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The Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a two-stage process for
nitrogen removal and resource recovery: in the first, ammonia is oxidized to nitrite in an aerobic
bioreactor; in the second, oxidation of polyhydroxyalkanoate (PHA) drives reduction of nitrite to
nitrous oxide (N,0O) which is stripped for use as a biogas oxidant. Because ammonia oxidation is well-
studied, tests of CANDO to date have focused on N0 production in anaerobic/anoxic sequencing batch
reactors. In these reactors, nitrogen is provided as nitrite; PHA is produced from acetate or other
dissolved COD, and PHA oxidation is coupled to N>O production from nitrite. In a pilot-scale study,
N,O recovery was affected by COD/N ratio, total cycle time, and relative time periods for PHA syn-
thesis and N,O production. In follow-up bench-scale studies, different reactor cycle times were used
to investigate these operational parameters. Increasing COD/N ratio improved nitrite removal and
increased biosolids concentration. Shortening the anaerobic phase prevented fermentation of PHA
and improved its utilization. Efficient PHA synthesis and utilization in the anaerobic phase correlated
with high N,O production in the anoxic phase. Shortening the anoxic phase prevented reduction of
N,O to N,. By shortening both phases, total cycle time was reduced from 24 to 12 h. This optimized
operation enabled increased biomass concentrations, increased N,O yields (from 71 to 87%), increased
N loading rates (from 0.1 to 0.25 kg N/m>3-d), and shorter hydraulic residence times (from 10 to 2
days). Long-term changes in operational performance for the different bioreactor systems tested were
generally similar despite significant differences in microbial community structure. Long-term oper-
ation at short anaerobic phases selected for a glycogen-accumulating community dominated by a
Defluviicoccus-related strain.
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1. Introduction input for aeration, require reducing power, and generate large

amount of waste biosolids for disposal. These issues can be

As a result of anthropogenic nitrogen fixation, reactive nitro-
gen species entering the global nitrogen cycle has doubled in the
last century (Fowler et al., 2013). Release of reactive nitrogen from
wastewater into natural water bodies can stimulate eutrophica-
tion and create oxygen-depleted zones (Selman et al., 2008).
Conventional nitrogen removal processes need significant energy
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addressed through shortcut nitrogen removal processes in which
ammonium is oxidized to nitrite, and nitrite is reduced to dini-
trogen gas (N;) with either heterotrophic or autotrophic de-
nitrifiers. Adopting the nitrogen cycle nomenclature of Weif8bach
et al,, 2017, nitritation accompanied by heterotrophic deni-
tritation to N, can decrease aeration requirements by 25% and
demand for organic carbon (reducing equivalents) by 40%
(Hellinga et al., 1998). Autotrophic denitritation, such as Anam-
moX, can further decrease demand for organic carbon to zero
(Lackner et al., 2014). Due to process control issues, however,
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shortcut nitrogen removal processes can release more nitrous
oxide (N,0) than conventional processes (Massara et al., 2017).

The Coupled Aerobic-anoxic Nitrous Decomposition Operation
(CANDO) was developed to remove nitrogen from wastewater and
produce N>O in a controlled manner for energy recovery (Scherson
et al,, 2013, 2014). The process involves two reactors: in the first,
high concentrations of ammonia, typically present in anaerobic
digestate, are oxidized to nitrite; in the second, nitrite is reduced to
N,O (nitrous denitritation). Advantages of CANDO over conven-
tional nitrogen removal include: (1) a 60% decrease in demand for
organic electron donor, whether it be wastewater organic matter
used to produce methane or purchased organic substrate, such as
methanol; (2) limiting nitrite reduction to N,O, thereby decreasing
biosolids production by 60% as compared to nitrate reduction to N,
(Gao et al., 2014) and reducing associated costs of transport and
disposal, and (3) use of N2O as an oxidant for combustion of biogas
methane yields more heat (AH; = —1219 kJ/mol CH,4) than com-
bustion with oxygen (AH. = —890 kJ/mol CH4) increasing by 6—7%
the power output achieved per unit of methane oxidized in a
combustion engine (Scherson et al., 2014).

The source of carbon used to provide electrons for nitrous
denitritation is flexible. A research team at the Technical
University of Munich used multiple dosages of primary effluent
as the carbon source for nitrous denitritation (Weibach et al.,
2018b). Another team at Northwestern University used a
mixture of acetate and propionate to enrich for denitrifying
polyphosphate accumulating organisms, enabling simultaneous
nitrogen and phosphorus removal (Gao et al., 2017). Promising
results from bench-scale studies led to a CANDO scale-up,
aiming to (1) evaluate process stability, (2) identify potential
interferences, and (3) optimize process control under real-
world operational conditions. In the present study, we docu-
ment the performance of a pilot-scale nitrous denitritation
reactor treating nitrified anaerobic digester centrate (~1 g
NO,—N/L), produced by a pilot-scale nitritation reactor treating
anaerobic digester centrate (~1.5 g TKN/L). On occasion, the
nitritation reactor was subject to upsets that carried over to
the nitrous denitritation reactor and affected its performance.
During these upset periods, a surrogate nitrified centrate was
fed to the nitrous denitritation reactor until process control
was re-established. After completion of the pilot study, follow-
up bench-scale studies were initiated to improve and optimize
process performance. These studies gave deeper insight into
process operations and enabled significant improvements in
process loading and operational stability.

