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a b s t r a c t 

Stormwater runoff pollution has become a key environmental issue in urban areas. Reliable estimation of 

stormwater pollutant discharge is important for implementing robust water quality management strate- 

gies. Even though significant attempts have been undertaken to develop water quality models, determin- 

istic approaches have proven inappropriate as they do not address the variability in stormwater quality. 

Due to the random nature of rainfall characteristics and the differences in catchment characteristics, it is 

difficult to generate the runoff pollutographs to a desired level of certainty. Bayesian hierarchical mod- 

elling is an effective tool for developing complex models with a large number of sources of variability. A 

Bayesian model does not look for a single value of the model parameters, but rather determines a distri- 

bution of the model parameters from which all inference is drawn. This study introduces a Bayesian hi- 

erarchical linear regression model to describe a catchment specific runoff pollutograph incorporating the 

associated uncertainties in the model parameters. The model incorporates catchment and rainfall char- 

acteristics including the effective impervious area, time of concentration, rain duration, average rainfall 

intensity and the antecedent dry period as the contributors to random effects. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Stormwater runoff is perceived as a major contributor to wa- 

er quality degradation in the receiving water bodies in urban ar- 

as ( Göbel et al., 2007 ; Goonetilleke et al., 2005 ; Sheng et al.,

006 ). Increased extent of impervious surfaces such as pave- 

ents and roofs in the urban environment accumulate significant 

oads of pollutants such as solids, nutrients, organic matter, met- 

ls and hydrocarbons during the dry weather period prior to a 

torm event ( Goonetilleke et al., 2009 ; Gunawardana et al., 2011 ;

elmreich et al., 2010 ; Jayarathne et al., 2019 ; Liu et al., 2016 ).

he reduction in stormwater infiltration and the increase in surface 

unoff subsequently wash-off high loads of accumulated pollutants 

uring rain events and discharges into receiving water. These pro- 
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esses impose adverse water quality and quantity consequences in 

rban areas. 

It is commonly accepted that suspended solids (SS) are 

n extremely important indicator of water quality deterioration 

 Bilotta and Brazier, 2008 ). Also, most importantly, SS also pro- 

ide a medium for the accumulation, transport and storage of 

ther pollutants. These include toxic compounds such as heavy 

etals and hydrocarbons. Therefore, SS can be considered as a 

urrogate indicator of stormwater quality ( Allenby et al., 2005 ; 

unawardana et al., 2011 ; Hsieh and Davis, 2005 ; Liu et al., 2010 ;

iguntanna et al., 2013 ; Sheng et al., 2006 ; Williamson and Craw- 

ord, 2011 ). Therefore, the understanding of SS behaviour during a 

ainfall-runoff event and subsequently being able to predict such 

ehaviour meets an important need in urban water quality man- 

gement. 

A range of water quality models have been developed during 

he past decades using deterministic approaches. However, these 

ave constraints due to limitations in data and not being able to 

https://doi.org/10.1016/j.watres.2021.117076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2021.117076&domain=pdf
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ccount for the variability associated with pollutant discharge pat- 

ern during a runoff event. Further, such models are based on data 

ollected from a limited number of rainfall events ( Fu et al., 2019 ;

aris et al., 2016 ; Obropta and Kardos, 2007 ; Tiefenthaler et al., 

0 0 0 ). Researchers have observed that large variability and uncer- 

ainty in stormwater quality during stormwater runoff discharge is 

argely dependent on rainfall, runoff and catchment characteristics 

 Memon et al., 2017 ). 

It is important to have an in-depth understanding of the rela- 

ionships which describe the pollutant concentration at different 

ime periods during the resulting stormwater runoff event in or- 

er to formulate effective stormwater management strategies. Most 

ommonly, stormwater runoff concentration has been modelled as 

n exponential decay function of the runoff volume or the available 

urface pollutant load ( Bach et al., 2010 ; Qin et al., 2016 ; Qin et al.,

010 ). However, with the demand for large datasets and long-term 

ecords needed by deterministic models for model calibration and 

alidation, probabilistic methods have proven efficient when com- 

ared to deterministic approaches ( Wan et al., 2014 ; Daly et al., 

014 ). 

