plant size (PE) 399 21381 50164 2391 507511
LF Load factor (%) 399 71.80 59.26 4.192 782.5
DF Dilution factor (L/PE-d) 399 380.0 380.4 61.70 3060
TEMP Temperature (°C) 399 12.06 3.229 9.500 18.10

the designed value and the actually served value; average flow rate;
influent and effluent wastewater characteristics, e.g. COD, total N
and P.

Moreover, since energy consumption depends heavily on the
technology (Krampe, 2013), WWTPs were classified according and
the type of secondary treatment. The sample ranges from a few
dozen PE to more than 500000 PE, and cover a wide range of
technologies, e.g. biological nutrient removal (BNR), oxidation ditch
(OD), membrane biological reactor (MBR), trickling filter (TF), mixed
tricking filter and activated sludge processes (TFAS) and medium/
high loading rate activated sludge (MHLOAD). Furthermore plants
were classified based on the presence or absence of tertiary treat-
ment (i.e. whether the plant carried out final filtration or ultraviolet
disinfection). This sample covers most common layouts (up to 80%)
of WWTPs in Europe in terms of treatment intensity, i.e. WWTPs
including secondary or both secondary and tertiary treatment (EEA,
2013).

From the analysis of the collected data, two WWTP operational
indices, dilution factor (DF) and load factor (LF), were defined based
on Longo et al. (2016). DF is mainly function of the sewer network
design, age and materials, while LF represents the capacity utili-
zation of the plant compared to the design capacity, showing then if
a plant is under- or over-loaded. In addition, the annual average
outdoor temperature (TEMP) was included as a proxy of the WWTP
climate.

4.1.2. Input and output selection

The efficiency of the WWTPs was analysed for the following
functions: removal of COD and nutrients, e.g. N and P. The candi-
dates to output variables were the average mass of pollutants (in
kg) removed per day, which were estimated as the product of the
average flowrate (in m>/day) times the effluent/influent difference
in pollutant concentration (in kg pollutant/m>). The input variable
was the overall electricity consumption (expressed as kWh/day).

The result of the regression-based test described in section 3.1.2
confirms that the inclusion of the COD and N in the output set is
correlated with inefficiency differences among the WWTPs sample.
In contrast, P was identified as not relevant and as consequence

omitted, as none of the treatment technologies in our dataset is
intended to carry out biological P removal. An assessment of energy
efficiency including P removal would require estimating the
embedded energy of chemicals for P removal (i.e. using the CED
method); however, as data on the consumption of chemicals were
not available, it was decided to limit the scope of the analysis to the
assessment of the energy efficiency for the removal of COD and N,
hence excluding P.

4.1.3. Preliminary checks

4.1.3.1. Size of the data sample. In our empirical example with one
input and two outputs the minimum number of WWTPs in the
dataset is 4 (i.e. 2(1 x 2)), which is largely exceeded.

4.1.3.2. Detection of outliers in frontier estimation. The test of super-
efficiency was applied to individuate possible outcomes of
recording/measurement errors using a pre-selected screen super-
efficiency scores equal to 2.5. None of the WWTPs falls into this
category. Therefore, all plants initially included in the dataset were
considered for the analysis in this phase.

4.2. DEA model selection

4.2.1. Model orientation

The input oriented model was selected since all the outputs are
bounded by the effluent regulation. As a consequence, the goal of
the efficiency estimation is to identify plants that are over-utilizing
resources to remove COD and N.

4.2.2. Return to scale

The CRS DEA model is selected and the difference in scale was
accounted for at the second-stage (regression) analysis by including
a proxy of scale (SIZE).

4.3. Efficiency estimation

WWTPs in the comparison set use different technologies as
secondary and/or tertiary treatment (i.e. a different function that
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requires extra energy supply). Moreover, the WWTPs are operated
under very different process conditions (e.g. large range of influent
dilution and load factor), located in different countries with
different climates, thus, the two-stage approach is selected to
determine and correct the efficiency estimates based on a set of
exogenous factors.

