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Abstract: The integration of adsorbents with ultrafiltratigpF) membranes is a
promising method for alleviating membrane foulinglaeducing land use. However,
adsorbents typically are only injected into the rbeamne tank once, resulting in a
single dynamic protection layer and low removaiceghcy over long-term operation.
In addition, the granular adsorbents used can cmwesabrane surface damage. To
overcome these disadvantages, we injected inexgenand loose aluminum
(Ah-based flocs directly into a membrane tank witbitom aeration in the presence
of humic acid (HA) or raw water taken from the Miy&eservoir (Beijing, China).
Results showed that the flocs were well suspendethé membrane tank, and
multiple dynamic floc protection layers were formddandwich-like) on the
membrane surface with multiple batch injectionsghdir frequency floc injections
resulted in better floc utilization efficiency ateks severe membrane fouling. With
continuous injection, acid solutions demonstratetieln performance in removing HA
molecules, especially those with small moleculaighie and in alleviating membrane
fouling compared with the use of high aeration m@t@olyacrylamide injection. This
was attributed to the small particle size, largecHjr surface area, and high zeta
potential of the flocs. Additionally, excellent Umembrane performance was
exhibited by reservoir water with continuous injestand acid solution. Based on the
outstanding UF membrane performance, this innogatntegrated filtration with
loose Al-based flocs has great application potefaravater treatment.

Key words. Ultrafiltration membrane; Al-based flocs; Multipldynamic layers;

Humic acid and reservoir water; Fouling reduction.
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1 Introduction

Ultrafiltration (UF) membranes, as an advanced rsgjga technology, have
been widely used in drinking water and wastewateastinent (Huang et al., 2009;
Tang et al., 2017). The installed capacities of f[m&ssure membrane systems have
grown exponentially in the last few decades (Funi&a2008). However, membrane
fouling is inevitable due to the accumulation oflgmnts in membrane pores and the
formation of dense cake layers. Of most conceralifg can increase the energy
costs of membrane filtration due to the developnoémérge hydraulic resistance and
high transmembrane pressure (TMP) (Kimura et a0042 As a result, the
sustainability of membranes in water treatmeninigtéd.

Most studies have demonstrated that pore consinicpore blockage and cake
layer formation are the main fouling mechanismsneimbranes (Huang et al., 2008;
Huang et al., 2009; Cai et al., 2013; Polyakov @gdney, 2013; Tang et al., 2017).
Membrane flux can dramatically decrease at therm@gg of the filtration process,
because many foulant aggregates are deposited erm#mbrane surface or in
membrane pores, leading to pore constriction andkilge. The faster the reduction
in membrane flux, the more likely the occurrenceafe constriction and blockage is
(Ho and Zydney, 2000). Conversely, when cake l&yenation is the main fouling
mechanism, membrane flux decline is relatively s{@intgens et al., 2003; Wang
and Tarabara, 2008; Wu et al., 2011).

To effectively alleviate membrane fouling, diffetgoretreatment technologies,

including pre-adsorption, direct filtration, andtegrated filtration, have shown

3
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considerable potential in pollutant removal (Kimaét 2010; Gao et al., 2011; Feng et
al.,, 2015; Yu et al., 2015). Traditional pre-adsiamp technology has shown
moderately good performance in water treatmenttpl@idong et al., 2007; Masmoudi
et al., 2016); however, many small molecular wei@d¥V) substances remain after
sedimentation, resulting in severe membrane foulipgore constriction and dense
cake layer formation (Yu et al.,, 2015). In additiaimis technology requires a
relatively large land area during actual operatiém.overcome these shortcomings,
direct filtration, in which the sedimentation tarmlas been removed, has been
researched and applied in water treatment plango(&t al., 2013; Shang et al., 2015;
Yu et al., 2015). However, although only a looskeckayer is formed and membrane
fouling is alleviated compared with the pre-adsiorpiprocess, the sludge production
rate is high, resulting in considerable sludge lthsge and rapid microbial growth in
the membrane tanks (Baker, 2012). To overcome flseges, the emerging technique
of integrated filtration has become a new areaofi$ (Ajmani et al., 2012; Cai et al.,
2013; Ma et al., 2015).