1. Acetate Stock Fill 3. Nitritation Effluent Fill

2. Material and methods
2.1. Pilot-scale reactor setup and operation

A sequencing batch reactor (SBR) with a volume of 6 m® and a
total liquid volume of 1.5 m> was established at Delta Diablo
wastewater treatment plant (Antioch, CA, USA). The reactor was fed
a stock solution of sodium acetate and acetic acid (pH = 4.0,
COD = 4.5 g/L), and effluent from a nitritation reactor treated
anaerobic digester centrate (East Bay Municipal Utility District and
Project Partners, 2017) containing ~1.1 g NO,—N/L or a surrogate
nitrified centrate containing 1 g NO,—N/L (Scherson et al., 2013).
Reactor pH was maintained at 8.0 by automated addition of hy-
drochloric acid based on readings from a self-cleaning flat pH probe
(Cole-Parmer, IL, USA). In-situ probes were installed to monitor
concentrations of dissolved reactive nitrogen species. A UV—vis
spectrophotometer (S:CAN uv:lyser UV, Austria) was used to
monitor nitrite and nitrate. An industrial Clark-type sensor (Uni-
sense, Denmark) was used for dissolved N,O monitoring.

The pilot-scale nitrous denitritation SBR was inoculated with
150 L (10% v/v) of returned activated sludge from Delta Diablo then
operated for 315 days. Acetate was added as a pulse at the start of
each operational cycle to initiate the anaerobic phase. Nitrite was
added as a pulse at the end of the anaerobic phase to initiate the
anoxic phase, and air stripping enabled recovery of dissolved N,O at
the end of each cycle (Fig. 1). During start-up, the reactor was
operated for 60 days without settling to select for N>O-producing
microorganisms (Table S1). The initial COD/N input ratio (g COD as
acetate/g N as nitrite) was set at five (150 mg COD/L and 30 mg N/L).
To concentrate biomass, a settle/decant step was added before
discharge of effluent. The cycle time was changed to 24 h, and the
COD/N input ratio was decreased to 3. Stable operation began on
day 164 (Period I), and the aeration period was extended to 3 h. In
Period II, the duration of the anaerobic phase was reduced to 7 h
and remained at that level for the duration of the experiment.

The pilot reactor experienced two significant perturbations due
to upsets in the upstream nitritation reactor. On days 61—72 and
107—113, inefficient upstream nitritation resulted in high levels of
ammonium and low concentrations of nitrite in the influent to the
nitrous denitritation SBR. On days 251—257, a process control issue
in the upstream nitritation reactor resulted in high concentrations
of nitrate in the influent to the nitrous denitritation SBR. When
these upset periods were detected, a surrogate nitrified centrate
was fed to the denitritation reactor in lieu of influent from the
nitritation reactor. This switch in the influent feed enabled
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Fig. 1. Schematic diagram for the operation of the pilot-scale nitrous denitritation SBR. Duration of the anaerobic phase was initially 12 h then switched to 7 h. Duration of the

anoxic phase was initially 8.5 h then switched to 13.5 h.
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operational continuity while the nitritation reactor recovered from
process upsets.

2.2. Bench-scale reactor setup and operation

To explore the effects of different operational and design vari-
ables, two 5-L bench-scale nitrous denitritation SBRs (SBR-1 and
SBR-2), each with a total liquid volume of 4 L, were fed nitrite-rich
effluent from a bench-scale nitritation SBR that in turn was fed
anaerobic digester centrate from Delta Diablo. The nitrite-rich
effluent contained 1100 mg/L NO3-N, 60 mg/L NH4-N, 30 mg/L
NO3-N and a soluble COD of 200 mg/L. The operational cycle was
similar to that of the pilot-scale reactor, with a 21.5-h reaction
phase, 2-h stripping phase, 20 min settle and 10 min of decant.
During the react phase, SBR-1 had a 12-h anaerobic phase and a 9.5-
h anoxic phase; SBR-2 had an 8-h anaerobic phase and a 13.5-h
anoxic phase. Both reactors were operated at an HRT of 4 days
and a solid retention time (SRT) of 60 days. A solution of sodium
acetate and acetic acid (3 g COD/L, pH = 5.0) was used as the carbon
source for denitritation. The pH of the both reactors was main-
tained at 7.5 by automatic addition of 1 M HCI. The same decoupled
feeding strategy as the pilot-scale SBR for acetate and nitrite was
used to enrich for N,O-producing bacteria in the bench-scale
reactors.