Conventional statistical techniques such as multiple linear re- 

ression and ordinary least squares regression, estimates an in- 

erval for the likely value of a parameter and selects one of 

he point estimate (mean, median) for each in a model describ- 

ng the relationship between stormwater quality and the influ- 

ntial variables. However, stormwater quality can, on average, 

ary depending on the nature of a rainfall event and catchment 

haracteristics. Therefore, it is important to capture this variabil- 

ty when modelling. However, spatial and temporal variability of 

he parameters have not been discussed in-depth in past stud- 

es ( Amiri and Nakane, 2009 ; Cristiano et al., 2017 ; Kang et al.,

010 ). Vogel et al. (2005) introduced a bivariate linear relation- 

hip between the log transformed pollutant concentrations and 

ow. Allenby et al. (2005) derived a stochastic model for estimat- 

ng SS loads and its variability during rainfall events which allows 

or acoounting for the uncertainity in the model variables. Even 

hough, these models have used advanced statistical tools, they 

till demand extensive field investigations. Wan et al. (2014) ex- 

ended an existing water quality model by adopting a Bayesian hi- 

rarchical approach for the modelling. The researchers examined 

he relationship between land use and land cover in relation to 

ater quality and found that Bayesian regression approach is more 

eliable compared to simple regression for inferring the relative 

ontribution of land use to water quality. 

Bayesian hierarchical modelling approach has proven to be a 

owerful tool for providing probabilistic predictions with associ- 

ted uncertainty. Most importantly, with limited number of field 

nvestigations, this approach facilitates the derivation of complex 

odels that incorporate a large number of sources of variability 

y decomposing interactions of observed data into a set of sim- 

le conditional models ( Wan et al., 2014 ). Guo et al. (2019) used a

ayesian hierarchical model structure to identify the key predictors 

f temporal variability and showed that streamflow is the most 

mportant determinant of temporal variability. However, they have 

ot considered variability of site-specific conditions and their in- 

uence on water quality. This paper has considered both, the vari- 

bility in site-specific conditions and hydrological conditions and 

heir subsequent impact on the variability in stormwater concen- 

ration during a runoff event. 

This study adopted the Bayesian hierarchical modelling ap- 

roach to model the runoff pollutographs. The objectives of the 

tudy were: 1) to analyse the within event variability and be- 

ween event variability of SS concentration; 2) to relate variabil- 

ty in SS concentration to selected catchment characteristics and 

ainfall characteristics and finally, 3) to derive catchment specific 
c

2 
unoff pollutographs by assessing the associated uncertainty due 

o the variability in rainfall-runoff characteristics. 

. Materials and Methods 

.1. Data Collection 

Three urban catchments, namely, Coomera, Highland park, and 

he Brisbane domestic airport apron in Queensland State, Australia 

ere selected for the data collection. Both, Coomera and Highland 

ark are residential catchments and have three sub-catchments 

ach. The airport apron is a completely impervious surface. Ac- 

ordingly, the collected data was spread over seven different catch- 

ents having different physical characteristics. For the baseline 

atchment data, a desktop study was conducted to collate the 

equired information such as total area and land cover includ- 

ng pervious and impervious surface fractions. Accordingly, catch- 

ent characteristics including the effective impervious area frac- 

ion, fractions of different types of impervious surfaces including 

oofs, roads and driveways and time of concentration of the catch- 

ent were selected for the analysis. Table S1 in Supplementary In- 

ormation provides a summary of the key characteristics of each 

atchment. 

Tipping bucket rain gauges were used to collect the rainfall 

ata and data were recorded using a data logger. The data gen- 

rated by the rain gauges were collated using a Campbell Scientific 

R10 0 0 data logger and transmitted via telemetry. A V-notch weir 

nstalled at the catchment outlet was used to measure the runoff

olume. Accordingly, baseline rainfall and runoff variables widely 

ited in research literature in relation to stormwater quality stud- 

es, namely, rainfall depth, average and maximum intensity, runoff

epth, runoff volume and antecedent dry period for the moni- 

ored events were determined. Altogether, 39 storm events having 

 complete collection of required rainfall-runoff data were used for 

he analysis. Table S2 in the Supplementary Information provides 

 summary of the collected rainfall data conveying the inter-site 

ariability in the data. 