In integrated filtration, adsorbents are pre-deedsonto the membrane surface
or pre-injected into the membrane tank to form @sé dynamic protection layer,
resulting in excellent membrane performance (Kinmalet 2008; Kim et al., 2010;
Ajmani et al.,, 2012; Ma et al.,, 2013). However, @bents are pre-deposited or
injected only once, resulting in the formation osiagle dynamic layer, with low
floc utilization efficiency. As a result, the renavefficiency of pollutants is

gradually reduced over time, and a dense cake layermed on the protective layer
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by pollutants, leading to severe membrane foulikig et al., 2015). In addition,
most currently investigated granular adsorbentduding heated iron oxide particles
(Zhang et al., 2003), carbon nanotubes (Ajmanilet2812), powdered activated
carbon (Cai et al., 2013), and nanoscale zerovaent(Ma et al., 2015), are either
expensive or easily cause membrane surface damftagéoag-term operation. Thus,
for practical operation, it is necessary to exploesv adsorbents and methods to
further improve the performance of the integratesrane process.

Aluminum (Al) and iron (Fe) salts are widely used aoagulants and
demonstrate high pollutant removal efficiencieseiflexcellent performance is due to
the stronger adsorption abilities of flocs compamedh pre-made adsorbents,
especially for organic matter (Kimura et al., 20@%njad et al., 2015; Ang et al.,
2015; He et al., 2015; Yu et al., 2016). Comparét We-based salts, less corrosion
occurs in the presence of Al-based salts (Zhad.,e2@l1). Herein, to overcome the
disadvantages and improve application of integrdiéction in actual operation,
inexpensive and loose flocs formed by hydrolysisAtbased salts were directly
injected into a membrane tank in the presence lodllow fiber UF membrane. To
fully utilize the adsorbents and improve membramefggmance, the flocs were
suspended in the membrane tank by bottom aeration.

Humic substances (HS) commonly exist in naturakevwsaand can range from a
few mg/L to a few hundred mg/L C (Wall and Chop@0A03). However, the presence
of HS can cause environmental and health problemsh as providing food for

undesirable bacteria in water (Bai and Zhang, 2085 can also bind with heavy
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metals or biocides, yielding high concentrationsttedse substances and enhancing
their transport in water (Schmitt et al., 2003)d @an react with chlorine during water
treatment to form disinfection by-products, suchtisalomethane (Wang et al.,
2015). Furthermore, HS can compete with low MW Bgtit organic chemicals and
inorganic pollutants, reducing their adsorptionesatand equilibrium capacities
(Klausen et al., 2003), and can act as a major afaul causing serious
micro/ultrafiltration membrane fouling due to itsrde MW distribution (Yuan and
Zydeny, 2000).

Herein, to test the integrated floc and UF membrnareeess, the membrane
performance and removal efficiency of HS were itigased. In addition, to fully
understand the characteristics of the dynamic ptiote layer, the factors responsible
for membrane fouling, such as injection dosage faeduency, aeration rate, and
solution pH, were investigated. Moreover, to chattie practicability of the integrated
floc and UF membrane process, raw water taken fremMiyun Reservoir (N:429’;

E:11649"), the main drinking water resource for Beijingas also investigated.

2 Materialsand methods

2.1 Materials

All  chemical reagents used, including AEHO, HCI, NaOH, and
polyacrylamide, were of analytical grade and wetdammed from Sinopharm
Chemical Reagent Co., Ltd (China). Deionized (Dlillipbre Milli-Q, USA) water

was used in the experiments. Humic acid sodium(bb, Sigma-Aldrich, USA), a
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HS representative, was dissolved in tap water i{BggijChina) at a concentration of
20 mg/L. All chemical stock solutions were storadhe dark at £4C. Table 1 shows
the specific characteristics of the feed water withand the specific properties of the

source water from Miyun Reservoir.