2.3. Chemical analysis of water and biomass samples

Water samples from the pilot-scale reactor were filtered
through 0.45 pm Nylon filters and stored at —20 °C before analysis.
For the bench-scale studies, water samples were filtered and stored
at 4 °C before analysis. Standard Methods (Rice et al., 2017) were
used for analysis of ammonia, nitrite, nitrate, mixed liquor total
suspended solids (MLTSS), mixed liquor volatile suspended solids
(MLVSS), soluble chemical oxygen demand (sCOD) and total
chemical oxygen demand (tCOD). Poly-3-hydroxybutyrate (PHB)
and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were
extracted from lyophilized biomass, depolymerized, methylated
and measured on an Agilent 6890N gas chromatography with flame
ionization detector and a HP-5 column (Agilent, CA, USA) as pre-
viously described (Myung et al., 2015). Concentrations of measured
PHA monomers were denoted as 3-hydroxybutyrate (HB) and 3-
hydroxyvalerate (HV). Headspace gaseous samples were collected
with vacuum serum bottles and analyzed on a Varian 3800 gas
chromatography (Agilent, CA, USA) with a Porapak Q column, a 5 A
molecular sieve column and a thermal conductivity detector
(Scherson et al., 2014). Total carbohydrate content of lyophilized
biomass samples was determined by the anthrone method
(Gerhardt et al., 1994).

2.4. DNA extraction and illumina sequencing

Genomic DNA was extracted from 11 pilot-scale reactor biomass
samples and 5 bench-scale SBR-2 biomass samples using the
FastDNA Spin Kit for soil (MP Biomedicals, Solon, OH) per manu-
facturer’s protocol. A PCR amplification targeting the V3 and V4
region of bacterial 16S rRNA gene was performed using forward
primer S-D-Bact-0341-b-S-17 (5'- CCTACGGGNGGCWGCAG) and
reverse primer S-D-Bact-0785-a-A-21 (5’- GGACTACHVGGGTATC-
TAATCC) (Klindworth et al., 2013). A 25-uL PCR reaction was carried
out using 0.25 uM of each primer, 2X Fail-Safe PCR buffer F (Epi-
centre, Madison, WI), 1.25 units of AccuPrime™ Taq DNA Poly-
merase High Fidelity (ThermoFisher, Carlsbad, CA), and 100—140 ng
of genomic template DNA. The PCR temperature profile was as
follows: (i) an initial melting step at 95 °C for 5 min, (ii) 25 cycles
consisting of 95 °C for 40 s, 55 °C for 2 min and 72 °C for 1 min, and

(iii) final elongation at 72 °C for 7 min. An index PCR and an
amplicon clean-up were conducted subsequently according to
[llumina-guidance (San Diego, CA, USA). The amplicons were
pooled and sequenced on the Illumina MiSeq platform through
MiSeq Reagent Kit V2 with paired-end 2 x 250 base reads by
Protein and Nucleic Acid Facility (PAN, Stanford, CA). The raw
sequences were deposited via the NCBI Sequence Read Archive
(SRA) system under the accession numbers SRR10074424 —
10074435 for the pilot-scale reactor and SRX6720597 —
SRX6720601 for SBR-2. The bacterial operational taxonomic units
(OTUs) were identified using the Mothur platform (Kozich et al.,
2013) with the SILVA reference file. 80,000 reads per sample
were randomly selected from the raw sequences in the pilot-
scale reactor samples, via the sub.sample command in Mothur
and filtered generating more than 40,000 sequences for the ten
samples, except day 194 and 235, which have about 2,000 and
9,000 sequences respectively. The relative composition of the
microbial communities was established after removing members
with abundance less than 1%.

Family-based Non-metric multidimensional scaling (NMDS)
was conducted to visualize dynamics in microbial community
structures over long-term operation of the pilot-scale reactor
and the bench-scale SBR-2. NMDS was performed on 16S rRNA
amplicon sequencing results at family level using Bray-Curtis
distance ordination. Both the computed stress (<10) and insta-
bility (<10~4) satisfied the corresponding criteria (McCune et al.,
2002). NMDS analysis was conducted in R v. 3.6.1 programming
environment using the package “vegan” v.2.5—6 (Oksanen et al.,
2010).