SS concentration was considered as the indicator water qual- 

ty parameter. To obtain stormwater quality data, automatic wa- 

er quality samplers were installed at the catchment outlets. The 

amplers were triggered by rainfall depth and enabled discrete 

tormwater samples to be collected into 1 L plastic bottles dur- 

ng the rising limb and falling limb of the hydrographs resulting 

rom rainfall events. The sampling could be extended up to 24 bot- 

les depending on the rainfall duration. However, the frequency of 

ample collection varied depending on the rainfall duration and 

he runoff volume. Stormwater samples were then transported to 

he laboratory following stipulated standards (AS/NZS 5667.1:1998) 

nd analysed for the SS concentration. SS was tested according to 

est Method No. 2540C (APHA 2005). 

.2. Data Analysis 

.2.1. Preliminary analysis 

As the collected data were in different scales, all the data were 

tandardised such that each variable has a mean of 0 and a stan- 

ard deviation of 1 using the formula given below. 

 = 

x − μ

σ
(1) 

Where, z is the standardised variable, and μ is the mean and σ
s the standard deviation of the unstandardised variable. 

Exploratory data analysis was initially used to identify any 

ollinearity between variables, and thereby facilitating the elim- 

nation of data redundancy. The resulting correlation matrices of 

atchment specific variables and event specific variables are given 
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Fig. 1. Distribution of SS concentration and the fitted linear models for each catchment. 

Note: runoff volume fractions were used instead the runoff volume for the visualization. 
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n Table S3 and Table S4, respectively, in the Supplementary Infor- 

ation. By considering the correlation coefficients between vari- 

bles and the associated scatterplots, the effective impervious area 

EIA), time of concentration (TC), antecedent dry period (ADP), rain 

uration (D) and the average intensity (AvgI) were selected for use 

n the model. Accordingly, the variables such as runoff depth (RoD), 

ainfall depth (RD) and maximum 5 min intensity (MaxI) were re- 

oved to avoid data redundancy. The data matrix used for the 

nalysis is given in Table S5 in the Supplementary Information. 

One of the primary objectives of this study was to analyse the 

ariability in pollutant concentration during a runoff event. How- 

ver, the discrete nature of the collected stormwater quality (SS 

oncentration) data makes it difficult to analyse such variability. 

ater quality samples were not collected at equally spaced time 

ntervals for individual rainfall events. Further, the frequency and 

he number of samples collected for each event varied due to vari- 

tions in the duration of the runoff events. Therefore, it was im- 

ortant to reproduce the entire pollutograph using a common cri- 

erion eliminating limitations in the available data and the limited 

nowledge in the underlying processes. 

.3. Modelling methods 

.3.1. Modelling the runoff pollutograph 

Runoff concentration has generally been described via an expo- 

ential decay model. Based on the observed SS concentrations and 

ork by past researchers, we described the concentration of SS via 

n exponential decay of the form given in Equation 2 ( Borris et al.,

014 ; Brodie and Dunn, 2010 ; Charbeneau and Barrett, 1998 ; 
3 
artor and Boyd, 1972 ). 

 t = C 0 e 
−k V t , (2) 

here, C t is the concentration of SS in the runoff with respect to 

n accumulated runoff volume V t of a rainfall event and C o is a 

roportionality constant which is related to the pollutant concen- 

ration at the beginning of runoff. Here, k is the rate of decay of 

he pollutant concentration. 

Even though, it has been hypothesized that k is a catchment 

pecific parameter, k can fluctuate due to factors such as rainfall- 

unoff conditions ( Al Ali et al., 2018 ; Kim et al., 2005 ). The validity

f the selection of exponential decay form in the modelling was 

hecked with the available data and the corresponding results are 

iven in Table S6 in the Supplementary Information. 

By taking the logarithmic transformation of Equation 2 , 

quation 3 can be obtained. 

n C t = −k V t + ln C 0 (3) 

Equation 3 yields a linear relationship between the runoff vol- 

me and natural logarithmic transformation of concentration. The 

atural log transformation can ensure minimizing measurement 

rror associated with measuring the SS concentration during the 

unoff event and can be appropriately described via a normal dis- 

ribution ( Liu, 2011 ; Sharifi et al., 2011 ; Wan et al., 2014 ). 