Tablel

2.2 Floc preparation

For floc preparation, AlGI6H,0 was dissolved in 400 mL of tap water (Beijing)
each time, with the solution pH adjusted to 7.51gsi M NaOH. To prevent high Al
concentrations in the effluent after filtrationetprepared flocs were washed with DI
water three times before injecting. Almost 60% dfsfecies are solid hydrolysis
products (mainly Al(OH) at pH 7.5 (Zhao et al., 2009), with the main elaseristics
shown in Table S1. Thus, the concentration of théased flocs (calculated as Al,

same below) was ~60% of the concentration of thbaed coagulants.

2.3 Filtration progress

A schematic diagram of the membrane process is shiowFig. S1. The
membrane tank had an inner diameter of 64 mm artkight of 800 mm. A
polyvinylidene fluoride (PVDF) hollow fiber membrar{Motimo, China) was used,
with a MW cutoff (MWCO) of 100 kDa. The effluentoim the submerged membrane

module was withdrawn using a peristaltic pump (20nE:H?). The filtration cycle

7
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was 30 min, followed by 1 min of backwashing (40n*-h?). A water level gauge
was used to control the water level and a ceraemiatin device (diameter: 40 mm)
was placed at the bottom to ensure that the floesewvell suspended in the
membrane tank. All flocs were prepared just befojection to maintain activity
(Chen et al., 2015), and were directly injected itte membrane tank once every 8, 4,
or 2 d by syringe or by continuous injection witlperistaltic pump. The TMP was
monitored by pressure sensors. The hydraulic ietetime was maintained at 2.2 h
and the accumulated sludge was not released ddilingtion. To prevent the
formation of biopolymer by the development of mmmganisms, the system was
operated for 11 d due to residual chlorine (Tablerdp water was used to wash away
the cake layer on the membrane surface after 8apefation. Samples were always
taken before the next injection, except under thatiouous injection treatment. All

experiments were carried out in duplicate.

2.4 Characteristics of flocsin the membrane tank

During filtration, floc samples were taken from dl the surface of the
suspension in the absence of HA with a hollow gtabs. Floc images were captured
using an optical microscope equipped with a CCDaran{GE-5, Aigo, China). The
specific surface areas of the flocs were analyzgdhe Brunauer-Emmett-Teller
method (BET, ASAP2020HD88, USA). The zeta potestall the flocs before and
after adsorption were measured by a nano-partiziegsand zeta potential analyzer

(BECKMAN COULTER Ltd., USA).
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2.5 Other analytical measurements

The pH was measured by a pH meter (Orion, USA). rdémbranes with
different MWCO were used to grade HA molecules, gredUF fraction method was
used to investigate the corresponding removal ieffaies for different MW
distributions (Aiken, 1984; Lin et al., 1999). TM3V distributions were determined
by gel permeation chromatography (GPC, Agilent Tetbgies, USA) and removal
efficiency was calculated by the difference in pealeas (Ma et al., 2015).
Additionally, images of the layered membrane sw@faere obtained using scanning

electron microscopy (SEM, JSM-7401F, JEOL Ltd. amgp

3 Resaults

3.1 Effect of floc dosage and injection frequency on TMP development

To determine the membrane performance of the iatedr process, TMP
development induced by HA with/without flocs wawestigated (Fig. 1). Results
showed considerable membrane fouling caused by IdAeaand TMP significantly
increased to 50.7 kPa on day 8. After careful waghwith tap water, the
corresponding TMP immediately decreased to 10.1, kRRAcating that cake layer
formation by HA was the main fouling mechanism.

Compared with the TMP caused by HA alone, membfankng was alleviated
with one-time floc injection, with higher floc daselso resulting in less severe
membrane fouling. The TMP values were 33.1, 2h8, 28.2 kPa in the presence of

6.5, 13.0, and 26.0 mM flocs, respectively, on 8a¥ig. 1a). After careful washing

9
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with tap water, the corresponding TMP dramaticalécreased to 6.8, 5.2, and 4.9
kPa, respectively.