2.5. RNA extraction and real-time PCR of nirS

Two sets of triplicates of 1 mL of mixed liquor samples was
collected from the pilot-scale SBR at each different time point
during an operational cycle. One set of samples were centrifuged
immediately and resuspended in 1 mL of RNAlater (Thermo Fisher,
MA, USA) solution before storing at —20 °C. The purification of
miRNA and total RNA was carried out with miRNeasy Micro Kit
(QIAGEN, MD, USA) per manufacturer’s protocol after a 10x dilution
of each sample. On-column DNase digestion was done using QIA-
GEN RNase-Free DNase kit. The RNA QC was done with Thermo
Fisher NanoDrop OD reading and Agilent Bio-analyzer NanoChip.
cDNA was synthesized with iScript cDNA Synthesis Kit (Bio-Rad,
CA, USA). 10 ng of RNA template from each sample was used for the
20 uL of cDNA synthesis dissolved in the designated nuclease-free
water. 1 pL of cDNA template was used for a reaction of
quantitative-PCR (qPCR) to detect nirS gene using the primer set
nirScd3aF/nirSR3cd (Throback et al., 2004; Kandeler et al., 2006;
Wei et al.,, 2015). The other set of samples were used for extraction
of genomic DNA following the method described in Section 2.4.
qPCR calibration and measurement of the 16S rRNA gene was car-
ried out using genomic DNA; qPCR of the nirS gene was carried out
using ¢cDNA (Scherson et al., 2013). To quantify nirS expression, the
transcript abundance of nirS gene was normalized to the abun-
dance of the 16S rRNA gene.

2.6. Nitrite removal, N0 conversion, N,O yield, PHA conversion and
utilization

Three parameters were used to quantify the efficiencies of ni-
trite removal and N,O production, and two parameters were used
to quantify the synthesis and utilization of PHA as defined by the
following equations:
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[NOE} Effluent ™ VEﬂluent

NO; removal efficiency = <1 - ) x 100%

[NOZ—} Influent x Vlnﬂuent
(1)

N> O conversion efficiency

_ [N20]aq % 2 x Vro Liquia + [N20lgas X 2 X Vieadspace « 100%

[Noﬂmﬂuem X Vlnﬂuent - [NOE]Ejﬂuen[ X Vrotal Liquid

(2)

N, O yield — [N20]oq % 2 % Vroa Liquid + [IN20]gas X 2 % Vieadspace
B =

[Noi]mﬂuent X Vlnﬂuent
x 100%

(3)

PHA conversion yield

[PHA]ﬁnal_anaerobic - [PHA]initial_anaerobic (4)
[Acetate} initial_anerobic — [Acetate]ﬁnal,anaerobic

(expressed as gCOD-PHA/gCOD-Ac, or molC-PHA/molC-Ac; gCOD-
PHA = [HB] x 144 gCOD/mol + [HV] x 192 gCOD/mol)

[PHA]initial_anoxic - [PHA}ﬁnal_anoxic
[NO; ] NO; |

PHA utilization efficiency =

initial_anoxic — [ final_anoxic

(5)

(expressed as gCOD-PHA/gN-NO3)

Dissolved N0 concentrations, [N20]qq, were monitored using an
in-situ probe in both the pilot and follow-up bench scale studies. In
the pilot-scale reactor, N,O in the gas phase was found to be present
at levels less than equilibrium and gas mixing was insufficient,
preventing use of measured [N;0]qq for calculation of N0 conver-
sion efficiencies and yields. This issue was corrected in follow-up
bench-scale studies using well mixed reactors and small head-
space volumes that were only flushed during periods of stripping.
Independent measurements of gas and liquid phase N,O concen-
trations confirmed equilibrium conditions within both reactors.
Accordingly, N,O conversion efficiencies and yields, estimated us-
ing Henry's constant (Hnzo = 2.4 -1072 M bar™!), are only reported
for the bench-scale reactors.

3. Results and discussion
3.1. Long-term nitrous oxide production

Performance of the pilot-scale reactor and the bench-scale re-
actors was monitored and compared during long-term operation.
In the pilot-scale SBR, MLVSS was stable at 2750 + 410 mg/L and
average dissolved N,O at the end of the anoxic phase was
6 + 3 mg N/L. Occasional overdose of polyamide-based coagulant
resulted in the release of organic particulates from the upstream
centrifuge, which passed through the nitritation reactor. As a result,
coagulated organic particulates were transferred into the nitrous
denitritation reactor together with nitrite at the end of each
anaerobic phase, increasing the COD/N input ratio while simulta-
neously loading the reactor with organic carbon and nitrogen,
preventing the desired decoupling of carbon and nitrogen inputs
needed for PHA and N0 production (Scherson et al., 2013, 2014;
Gao et al,, 2017). A settling tank was then added to remove the
coagulated solids in the nitrified centrate. Production of N,O was

unstable, and an upstream nitrate perturbation (days 250—260)
likely also contributed to the low N,O yields. After switching to a
surrogate nitrified centrate feed on day 258 and decreasing the
anaerobic period to 7 h, N,O production increased dramatically
(Fig. S4 and Table S1). On day 305, nitrogen loading was doubled to
2.0 kg N/m>3-d and aqueous N,O concentration further increased to
35 mg N/L.

Because of time constraints on the pilot study, follow up bench-
scale studies were performed. These studies focused on the impacts
of the relative lengths of the anaerobic and anoxic periods. The two
SBRs were inoculated with the pilot-scale reactor biomass and
operated with similar start-up conditions but with different
anaerobic phase durations. After 30 days of operation, both reactors
reached MLVSS levels exceeding 3,000 mg/L, and performance of
the two reactors differed dramatically.