In the preliminary analysis, SS concentration data of each event 

as plotted, and linear models were fitted following Equation 3 . 

odel fit for selected events at different catchments are illustrated 

n Fig. 1 . Generally, a model in the form of Equation 3 is a fixed

orm which assumes that the observations are independent of each 

ther given the predictor variables. However, it can be noted that 
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uch independence does not hold for our data ( Fig. 1 ) as the in-

ercept and the slope of the model vary within and between the 

vent and within and between the catchments they belong. This 

ind of dependence or clustering cannot be captured through a 

tandard general linear model. What is needed is a model that 

llows each catchment to have its own intercept and slope (see 

quation 3 ), but still contribute to the associated variability be- 

ween rainfall events. This can be accommodated by including ran- 

om effects into the model (say) for each catchment, and thus ex- 

ending the model given in Equation 3 to a linear mixed effects 

odel ( Nakagawa and Schielzeth, 2013 ). 

.3.2. Linear mixed modelling (LMM) 

LMM is an extension of linear modelling which takes into ac- 

ount the variations explained by the independent variables un- 

er consideration (fixed effects) and the variation not explained by 

he independent variables called the random effects ( Winter, 2013 ). 

andom effects typically represent some grouping variable and al- 

ows the estimation of variance in the response variable within and 

mong these groups (Harrison et al., 2018). 

In terms of Equation 3 , the deviation of the predictions from 

he measured values can be incorporated by adding an error term 

 which is a random variable representing random fluctuations in 

ata as shown in Equation 4. 

n C t = −k V t + ln C 0 + e (4) 

However, there are multiple measurements for each catchment 

btained from different runoff events. As mentioned above, these 

ultiple measurements lead to a violation of the assumption of 

he independence of errors ( Sorensen and Vasishth, 2015 ). There- 

ore, regression parameters ( ln C 0 , k ) vary between catchments and 

etween events as demonstrated in Fig. 1 . Different regression 

odels can be fitted to the data from multiple events in the same 

atchment. 

LMM can account for such variability by catchment and by 

vent. Instead of fitting regression models separately, it can be 

ssumed that the parameters follow a pre-determined statistical 

istribution (such as normal, lognormal, uniform) ( Gelman and 

ill, 2007 ; Pinheiro and Bates, 2000 ). A Bayesian structure facil- 

tates the determination of the parameters in terms of distribu- 

ions where a regression model fails to perform and thereby to as- 

ess the uncertainty in predictions arising from the inter-event and 

nter-site variability in the data. This avoids the requirement of fit- 

ing separate models for different events and different catchments 

 Sandoval et al., 2018 ). 

Accordingly, Equation 4 can be modified by adding terms which 

epresent catchment specific and event specific terms to the inter- 

ept and the slope, and this is referred to as a random effect model 

s given in Equation 5. 

ln C t = ( ln C 0 + u 0 + w 0 ) − ( k + u 1 + w 1 ) V t (5) 

here u 0 and w 0 are the catchment and event specific random 

ffects to the overall intercept and ln C 0 , and u 1 and w 1 are the 

atchment and event specific random slopes. 

Further, these random variables ( u 0 , w 0 , u 1 , w 1 ) can be as- 

umed to follow a known distribution (For example, normal dis- 

ribution with mean zero and variances σ 2 
u 0 

, σ 2 
w 0 

, σ 2 
u 1 

and σ 2 
w 1 

, re- 

pectively). Accordingly, it is possible to incorporate the most ap- 

ropriate combination of the fixed effects and random effects into 

he model based on the observed data by adopting formal model 

election procedures. 

.3.3. Bayesian Modelling 

Bayesian analysis derives the posterior distribution of the pa- 

ameters given some data and prior beliefs about the distributions 
4 
f those parameters, and it is this distribution from which all infer- 

nces are based. Thus, to fit Bayesian models, a prior distribution 

eeds to be defined. The prior distributions are usually defined 

ased on expert knowledge or previously collected data. In cases 

here this is not available (as in this study), vague/flat priors are 

onsidered ( Goddard, 2003 ). The resulting posterior distribution al- 

ows for calculating credible intervals of true parameter values for 

ssessing the uncertainty in the predictions. 