To further clarify membrane performance, TMP @lepment with multiple
batch injections was investigated in the presefd8® and 26.0 mM flocs (Figs. 1b
and 1c). For 13.0 mM flocs, the TMP was graduadiguced with injections once
every 8 (13 mM/time), 4 (6.5 mM/time), and 2 (318B1/time) d, with corresponding
TMP values of 27.3, 20.8, and 15.7 kPa, respegtivai day 8. However, the TMP
increased to 18.6 kPa by day 8 under continuoestion conditions (0.05 L/h, same
below). For 26.0 mM flocs, membrane fouling gratiuaeclined with increasing
injection frequency. The corresponding TMP valuesen23.2, 18.3, and 15.1 kPa on
day 8 following injections once every 8 (26 mM/timé (13 mM/time), and 2 (6.5
mM/time) d, respectively. When continuous injeciomere used, membrane fouling
was further alleviated and the TMP was only 10.4 kiR day 8. As seen from Figs.
1b and 1c, the TMP dramatically decreased aftezfabwashing with tap water on
day 8, which also showed that cake layer formatwes the primary fouling

mechanism.

Figurel

3.2 Effect of injection frequency on HA removal efficiency

The UF membrane performed better in the presen@®.6f mM flocs than 13.0

10
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mM flocs. Thus, 26.0 mM flocs (same below) werettfar investigated with batch
injections (Fig. 2). Figure 2a shows that the cotregion of HA in the effluent was
reduced with the floc injections. However, the remloefficiency of HA slightly
increased after 8 d of operation with one-timeati@. The removal efficiency of HA
by the membrane alone was 29.2%, but the efficiemty increased to 38.3% in the
presence of 26.0 mM flocs on day 8 for the one-timection mode. Due to the
removal of HA molecules, the peak value of HA MWstdbution in the effluent
declined from 11294.2 Da to 9973.7 Da.

Figure 2b shows that the removal efficiency of HAswgradually reduced over
time with one-time injection. The corresponding oxal efficiency of HA was 83.1%
+ 2.3% on day 2, declining to 38.3% + 3.1% on day\8th increasing injection
frequency, the removal efficiency of HA increasegrmtime, especially by day 8. The
removal efficiency of HA was 38.3 * 3.1% with onew injection, but this increased
to 69.2 + 2.2% on day 8 under continuous injectionaddition, the variation in the
removal efficiency of HA molecules became smalleithwincreasing injection
frequency. The variation reached 44.8 + 3.1% betvassy 2 and day 8 with one-time
injection, but decreased to 4.1 + 1.9% between 2iand day 8 under continuous
injection. Furthermore, the total removal efficigraf HA increased with increasing
injection frequency, from 62.2% + 2.3% with one-¢inmjection to 70.3% + 2.8%
with continuous injection (Fig. S2). Due to the thigemoval efficiency of HA
molecules, the peak value of the HA MW distributsignificantly decreased from
9973.7 Da under one-time injection treatment to 9781Da under continuous

11
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injection treatment after 8 d (Fig. 2a).

Due to the large variation in the MW of HA, the msponding removal
efficiencies were further investigated (Fig. 2c)r Fcomparison, the results for
permeate samples from a pristine PVDF UF membragealso presented. As seen
from Fig. 2c, the removal efficiency of large HA lacules (>30 kDa) by the
membrane alone was 43.1% * 2.2%, whereas thoshidomedium (3-30 kDa) and
small (<3 kDa) HA molecules were 37.3% + 1.6% at?6+ 1.8%, respectively, on
day 4, with similar results occurring on day 8. Wlilee flocs were injected in batches,
the removal efficiencies of the different MW HA reolles were higher on day 8 than
on day 4. With increasing injection frequency, tieenoval efficiency of HA also
increased, especially for the smaller molecules.day 4 and day 8, the removal
efficiencies of the small MW HA molecules (<3 kDagre 19.7% + 2.6% and 22.9%
+ 1.6%, respectively, with injections every 4 df imcreased to 52.9% + 4.5% and
54.3% * 3.2%, respectively, under continuous impectreatment. In comparison with
the large (>30 kDa) and medium (3-30 kDa) MW HA emlles, the removal
efficiency of the small MW HA molecules (<3 kDa) svanuch lower, which was

largely influenced by injection frequency and rumntime.