4.3.1. Exogenous factors selection

Four factors that may influence the energy consumption at
WWTPs were selected: secondary treatment technology, plant size,
influent dilution and load factor. Furthermore, the outdoor tem-
perature was included as an additional exogenous factor. In this
phase, variables that are proxies of the same factors were excluded
(i.e. volume of treated wastewater, in order to avoid multi-
collinearity with PE). Then, since some of the WWTPs carry out also
tertiary beside secondary treatment, the dummy variable TERTIARY
was included to control for plants that have additional tertiary
beside secondary treatment. Finally, we included a dummy variable
to represent the geographical location of each plant as differences
may be expected due the environmental regulations and technical
progress. The resulting DEA model of WWTP energy performance
has one input (E), two outputs (COD, N) and seven possible exog-
enous factors (COUNTRY, SECONDARY, TERTIARY, SIZE, LF, DF, TEMP).
Considering our dataset composed by 399 observations, the rule-
of-thumb of 10 observations for each exogenous variable is
largely satisfied.

4.3.2. Bias-correction of DEA efficiency estimates

A modification of the Algorithm II of Simar and Wilson (2007) is
applied to estimate bias-corrected efficiency estimates following
the procedure in section 3.3.2. Two freely available toolboxes were
used: the linear programming problem was solved using the Data
Envelopment Analysis Toolbox for MATLAB (Alvarez et al., 2016),
while for the truncated regression was employed the James Lesage
Econometrics Toolbox (LeSage, 1999). The procedure to obtain the
bias-corrected DEA efficiency scores was implemented in MATLAB.

4.4. Regression model refinement and validation

4.4.1. Regression diagnostics

Multicollinearity was studied by calculating the VIF. The VIF
values of COUNTRY and TEMP greatly exceeded 10, which indicate
that country and temperature are correlated variables. However, for
their relevance these two variables are interesting to study, there-
fore we decided to develop two different models, one using the
categorical variable COUNTRY and another using TEMP as contin-
uous variable (Model 1 and 2, respectively in Table 2).

Outlier diagnostic methods suggested possible evidence of
regression outliers at observations 167 and 204, which may affect
the regressions residuals as well as the fit. To decide whether they
should be removed, we proceeded by removing them from the
sample and repeating the estimation procedure. Their omission
was not found to have a large effect on the statistical interference.
Moreover, no indication of incorrectly entered or measured data
was encountered. Thus, we proceeded to maintain all the obser-
vations in the dataset.

4.4.2. Model validation

The final step of the analysis consisted in the model validation,
i.e. evaluation of the reasonableness of the regression coefficients,
the plausibility of the regression function, and the ability to
generalize inferences drawn from the regression analysis. This step
is discussed in next section 5.1 together with the presentation of
the estimated energy efficiency estimation results by comparing
when possible our results with the theory, previous empirical

results and engineering considerations.
5. Discussion
5.1. Empirical findings

The results of the two-stage DEA are given in Table 2. Pre-
liminary data analysis showed that energy consumption at WWTPs
has a nonlinear dependency with respect to the operational vari-
ables (Longo et al., 2017). Therefore, all the continuous variables are
log-transformed. Moreover, since we used the reciprocals of the
efficiency scores as dependent variable in the second-stage
regression a negative sign means efficiency enhancing and vice
versa. The results prove that it is important to account for the
characteristics and the heterogeneity of WWTPs.

5.1.1. Size

We first observe the expected positive relationship between the
plant size and energy efficiency in the two specifications. This is
consistent with previous studies (Longo et al., 2016).

5.1.2. Load factor

LF also shows a positive and highly significant relationship,
however the available literature is quite conflicting on this factor.
Using also a two-stage DEA approach, Gémez et al. (2017) found
that the over- or under-loaded conditions does not significantly
affect the WWTP efficiency, while Guerrini et al. (2017) reported
increasing efficiency while increasing the ratio of used capacity (LF
in this study). Our results confirm that plants receiving lower loads
than design value present a significantly worse energy perfor-
mance, and energy efficiency increases when approaching values of
LF to 100% or higher. Interestingly, energy efficiency keeps
increasing for over-loaded plants (in the range under assessment).
Note, however, that malfunctions are likely to occur in severely
over-loaded plants, leading to effluent quality deterioration and