However, often there is no closed form solution to the poste- 

ior distribution. Therefore, approximating it or sampling from it 

irectly can be difficult. This has led to the development of meth- 

ds such as Markov chain Monte Carlo (MCMC) which provide ap- 

roaches to sample from posterior distributions from a wide vari- 

ty of Bayesian models. MCMC involves iteratively proposing val- 

es for the parameters, and accepting/rejecting these with a cer- 

ain probability ( Goddard, 2003 ). Accordingly, multiple chains were 

sed to check whether each converge to the same stationary dis- 

ribution. The subsequent chain of accepted parameter values was 

hen used as a sample from the posterior distribution, once the 

hain had converged to a stationary distribution (which is assumed 

o be the posterior distribution). When performing an MCMC sim- 

lation, it is necessary to define the MCMC simulation parameters 

uch as the number of samples to be derived, number of chains, 

hinning and burn-in. Thinning is the process of using only every 

 

th step of the chain for analysis, while all other steps are dis- 

arded with the goal of reducing autocorrelation and obtaining rel- 

tively independent samples. Thinning avoids bias in the standard 

rror estimate of posterior mean ( Harms and Roebroeck, 2018 ). 

urn-in is the practice of ignoring samples at the initial stages of 

he MCMC algorithm as these are unlikely to be from the posterior 

istribution. 

.4. Linear mixed modelling with Bayesian Hierarchical model 

The Bayesian model structure developed including random in- 

ercepts and random slopes used in the analysis is given below 

n C jit ∼ N 

(
μ jit , σ

2 
)

jit = log C 0 i j − k i j . V t 

og C 0 i j = log C 0 + u 0 i + w 0 j 

og k i j = log k + u 1 i + w 1 j 

 = 1 . . . number of e v ents 

j = 1 . . . number of cat chment s 

 = 1 . . . number of samples per e v ent 

Priors: 

2 ∼ IG ( 0 . 001 , 1 ) 

og C 0 ∼ N ( 0 , 10 ) 

 oj ∼ N 

(
log C 0 , σw 0 

2 
)
, σw 0 

2 ∼ IG ( 0 . 001 , 1 ) 

 oi ∼ N 

(
log C 0 + w oj , σu 0 

2 
)
, σu 0 

2 ∼ IG ( 0 . 001 , 1 ) 

 1 j ∼ N 

(
k, σw 1 

2 
)
, σw 1 

2 ∼ IG ( 0 . 001 , 1 ) 
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Fig. 2. An illustration of Bayesian definition of the variability in concentration for a typical event. 
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 1 i ∼ N 

(
log k + w 1 j , σu 1 

2 
)
, σu 1 

2 ∼ IG ( 0 . 001 , 1 ) 

It was assumed that the logarithmic transformed concentration 

t time t of the event i at jth catchment, ln C jit , is normally dis- 

ributed with mean μ jit and variance σ 2 . Fig. 2 illustrates how the 

istributions have been defined for a typical rainfall event. Accord- 

ngly, the mean natural logarithmic concentration μ jit was defined 

s a linear mixed model with fixed effects C 0 , k and random effects 

 0 i , u 1 i , w 0 j and w 1 j that accounts for the variability in rainfall 

haracteristics and catchment characteristics. The relationship be- 

ween μ jit and V t is given by k i j, which is the catchment and rain- 
5 
all dependent slope parameter. k i j is given as the overall param- 

ter k, plus the variability associated with catchment and event 

ccounted for via the random effect parameters w 1 j and u 1 i . In- 

tead of using C 0 and k directly, the logarithmic transformations of 

 0 and k were modelled to ensure these parameters remain posi- 

ive. 

Vague priors were defined for the parameters as given in the 

odel structure. These vague priors were defined due to the lack 

f past information. Importantly, it was assumed that the rainfall 

vents are nested within catchments as the same rainfall event 

annot occur in two different catchments. 
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Table 1 

Bayesian model checking results for different models defined. 