Figure2

12
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3.3 Effect of aeration rate and polyacrylamide on UF membrane performance

Due to its better UF membrane performance (Sect®ohsand 3.2), continuous
injection was further investigated. As aeratiorerptays an important role in floc
characteristics, including particle size and memérattachment ability (Ma et al.,
2017), UF membrane performance was tested witlerdift aeration rates (Fig. 3).
Results showed that TMP development slowed witheging aeration rate, and was
10.1, 8.8, and 5.8 kPa under 0.1, 0.3, and 0.5r,/mespectively (Fig. 3a). However,
the removal efficiency and peak value variationev@fluenced little under different
aeration rates (Fig. 3b), as reported previousls é¥lal., 2017).

In comparison to the aeration rate, polyacrylanfide the potential to enhance
the adsorption ability of flocs (Aguilar et al.,, @). To strengthen the removal
efficiency of the multiple layers and reduce membrafouling, anionic
polyacrylamide (APAM) was used due to the posifhvatarged Al-based flocs (1.4 +
0.3 mV) and negatively charged UF membrane at fH(Childress and Elimelech,
1996). However, severe UF membrane fouling occuased function of time (Fig. 3c).
TMP significantly increased with increasing APAMsdge, from 10.1 kPa to 35.7
kPa (0.1 mg/L) and 76.3 kPa (1 mg/L) on day 8. Fegdd shows that the removal
efficiency of HA was also influenced little in thresence of APAM. The removal
efficiency of HA only increased from 70.8% (withoAPAM) to 76.5% (1 mg/L
APAM), and the peak value of HA declined from 781®a (without APAM) to
7565.8 Da (1 mg/L APAM). In addition, owing to themited influence of the aeration

rate and APAM injection on HA removal, the corresgimg removal efficiencies of

13
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different MW HA were similar to those with continusinjection (data not shown).

Figure3

3.4 Effect of pH on TMP development and HA removal efficiency

Due to the variation in particle size and fractahenhsion, solution pH also plays
an important role in determining floc charactedst(Feng et al., 2015). Figure 4
shows the UF membrane performance under differeintgnditions. As seen from
Fig. 4a, the TMP increased much more slowly at pHab at pH 9 over time. After 8
d of operation, the TMP increased to 7.1, 10.1, H8 kPa at pH 6, pH 7.5, and pH
9, respectively. After washing with tap water, thi&P dramatically decreased,
indicating that cake layer formation was the priynfauling mechanism.

The corresponding removal efficiencies of HA wePed96, 70.8%, and 59.7% at
pH 6, pH 7.5, and pH 9, respectively. Along witle ttemoval efficiency of HA, the
peak value of HA in the effluent varied, rangingnfr 11294.2 Da to 5660.5 Da (Fig.
4b). In comparison to the use of high aeration aateg APAM injection, the removal
efficiency of different MW HA molecules significdgtincreased with lower solution
pH, especially at pH 6. This showed that large (kB@) and medium (3-30 kDa)
MW HA molecules were almost totally removed, anel temoval efficiency of small
(<3 kba) MW HA molecules was higher than 90%.

Figure4
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3.5 UF membrane perfor mance with raw water

To test the practicability of the integrated UF nheame process, raw water
taken from Miyun Reservoir was used (Table 1). Basm the excellent UF
membrane performance presented in Section 3.4, agéd flocs were also
continuously injected into the membrane tank aHaop 6 and aeration rate of 0.1
L/min. As seen from Fig. 5a, severe UF membrandirfguoccurred without
pretreatment, and the TMP gradually increased tt kBa on day 8. However, with
the continuous injection of flocs, TMP developmeras dramatically reduced, and
only increased to 4.7 kPa by day 8. After washthg, TMP significantly decreased,
indicating that cake layer formation was the mainlihg mechanism.