Table 2

Estimated WWTP energy efficiency function.
Variable Model 1 Model 2

Coefficient t-statistic Coefficient t-statistic

Constant 4.0826"** 10.2811 5.0668*** 21.2251
COUNTRY
FRA 0.3287 0.5173 /
DEU 0.6811 1.4258 /
ITA 2.4044*** 3.1881 /
ESP 1.7731*** 3.7307 /
SECONDARY
EA 0.6438 1.3879 0.1254 0.3146
MHLOAD 0.8645 1.3977 0.2626 0.4828
MBR 2.7999*** 3.1453 2.5417*** 2.8789
oD —0.0288 —0.0404 0.3605 0.5395
TF —0.8467 -1.2100 —1.4523** —2.2565
TFAS -0.9157 —0.7746 —1.5247 -1.3265
TERTIARY
YES 1.3685*** 2.7623 1.4736*** 3.0299
SIZE —1.8492*** —10.3355 —1.8376*** —10.3004
LF —0.8301*** -5.1393 —0.7799*** —4.7580
DL 0.4077** 2.0584 0.4085** 2.0413
TEMP / 0.6835™* 3.6467
o2 6.2159 6.3093
Log-Likelihood —921.4066 -924.3264

Note: FRA = France; DEU = Germany; ITA = Italy; ESP = Spain. MBR = membrane
bio-reactors; EA =extended aeration; TFAS = tricking filter-activated sludge;
MHLOAD = medium/high loading rate activated sludge; OD = oxidation ditch;
TF = tricking filter.

*** Significant at 1% level.

** Significant at 5% level.

* Significant at 10% level.
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non-compliance with effluent requirements. A possible explana-
tion is that in, general, design guidelines propose over-
dimensioned WWTP designs. For example, Corominas et al.
(2010) calculated that the aerobic volume could be reduced by
35% compared to the design of Metcalf and Eddy (2003) without
affecting the design effluent requirements, and in Benedetti et al.
(2010) the volumes obtained with the German Standard ATV
design guidelines were reduced up to 60% of its original volume.

5.1.3. Dilution

A factor that negatively affects energy efficiency is the influent
dilution (DF) for example deriving from rainwaters and/or in-
filtrations; this effect is highly statistically significant in the two
models. It strongly supports the hypothesis that plants receiving
more diluted wastewater require more energy per mass of
pollutant removed, even at equal pollutant loadings, caused by, e.g.
pumping greater volumes of wastewater.

5.1.4. Technology

The type of secondary treatment can impact on the energy ef-
ficiency (Fig. 2).

TF is the less energy intensive technology in comparison with
BNR. Tricking filter's low energy consumption is the result of a
simpler operation not requiring mixed liquor inventory control and
sludge wasting. As a drawback, the produced effluent has higher
turbidity than activated-sludge treatment (Metcalf and Eddy,
2003). For that reason, TF are also used in combined processes
with activated sludge to exploit the benefits of both processes.
However, based on our results this configuration (TFAS) in not
significantly different from BNR in terms of efficiency. It is inter-
esting to note that BNR systems show extremely various results,
including some very efficient WWTPs (red crosses in Fig. 2). This
could be due to the fact that BNR category includes different con-
figurations such as plug flow, step feed, LE, MLE, etc. Among all the
technologies, MBR has the lowest energy efficiency due to intensive

membrane aeration rates required to manage the fouling and
clogging (Verrecht et al., 2008). Finally, a statistically significant and
positive coefficient (i.e. negative effect on energy efficiency) was
found for those plants that besides secondary carry out also tertiary
treatment (an additional function) due to the additional energy
consumption due to filtration or UV disinfection.

5.1.5. Geographical location

After controlling for the plant-specific heterogeneity (e.g. size,
influent dilution and load factor, as well as the technology), it re-
sults interesting to investigate whether additional differences exist
among countries. Our results suggest that these differences are
present and are highly statistically significant. A plant located in
Spain or Italy is on average less efficient than a plant located in
Switzerland, which resulted as the most efficient country in our
sample. This result is in accordance with the findings of Wett et al.
(2007) who reported a 38% energy consumption reduction as a
result of the effort carried out in Switzerland for the development
of detailed energy management manuals. Additionally, it supports
the hypothesis that policies for energy efficiency and benchmark
initiatives are excellent measures to improve energy performance
of WWTPs. However, testing adequately this hypothesis would
require a representative and randomly selected subset of the
WWTPs’ population in the different countries.

It is worth nothing that Switzerland is the only country where
all the trickling filter plants are located. As a result, in M1 the
variable COUNTRY partially captured the effect of TF. TF in M1 has
the correct sign (negative as in M2) but is not significant because its
positive effect (e.g. lower energy use) is already controlled by
COUNTRY.