Model Expected predictive error Special Notes 

1. μ jit = log C 0 − k j . V t pD = 67857.7 and 

DIC = 68429.5 

Each catchment has its own random slope k j which is distributed around the 

overall slope parameter k and r j and captures the variability associated with 

each catchment. 

2. μ jit = log C 0 + u oi − k j . V t pD = 14805.9 and 

DIC = 15577.1 

Event specific random intercept parameter, u oi has been included 

3. μ jit = log C 0 + u oi + w oj − k j . V t pD = 18876.5 and 

DIC = 19070.9 

Catchment specific random intercept parameter, w oi has been included 

4. μ jit = log C 0 + u oi + w oj + r 1 A v gI + r 2 D + 

r 3 ADP − k j . V i 

pD = 14369.2 and 

DIC = 14574.8 

Three rainfall parameters (AvgI, D, ADP) have been included. These variables 

were found to be influenced by the variability in the intercept. 

5. μ jit = log C 0 + u oi + w oj + r 1 A v gI + r 2 D + 

r 3 ADP + c 1 T C + c 2 EIA − k j . V i 

pD = 12946.2 and 

DIC = 13309.6 

Two catchment specific parameters have been included. 

6. μ jit = log C 0 + u oi + w oj + r 1 A v gI + r 2 D + 

r 3 ADP + c 1 T C + c 2 EIA − k j . V i + u 1 i + w 1 j 

pD = 22442.4 and 

DIC = 22634.2 

Two random slope parameters u 1 i and w 1 j 

Note: DIC info (using the rule, pD = var(deviance)/2). 

Table 2 

Summary statistics of MCMC sampling for the selected model (model 5 in Table 1 ). 

DIC is an estimate of expected 

predictive error (lower 

deviance is better) Parameter mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n _ e f f

b[1] 4.145 1.472 1.775 3.099 3.985 5.022 7.413 1.002 1400 

b[2] 2.797 0.787 1.416 2.247 2.729 3.290 4.514 1.003 930 

b[3] 4.204 1.712 1.408 2.967 4.023 5.257 8.011 1.005 1200 

b[4] 5.413 2.142 1.900 3.921 5.152 6.658 10.325 1.001 2400 

b[5] 3.560 2.736 -0.753 1.534 3.191 5.257 9.776 1.001 2700 

b[6] 4.359 1.743 1.433 3.127 4.195 5.464 8.147 1.001 3000 

b[7] 2.399 2.569 -3.565 0.880 2.749 4.166 6.565 1.001 3000 

b 0 0.146 0.325 -0.493 -0.084 0.145 0.371 0.771 1.001 3000 

C1 0.718 2.237 -2.829 -0.828 0.416 2.027 5.837 1.001 2600 

C2 0.162 0.295 -0.418 -0.043 0.156 0.359 0.742 1.002 1900 

K -0.015 0.727 -1.344 -0.537 -0.031 0.478 1.476 1.012 400 

r[1] 0.156 0.729 -1.352 -0.337 0.158 0.671 1.475 1.012 520 

r[2] 0.191 0.741 -1.331 -0.297 0.197 0.716 1.536 1.010 570 

r[3] 0.064 0.757 -1.526 -0.440 0.078 0.600 1.419 1.009 470 

r[4] 0.093 0.726 -1.375 -0.405 0.113 0.610 1.434 1.012 420 

r[5] -0.025 0.746 -1.578 -0.522 -0.005 0.497 1.325 1.011 410 

r[6] 0.067 0.728 -1.409 -0.426 0.082 0.591 1.385 1.012 430 

r[7] 0.020 0.728 -1.478 -0.472 0.037 0.545 1.357 1.012 380 

r1 -0.054 0.233 -0.519 -0.208 -0. 057 0.105 0.399 1.001 3000 

r2 -0.111 0.132 -0.375 -0.200 -0.111 -0.022 0.149 1.001 3000 

r3 0.144 0.120 -0.093 0.063 0.144 0.227 0.381 1.002 1100 

Deviance 287.058 81.971 57.648 256.809 318.294 343.384 361.995 1.045 57 

pD = 12946.2 and DIC = 13309.6. 
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The model was defined using the general structure of a 

ayesian mixed model which was used in the subsequent analysis. 

nce the model was developed, it was necessary to select the most 

ppropriate random effects and variables to include into the model 

or the data. Therefore, several models were developed with the in- 

lusion of more random effects and exclusion of the random effects 

nd compared using the deviance information criterion (DIC). DIC 

s a metric used to compare Bayesian models and is an estimate 

f expected predictive error (lower deviance is better) ( Pooley and 

arion, 2018 ). 