Owing to the existence of DOC (Table 1), the cqroesling removal efficiency
and MW variation were further investigated. As s&em Fig. 5b, two peak values at
10023.1 Da and 5972.4 Da were observed due todhmplexity of the raw water.
Compared to the MW distribution of HA (<50 kDa, Figa), the raw water MW
distribution was smaller (<20 kDa). As shown in.Fafp, both large (>10 kDa) and
small MW organic matter (<10 kDa) were largely remd, with rates of 83.5% and
51.4%. With the removal of organic matter, the éappak gradually declined from
10023.1 Da to 8129.1 Da, though the small peak ireedathe same before and after

filtration (5972.4 Da).

Figure5
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4 Discussion

Due to the large MW distribution of HA moleculeske layer formation was
found to be the primary fouling mechanism during tdémbrane filtration (Fig. 1a).
The specific particle size distribution of HA wasasured (Fig. 6a), showing two
peak values (at 14.1 nm, volume: 22.2%; at 141.8 volume: 9.1%) due to the
characteristics of HA (Ma et al., 2014). The averagembrane pore size, provided by
the manufacturer, was 25 nm. Thus, because of HAgenolecule interference, the
chance of pore constriction/blockage was relativielw, and severe membrane
fouling was much more likely caused by dense calerl formation (Yuan and
Zydeny, 2000). The TMP significantly increased t6.75 kPa on day 8, but
immediately decreased to 10.1 kPa after the mersbras washed with tap water.

When flocs were injected into the membrane tanky omhce, most HA
molecules were easily adsorbed or rejected byltlvs.fThe more flocs were injected,
the more HA molecules were removed. As shown in 6lig the average particle size
of the Al-based flocs at pH 7.5 was 161.7 + 18.6(amach larger than the membrane
pore diameter) and the specific surface area wds72% 9.1 mi/g. As a result,
membrane fouling caused by the loose flocs alone wegligible after 8 d of
operation (data not shown). The zeta potentials sil®wed that the HA molecules
were easily adsorbed by the Al-based flocs. Tha petential of the Al-based flocs
was 1.4 + 0.3 mV at pH 7.5, whereas the correspgndeta potential of the HA
molecules was -29.2 + 3.7 mV. Therefore, a loose ¢ayer was gradually formed by

the flocs after adsorbing HA, leading to the ak#an of membrane fouling,

16
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especially under large floc doses (Fig. 1a). ThePTWas 50.7 kPa on day 8 in the
absence of flocs, but decreased to 33.1, 27.32aritdkPa in the presence of 6.5, 13.0,

and 26.0 mM flocs, respectively.

Figure 6

When flocs were injected in batches, their utiimatefficiency increased due to
the multiple floc layers formed. The higher theqgirency of the floc injections, the
greater the number of dynamic layers that were éokmFigure 7 shows the
morphology of the cake layer in the membrane tankday 8 under an injection
frequency of 4 and 2 d (26.0 mM flocs). A floc mdion layer was formed with a
sandwich-like structure. The average thicknes$effioc cake layer was 1.77 + 0.14
mm under 4-d injection frequency, whereas the aeethickness was reduced to 0.71
+ 0.06 mm under 2-d injection frequency. Althougle thickness was smaller under
higher injection frequency, more layers were formedding to higher HA removal

efficiency and slower TMP development (Figs. 1 ahd

Figure?7

Because of the particle size distribution of the iHAlecules, the corresponding
removal efficiency of the UF membrane alone way @3.2%. When the flocs were
injected once, although a protection layer was &afran the membrane surface, most
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inner flocs could not be used. Thus, the removiatiehcy of HA only increased to
38.3% on day 8 in the presence of 26.0 mM floc® fhigher the injection frequency
of the flocs, the greater the number of protectepyers formed and the higher the
utilization efficiency of the flocs. As a resultprtinuous injection showed much
better performance and the variation in HA remoefficiency was much smaller,
with higher total removal efficiency (Fig. S2). &aldition, the peak value was further
reduced from 11294.2 Da to 7819.1 Da under contisunjection after 8 d (Fig. 2a).
It should be noted, however, that once the conagotr of HA molecules entering the
membrane tank exceeded the maximum adsorptionyabilih continuous injection,
fewer HA molecules were removed and more seriousiongne fouling occurred
(Figs. 1b and 1c).