During operation with a 12-h anaerobic phase, SBR-1 was
similar to the pilot reactor, with transient production of N,O
(Fig. 2a). The average nitrite removal efficiency was 94% (+12%,
n = 150) from day 100—250. Wildly fluctuating N,O production was
observed, with average yield below 30%. Residual nitrite was partly
decanted and discharged after settling, and partly carried over to
the next cycle in SBR-1. To ensure sufficient reducing equivalents
were available for nitrite reduction to N,O, acetate input was
increased while keeping nitrite input constant on day 300, resulting
in a COD/N input ratio increase from 3.0 to 3.5. Improved nitrite
removal efficiency (96% + 2%, n = 150) was observed from day 300
to day 450 with statistical significance (Student’s t-test,
p = 125 x 108). After a further increase in COD/N ratio, N,O
production resumed on day 370 but the N5,O yield continued to
fluctuate.

SBR-2 was operated for 600 days and achieved stable N,O
production during operation with an 8-h anaerobic phase (Fig. 2b).
After 90 days of startup, MLVSS levels reached 3000 mg/L. N,O
production was unstable during startup, but the rate of nitrogen
removal rate was stable at 95%. N,O production stabilized after 150
days of operation. From day 150—300, the average nitrogen
removal rate was 96% (+6%, n = 150), with an N,O yield of 70%
(+16%, n = 45). Similarly, the input ratio of COD/N was increased
from 3.0 to 3.5 from day 300 onwards to ensure sufficient electron
donor for nitrite removal. As a result, the average nitrogen removal
rate increased to 98% (+3%, n = 150) from day 350—500, a statis-
tically significant improvement over days 150—300 (Student’s t-
test, p = 1.25 x 10~%). In addition, this change in SBR-2 supported
greater biomass accumulation: a near doubling of MLVSS occurred,
with measured values approaching 6,000 mg/L (Fig. S8, Table 1).
The elevated biomass levels that resulted from increased COD/N
input ratios led to an increase in anaerobic acetate uptake from 45
mgCOD/L-h to 114 mgCOD/L-h, whereas the specific acetate uptake
rates remained constant (from 0.015 to 0.018 mgCOD-Ac/mgCOD-
VSS-h). This enabled further shortening of the anaerobic phase to
7 h and shortening of the anoxic phase to 4 h, decreasing total cycle
time to 12 h and enabling an increase in N,O yield to 87% on days
535—600.

Table 1 compares key operational parameters for the three SBRs.
In all cases, a decrease in anaerobic phase duration resulted in more
efficient and stable N,O production. After switching to a 12-h cycle
with a 4-h anaerobic phase, SBR-2 achieved high volumetric ni-
trogen loading rates (0.25 kg N/m3-d) with efficient N;O produc-
tion. Decreasing the cycle time from 24 h to 12 h resulted in a 50%
decrease in HRT (i.e., from 4 days to 2 days).

3.2. PHA utilization and denitritation

Polyhydroxyalkanoate (PHA) granules provide the reducing
power needed to drive reduction of nitrite to N,O (Scherson et al.,
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Fig. 2. Dissolved N,O concentrations at the end of the anoxic periods: (a) bench-scale SBR-1 (12-h anaerobic period; 24-h cycle time), and (b) bench-scale SBR-2 (8-h anaerobic
period; 24-h and 12-h cycle times). Intensively sampled cycles are marked with an asterisk symbol (*).

Table 1

Summary of operational parameters for pilot-scale and lab-scale nitrous denitritation reactors.

Pilot-scale SBR

Follow-up
Bench-scale 1

Follow-up
Bench-scale 2

Anaerobic Phase, ta, (h) 12 7

Total Cycle Time, tc (h) 24 24
Hydraulic Residence Time, HRT (d) 10 10
Solid Retention Time, SRT (d) 60 60

Mixed Liquor Suspended Solid,
MLTSS/MLVSS (mg/L)

Performance Stability

Maximum Nitrogen Loading (kgN/m>/d)
No. of Operational Cycles

2600 + 607/2444 + 537

0.2
26

0.1
126

3025 + 86/2809 + 86

12 8 4

24 24 12

4 4 2

60 60 30

2569 + 3972326 + 402 3354 + 375/3134 + 361 6389 + 457/6098 + 484
- + ++

0.12 0.12 025

497 301 170

2014). Accumulation of PHA depends upon the relative rates of PHA
polymerization and depolymerization (Arias et al., 2013). Fig. 3 il-
lustrates changes in PHA levels for two intensively sampled

operational cycles in the pilot reactor. For a 11-h anaerobic phase
and a total cycle time of 24 h (Fig. 3a), PHA levels increased for the
first 8 h then declined for hours 8—11, likely due to decay. During
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the subsequent 13-h anoxic phase, PHA levels continued to wasted and partly carried over to the anaerobic phase of the sub-
decrease due to decay and also due to oxidation of PHB by nitrite sequent cycle, where the added acetate drove complete denitrifi-
with coupled reduction of nitrite to N20. Residual nitrite was partly cation to N, rather than N;O. The observed PHA utilization
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continuously recorded by microsensor. All other concentrations were analytical measurements from samples taken at discrete time points. Changes in total carbohydrates reflects

changes in intracellular glycogen.