5.1.6. Temperature

We finally found a negative and highly significant relationship of
TEMP with the energy efficiency (Model 2). On the one hand
increasing the temperature increases the biological activity, both
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Fig. 2. Energy efficiency for different treatment technologies. Note: MBR=membrane bio-reactors; EA=extended aeration; TFAS=tricking filter-activated sludge;
MHLOAD = medium/high loading rate activated sludge; BNR = biological nutrient removal; OD = oxidation ditch; TF = tricking filter.
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the substrate uptake rate as the endogenous respiration. On the
other hand, oxygen solubility decreases sharply when increasing
temperature, leading to a higher energy demand for aeration. It is
difficult to conclude which of these effects prevail. The results
suggest that, in the analysed range, the higher aeration energy
demand may be more significant. Although the decreasing effi-
ciency with temperature would partially explain the lowest energy
efficiency of Spanish or Italian WWTPs, since this correlation does
not imply causation future studies are needed to investigate these
differences among countries.

5.2. Impact of exogenous factors on estimated energy efficiency
level

Fig. 3 represents the energy efficiency estimates for the WWTPs
under analysis resulting from the bias-correction procedure.

Keeping the notation used previously let Z be the vector of
exogenous factors that impact the WWTP energy efficiency. In an
input oriented framework (like in this study), a favourable Z means
that the exogenous variable operates as a sort of an ‘extra’ output
freely available. For this reason the exogenous factors may be
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considered as ‘favourable’ to the WWTP. Controlling for the exog-
enous factors will decrease the efficiency of plants operating under
favourable conditions (e.g. bigger plants, operating under high
values of LF, and low values of DIL) such as WWTP 180 or 387
(Fig. 3). On the contrary, an unfavourable Z means that the exoge-
nous variable acts as a ‘compulsory’ or unavoidable output to be
produced as a result of the ‘negative’ environmental condition. In
other words, Z penalizes the removal of pollutants during waste-
water process by increasing the amount of energy needed. In this
situation, controlling for the exogenous factors will increase the
efficiency of plants operating under unfavourable conditions, such
as the WWTP 17 or 21 (Fig. 3). Finally, the exogenous factors can
have no impact on the efficiency or favourable and unfavourable
conditions can exist at the same time, cancelling out positive and
negative impacts. In this case the efficiency will not change after
controlling for the exogenous factors. This is the case for example of
WWTP 5 or 113.

It is clear from the results of this study that estimates of effi-
ciency are conditional on the given exogenous factors and the
technology used. A WWTP may appear inefficient for one tech-
nology, but it could be efficient with respect to a different
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Fig. 3. Bias-corrected efficiency estimates. Note: grey bars indicate original single-stage DEA scores; orange bars indicate positive bias (increase of the efficiency) and grey empty
bars indicate negative bias (reduction of the efficiency). Full bars, independently of the colour, represent the bias-corrected final DEA efficiency. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
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technology. The implication for empirical analysis is that, when
estimating the technical/operational inefficiencies of plants oper-
ated under different treatment technologies, it should be done with
respect to the appropriate technology. For example, if we compare
MBRs and BNRs together there might be unobserved or unknown
differences in technology. In such circumstances, the differences in
technology might be inappropriately labelled as inefficiency if such
variations in technology are not taken into account, as done using
the two-stage approach.

6. Conclusions

The growing number of applications of DEA in wastewater
treatment must be accompanied by a rigorous approach in the
selection of inputs and outputs according to the benchmarking
objective and a sound treatment of the exogenous factors. The REED
methodology described in this manuscript is meant to guide op-
erators, plant managers, and engineers through all the steps
required to correctly use DEA for comparison of energy efficiency of
WWTPs.

The use of two-stage DEA to tackle the impact of the different
characteristics and environmental conditions of WWTPs leads to a
larger pool of open choices for the user, potentially leading to non-
comparable results. By systematizing the selection criteria and of-
fering guidance to the reader through the different choices, REED
leads to robust energy efficiency quantification at WWTPs, thereby
increasing the quality of the efficiency estimates and hence the
effectiveness of benchmarking. Providing explicit details about the
correct application of DEA for energy efficiency quantification in
the REED methodology is therefore essential for clarity, trans-
parency, and future reproducibility.

The case study demonstrates that adjusting for the effect of
exogenous factors can lead to substantial changes in efficiency es-
timates since they can be altered up to + 50% compared to a single-
stage DEA depending on the adverse or favourable environmental
conditions a WWTP is operating, hence suggesting that given the
characteristics of the wastewater treatment sector the inclusion of
exogenous factors in the benchmarking process by the two-stage
approach is required to obtain meaningful results.
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