For the removal of different MW HA molecules, large80 kDa) and medium
(3-30 kDa) MW HA molecules were relatively easigmoved/rejected by the UF
membrane alone due to their large particle sizeghodigh different MW HA
molecules could be largely removed in the beginniviten flocs were directly
injected, many flocs in the inner layer could net used. As a result, the removal
efficiency of different MW HA molecules was reduceser time. Increasing the
injection frequency of flocs resulted in an ince&s the number of floc layers and
the floc utilization efficiency. Thus, the removefficiency of different MW HA
molecules on day 8 was higher than that on dayigl @€). Due to rejection by the
dynamic floc layer, the removal efficiency of thmal MW HA molecules (<3 kDa)
by day 8 significantly increased from 22.9% + 1.6Ath an injection once every 4 d
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to 54.3% + 3.2% under continuous injection treatim&s a result of the multiple
protection layers, the removal efficiency of theaintMW HA molecules (<3 kDa)
increased, especially under continuous injection.

For the aeration rate, a thinner cake layer waslugilly induced with higher
aeration rates, leading to smaller cake resistandeslower TMP development. When
the aeration rate increased from 0.1 L/min to O/Bih, the average floc size
decreased from 161.7 + 18.6 um to 132.8 + 11.7 piowever, the removal
efficiency of HA was almost the same, indicating thll utilization efficiency of the
flocs. A potential reason for this is the strongcslostatic attraction between Al-based
flocs and HA molecules, whereas the zeta potentfdi®cs and HA molecules varied
little under different aeration rates. The zeteeptl of the Al-based flocs was 1.4 £
0.3 mV at pH 7.5, whereas the corresponding zetngial of the HA molecules was
-29.2 £ 3.7 mV. Thus, the removal efficiency of H#as influenced little by the
aeration rate. For APAM, although electrostaticutsjpn and attraction occurred
between APAM and the negatively charged UF membiaméace and positively
charged Al-based flocs, respectively, membrandriguhas more severe compared to
that without flocs. The potential reason was th&AM easily adhered to the UF
membrane surface during filtration, blocking/cowgrimembrane pores to some
extent (Fig. S3). As a result, the higher the catregion of APAM, the more severe
the membrane fouling was. In addition, the remafftiency of HA increased little
due to the electrostatic repulsion between the thedjp charged APAM and HA
molecules at pH 7.5.
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Solution pH also played an important role in thecfcharacteristics. Figure 4
shows that the integrated UF membrane processrpetbexcellently at pH 6, which
could be ascribed to the following reasons. Firdthg floc particle size was 118.2
15.6 um at pH 6, which increased to 161.7 + 18.6gmoh191.7 £ 26.1 um at pH 7.5
and pH 9, respectively. However, smaller floc mdetisize results in a larger specific
surface area. Here, the specific surface areacofltbased flocs at pH 6 was 278.8 +
17.6 nf/g, which decreased to 251.7 + 9.%/gnand 206.5 + 11.2 ffy at pH 7.5 and
pH 9, respectively. Secondly, the zeta potentiathef Al-based flocs was 6.8 + 0.6
mV at pH 6, but 1.4 + 0.3 mV and -2.9 £ 0.9 mV Bt p.5 and pH 9, respectively. As
a result, a thinner cake layer and higher remoffaiency of HA was induced at pH
6, resulting in less severe membrane fouling amggthdri HA removal, even of small
MW HA molecules.