efficiency was 20 gCOD/gN ratio, a very large value reflecting
inefficient use of PHA for N20 production. Over many cycles,
however, production and consumption of N,O was observed, sug-
gesting that shortening of the anoxic period could limit PHA con-
sumption and improve recovery of N,O (Fig. S2). Accordingly, the
anaerobic phase was decreased to 7 h, and a PHA utilization effi-
ciency of 3.9 gCOD-PHA/gN-NO2- was obtained (Fig. 3b), as dis-
solved NO levels increased to 13 mg N/L. The conversion yield of
acetate to PHA in COD units improved to 70%. To maintain a con-
stant cycle time, the anoxic phase was extended to 13.5 h. Under
these conditions, nitrite removal efficiency increased to 96%, but
residual nitrite persisted and was carried over to the next opera-
tional cycle.

The impacts of a shortened anaerobic period and a shortened
anoxic period were further evaluated and compared over an
extended period of operation in bench-scale reactors SBR-1 and
SBR-2. Both reactors were initially operated at the same HRT and

cycle time, but SBR-1 was subject to a longer anaerobic phase (12 h)
than SBR-2 (8 h, then 4 h). The extended anaerobic period evalu-
ated in SBR-1 selected for unstable operational performance
whereas the shortened anaerobic period evaluated in SBR-2
selected for both a stable community and stable long-term
performance.

In SBR-1, three distinct patterns of nitrite consumption were
observed (Fig. S3) as the microbial community changed: in the first
(Fig. S3a), nitrite residual from the anoxic phase carried over into
the anaerobic phase of the next cycle (as in the pilot reactor); in the
second (Fig. S3b), nitrite was reduced sequentially to N,O then N, in
the anoxic phase and these steps were coupled to PHA accumula-
tion, PHA consumption, and cell growth; in the third (Fig. S3c),
nitrite residual was eliminated, with complete acetate assimilation
during the anaerobic phase (similar to SBR-2, described below). The
negative impact of residual nitrite led to unstable N,O production
during long-term operation of SBR-1 (Fig. 2a).
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In SBR-2, a stable pattern similar to the third pattern of SBR-1
emerged after ~200 days of operation (Fig. S3d): acetate was
incorporated into PHA during the anaerobic phase, with efficient
and stable N,O production in the anoxic phase. Acetate uptake and
PHA synthesis was driven by oxidation of glycogen (Fig. 4). A
similar study implicated denitrifying glycogen-accumulating or-
ganisms as likely N,O producers (Zeng et al., 2003). The conversion
yield of acetate to PHA was 93% during the anaerobic phase. When
nitrite was added at peak PHA levels, nitrite removal efficiency was
94%, and N30 yield reached 74% (Fig. S3d). Efficient utilization of
PHA was achieved, as the consumption ratio of PHA to nitrite
reached 2.4 gCOD/gN. N,O was stripped by air and recovered at
peak concentration. After increasing the COD/N input ratio, rapid
PHA accumulation was accompanied by increased biomass con-
centrations, suggesting the feasibility of a shortened anaerobic
phase. Simultaneously, though, the elongated anoxic phase that
resulted after nitrite depletion resulted in further reduction of N,O
to Ny, decreasing N,O yield before stripping. Accordingly, on day
520, the duration of the anaerobic and the anoxic phases were
reduced to 5 h apiece in a 12-h cycle (Fig. 4b). N,O yield increased
from 43% to 87%, and the volumetric loading rate of nitrogen
doubled, reaching 0.25 kg N/m>-d. Decreasing the operational cycle
in SBR-2 to from 24 h to 12 h minimized PHA fermentation during
the anoxic phase, and improved PHA utilization efficiency to 2.4
gCOD-PHA/gN-NO2- (Fig. 4). The bench-scale testing thus suc-
cessfully addressed the concern of PHA insufficiency encountered
during pilot-scale testing.

Comparing PHA synthesis and utilization for nitrous deni-
tritation from all three systems studied, a positive linear correlation
was observed between PHA synthesized per acetate (mol C/mol C)
at the end of anaerobic phase and N0 yield during anoxic phase
(ANOVA, F(1,7) = 84.78, p < 0.001), with an R? of 0.92 (Fig. 5).
Minimizing PHA fermentation improves the PHA/Ac ratio. A
gradual increase in NO production accompanied improved effi-
ciency of carbon storage was shown from pilot-scale to bench-scale
SBR-1 and SBR-2. The linear relationship predicts that as the PHA/
Ac ratio approaches 1.7, N,O production from nitrite approaches
100%. A similar linear correlation between efficiency of carbon
storage as PHA and N,O accumulation for mixed heterotrophic
denitrifying cultures has been previously reported (Liu et al., 2015).
Notably, the PHA/Ac ratio exceeded one in SBR-2 as the monitored

PHA included both HB and HV monomers. The HV monomers
derive from glycogen, as expected based upon the known
biochemical pathways of GAOs. A proposed model and experi-
mental observations reported PHA/Ac ratios ranging from 1.65 to
1.91 for GAOs (Filipe et al., 2001; Zeng et al., 2002). This ratio may
thus be a good indicator of the relative abundance of denitrifying
GAOs, the efficiency of carbon utilization, and capacity for N,O
production across systems with different microbial community
structures.

3.3. Mechanisms of N,O production and consumption

The timing of nitrite addition had a significant impact on N,0
production. As shown in Fig. 3, shortening the anaerobic phase to
coincide with peak PHA significantly improved N,O production.
The expression of nirS was observed immediately after nitrite
addition (Fig. 3¢), which exhibited an immediate tenfold increase in
transcript abundance. When acetate levels decreased to zero,
reduction of nitrite to N,O was coupled to PHA oxidation. Further
reduction of N,O to N, may have been limited by competition for
reducing equivalents, or nitrous oxide reductase may have been
inhibited due to high levels of inhibitory free nitrous acid (FNA)
(Richardson et al., 2009). As nitrite was consumed and FNA levels
fell from 2 to 0.8 pg N/L (Anthonisen et al., 1976), inhibition of
nitrous oxide reduction may have been alleviated enabling pro-
duction of Ny (Zhou et al., 2008). Similar observations of cascading
denitrification reactions, inhibitory intermediates, and competition
for electrons have been reported, especially under electron donor-
limited conditions (Pan et al., 2013; Wang et al., 2018).

Diverse microbial communities were selected by the operating
conditions of the nitrous denitritation reactors. In the pilot-scale
reactor, bacteria from the families Comamonadaceae, Xanthomo-
nadaceae, and Zoogloeaceae were enriched and identified by 16S
amplicon sequencing. A stable community structure established by
day 194, coinciding with a stable pattern of N,O production. The
dominant genus was a Diaphorobacter strain (Woo, 2017).
D. nitroreducens and D. polyhydroxybutyrativorans both have the
genes required for denitrification and for PHA synthesis and
degradation (Tabrez Khan and Hiraishi, 2002; Zuo et al., 2015).
Perturbations in the microbial communities correlated with upsets
in upstream nitritation and operational changes (Fig. 6a). A
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significant change in the relative abundance of Paracoccus occurred
on day 257, likely due to an increase in nitrate in the feed. Para-
coccus denitrificans is a facultative denitrifier possessing both ni-
trate and nitrite reductase, and respiratory nitrate reductase (NAP)
is preferentially expressed under carbon or nutrient limiting con-
ditions (Blaszczyk, 1993; Sears et al., 1997). Paracoccus also pos-
sesses genes for both PHA synthase and depolymerase (Gao et al.,
2001). Thauera species are heterotrophic denitrifiers (Philipp and
Schink, 2012) that can accumulate PHA in full-scale wastewater
treatment plants (Oshiki et al., 2008). They became more prevalent
when the influent was switched to surrogate nitrified centrate and
persisted when the influent was switched back to effluent from the
nitritation reactor.

Among the identified N,O producing candidates, Diaphorobacter
possesses nirK genes encoding for nitrite reductase, whereas
Thauera and Comamonas possess nirS genes (Heylen et al., 2006).
Paracoccus has both nirS and nirK genes. Therefore, nirS primers
were able to track the expression of nitrite reductase encoding
genes in the pilot-scale denitritation SBR, when its microbial
community contained mainly Thauera and Paracoccus. The nirS

primer, nirScd3aF/nirSR3cd, used in this study, has been widely
used for pure cultures including Paracoccus as well as for envi-
ronmental samples (Throback et al., 2004; Kandeler et al., 2006;
Wei et al., 2015). The expression of nirK genes, on the other hand,
showed no significant change over time. Moreover, Thauera,
Comamonas and Paracoccus species were known to have genes
encoding for nitrous oxide reductase (Hoeren et al., 1993; Liu et al.,
2013; Throback et al., 2004). They might contribute to reduction of
N0 to nitrogen gas during an extended anoxic phase.