For raw water, membrane fouling was also gradualtjuced as a function of
time (Fig. 5a). However, due to the lower DOC conicion of raw water compared
to that of 20 mg/L HA (Table 1), less severe UF rheane fouling was induced (Fig.
la and Fig. 5a). When flocs were continuously itgeécat pH 6 with 0.1 L/min
aeration, a loose cake layer was induced and TMilolement became extremely
slow. Similar to the removal of HA molecules, altigh large MW organic matter
was preferentially removed during filtration, themroval efficiency of small MW
organic matter was also high (51.4%, Fig. 5b).

In view of the above observations, the presenamufiple dynamic floc layers
played an important role in removing organic matd alleviating membrane
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fouling. When flocs were not injected, limited onga matter passed through the
membrane pores and subsequently organic matteretbandense cake layer on the
membrane surface, resulting in serious membrane&puNhen flocs were injected,
most organic matters were adsorbed or rejected.|drger the injection frequency,
the higher the utilization efficiency of the floasd the higher the removal efficiency
of organic matter. Continuous injection showed mbelter performance when the
input organic matter did not exceed the maximumoga®on ability of the flocs.
Additionally, solution pH played a much more img@ort role in alleviating membrane
fouling under continuous injection than that ofadiem rate or polyacrylamide. The
specific schematic diagram regarding the alleviatiof membrane fouling is
illustrated in Fig. 8. Further study will be contert on the development of
microorganisms an¢h situ chemical cleaning with acid with the existenceflots

after long-term operation.

Figure8

5 Conclusions

The integrated membrane process is a promising adefior alleviating
membrane fouling and reducing land use. Howeveferse problems exist with the
granular adsorbents used and with the formatioa sihgle dynamic protection layer

on the membrane surface due to one-time pre-déposit injection. To overcome
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these problems, inexpensive and loose Al-based fimre injected into a membrane
tank with batch injections and continuous bottormagen to improve membrane
performance.

Results showed that the flocs were well dispersethé membrane tank and
largely adsorbed the HA molecules, leading to lesgere membrane fouling. In
comparison with one-time injection, a sandwich-Iflec cake layer was formed on
the membrane surface with batch injections, esfpyeaimder continuous injection.
The flocs were not only fully utilized in the merabe tank, but loose cake layers
were gradually formed with continuous injection.dddition, the removal efficiency
of small MW HA molecules (<3 kDa) steadily incredseith increasing injection
frequency. In comparison to aeration rate and pojamide, solution pH showed
better efficacy at removing small MW HA moleculesdaalleviating membrane
fouling. Moreover, subsequent raw water experimentsirmed the practicability of
the integrated UF membrane under continuous imeaiiith acid solution pH. Based
on the excellent membrane performance, this inmevamtegrated filtration method

with loose multiple layers shows great applicapotential for water treatment.
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Table 1 Characteristics of feed water

Items With 20 mg/L HA Miyun Reservoir water
Water temperatur€) 18.1+2.38 19.6 £1.7

pH 7.4+0.2 8.1+0.3
Turbidity (NTU) 11.8+04 1.2+0.3
Conductivity (ps/cm) 93.3%5.1 352.7 £10.8
Dissolved organic matter (DOC, mg/L) 6.9+£0.7 8.6

UV 254 (c) 0.5+0.04 0.06 £ 0.01

Residual chlorine (mg/L) 05%£0.1 -
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Fig. 1. TMP development over time: (a) Different dosages of flocs with one-time injection;
Different injection frequenciesin the presence of 13.0 mM flocs (b) and 26.0 mM flocs (c).
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Fig. 7. Morphology of the membrane surface in the tank on day 8 in the presence of 26.0 mM
flocs with an injection frequency of (a) 4 d and (b) 2 d.
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Highlights

Al-based flocs were directly injected into UF membrane tank with bottom aeration.
Membrane fouling was significantly alleviated by multiple dynamic floc layers.
Solution pH played an important role on the properties of dynamic floc layers.

Excellent performance was exhibited with the integrated filtration by raw water.