SBR-1 was inoculated with a seed from the pilot-scale reactor.
Over its 500 days of operation, the bacterial community experi-
enced significant shifts in composition. Thauera that was likely
transferred from the pilot-scale SBR dominated SBR-1 on day 351
constituting 43% of the 16S rDNA clones (Fig. S5a). Other potential
N,O-producing microorganisms, including Diaphorobacter and
Paracocus, were detected. While both SBR-1 and SBR-2 were seeded
by the pilot reactor, the operational mode in SBR-2 selected against
persistence of Thauera (Fig. 6b) and selected in favor of an uncul-
tured Defluviicoccus-related strain, which comprised a majority of
the 16S rDNA clones detected (Fig. S5b). The relative abundance of
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the Defluviicoccus-related strain (Rhodospirillaceae family) was
stable at 37—39% for days 494—587. Full-length 16S rRNA clone li-
brary results for dominant denitrifying glycogen accumulating or-
ganisms (GAOs) in the SBR showed only 92% similarity to
Defluviicoccus vanus (cluster I, Fig. S7). The closest match with a 99%
similarity is to a sequence from an uncultured Defluviicoccus clone
recently designated as the sole member of cluster IV (Mcllroy et al.,
2009). To date, none of the Defluviicoccus-related GAOs have genes
for complete denitrification. Cluster I Defluviicoccus-related GAOs
were reportedly able to reduce nitrate, but not nitrite (Wang et al.,
2008). According to a recent metagenomic study (Wang et al.,
2014), Cluster II Defluviicoccus-related GAOs reportedly lack
dissimilatory denitrification genes. Addition of nitrite for enhanced
biological phosphorus removal (EBPR) is postulated to suppress
growth of GAOs (Taya et al., 2013). In this study, however, Deflu-
viicoccus Cluster IV were enriched and became dominant, and the
reactor produced N,O under stable operating conditions. It thus
appears likely that these organisms are responsible for carbon
storage and for nitrous denitritation, but additional studies are
needed to confirm such phenotype within Cluster IV Defluviicoccus.
GAOs have been previously implicated in the production of N,O
(Zeng et al., 2003). Relatively shorter anaerobic phase in SBR-2
enriched for bacteria with more rapid acetate uptake, where GAO

exhibited competitive advantages with glycogen-driven acetate
uptake and PHA synthesis.

As shown in the NMDS plot of Fig. 7, two distinct clusters reveal
that the microbial communities of the pilot-scale reactor differed
significantly from those of bench-scale SBR-2 on a two-dimensional
ordination (stress = 0.10, r* = 0.94). As expected, the inoculum of
the pilot-scale bioreactor and that of SBR-2 clustered at different
locations. Shifts in community structure of the bench-scale reactor
after transferring an inoculum from the pilot-scale reactor are also
evident. Overlaying the key operational parameters as vectors, an
increase in the duration of anaerobic phase correlated negatively
with N,O yields (Table S3). Moreover, the microbial communities in
the pilot-scale SBR (day288—304) and bench-scale SBR-2
(day103—587) shifted towards clusters with a higher N,O yield,
likely due to the shortened anaerobic phase and increased nitrogen
loading (Fig. 7). Other factors not assessed in this study could be
associated with the observed shifts in community structure.

3.4. Application of CANDO in sidestream nitrogen removal

The highest volumetric nitrogen loading rate achieved to date
for CANDO is 0.25 kg N/m>-d - the maximum loading rate attained
for SBR-2 in this study. This value is comparable to other sidestream



Z. Wang et al. / Water Research 173 (2020) 115575 1

treatment processes, such as Anammox, but needs validation at
pilot scale. The benefits of CANDO as a shortcut nitrogen removal
process include a reduced aeration requirement, savings in
reducing equivalents, reduction in biosolid production, and po-
tential for energy recovery (Gao et al., 2014). A recent stoichiometry
study has verified the low biomass yield that results from alter-
nating consumption and storage of organic carbon in CANDO
(Wang et al., 2020).

Additional CANDO pilot-scale testing is needed, now with the
benefit of hindsight provided by this study. We note that many of
the unexpected operational issues that resulted in operational
upsets originated in the upstream pilot-scale nitritation reactor
(e.g., polymer addition, centrifuge performance, pH control, DO
control). This calls for more attention to upstream process control
in general. Performance of the nitritation stage is also an issue
common to other shortcut nitrogen removal processes. A signifi-
cant operational cost is the cost of carbon source (e.g., sodium ac-
etate, acetic acid) for pilot-scale testing. Such costs can potentially
be reduced by using primary effluent in full-scale applications
(WeilRbach et al., 2018b). Such a system needs evaluation at pilot
scale. A final challenge is low-energy recovery of dissolved N0, for
example, by application of membrane-based stripping (Weil3bach
et al., 2018a). This too requires evaluation at pilot scale.

4. Conclusions

A key insight from this work is the finding that the relative
duration of anaerobic and anoxic phases is crucial to efficient N,O
production. Especially important is management of PHA, a key
electron storage compound. Scheduling of nitrite addition to
coincide with peak PHA accumulation ensures efficient use of
reducing equivalents for nitrite reduction to N,O. Long-term
operation of bench-scale reactors with different anaerobic/anoxic
schedules enriched for distinctive microorganisms with different
patterns of PHA accumulation and denitritation. Shortening of the
anaerobic and anoxic phases improved yield and enabled stable
production of N,O at both pilot- and bench-scale.
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