For the MCMC convergence diagnostics, initially, summary 

tatistics of the MCMC sampling were obtained for each of the 

odel parameters including the mean, standard deviations and 

5% upper and lower credible limits. Further, ˆ R (Rhat) was obtained 

or each parameter, another diagnostic which is a measure of how 

ell the Markov chains have mixed and should ideally have a value 

ery close to 1 for the parameters of interest. ˆ R refers to the po- 

ential scale reduction statistic, also known as the Gelman-Rubin 

tatistic ( Sorensen and Vasishth, 2015 ). 
6 
. Results 

.1. Model convergence and model selection 

The model structure given in Section 2.4 describes the approach 

hich was used to derive the relationship between the parameters. 

ccordingly, different models were defined, and posterior predic- 

ive checking was performed to check how well the models fit the 

ata. For each MCMC simulation, 3 chains were used each with 

20 0 0 iterations and the first 20 0 0 were discarded (burn in) be-

ause these first values depend strongly on the chosen initial val- 

es. Each 10 th iteration was saved (thinning) to reduce the corre- 

ation between consecutive values in the chain and the rest dis- 

arded. Therefore, 30 0 0 iterations (3 ∗ (120 0 0 - 20 0 0) / 10) were

aved in MCMC sampling. Further, the convergence of the chains 

as checked using trace plots. 

Different types of models were defined and model checking was 

erformed starting with the basic model with minimum number of 

andom effects. Table 1 presents six of them including the model 
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Fig. 3. Trace plots and the corresponding density plots for the estimated posterior distributions of parameters. 
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Fig. 4. The plot of posterior predictive check. 

m  

s

hown to be the best to fit the data (Only the definition of the 

ean value of the distribution is given). In Table 1 , parameters 

ave the same meaning as described in Section 2.4 . 

The models were compiled using “Rjags” package in R statistical 

oftware. Accordingly, the fifth model which the equation for the 

verage concentration at time t of an event i at j th catchment is 

iven in Equation 6 was selected as the best among the others. 

he summary statistics of MCMC simulation for the fifth model is 

iven in Table 2 . 

jit = log C 0 + u oi + w oj + r 1 A v gI + r 2 D + r 3 ADP + c 1 T C + c 2 EIA − k j . V i 

(6) 

All the six models showed convergence, but with different DIC. 

t can be identified that some models tend to increase the DIC 

y adding new parameters, but some others have increased the 

IC whenever some parameters are excluded. Therefore, the model 

hat gave the minimum deviance was selected. Accordingly, the 

odel defined by the fifth equation was selected as the best 

mong the others. The summary statistics of MCMC simulation for 

he fifth model is given in Table 2 . 

Table 2 shows that ˆ R values for each parameter are close to 

 suggesting that the model has converged. Table 2 further gives 

he posterior predictive intervals for each parameter including 

heir lower and upper 95% credible limits. Fig. 3 demonstrates the 

race plots and the density plots for the estimated model param- 

ters, the fixed intercept C 0 and the random intercept parameters 

 1 , c 2 , r 1 , r 2 and r 3 . For the rest of the parameters which are the

atchment specific slope parameters r j , j = 1 . . . 7 and the catch- 
7 
ent specific random intercept b j , j = 1 . . . 7 , the trace plots are

hown in Figure S1 in the Supplementary Information. 
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Fig. 5. (a): credible intervals for rainfall and catchment specific random intercept parameters. (b): credible intervals for catchment specific parameters. (c): credible intervals 

for rainfall and catchment specific random intercept parameters. 
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In a Bayesian model, the expectation is to obtain stationary 

istributions for the parameter posterior distributions. Therefore, 

arkov chain estimations should converge to stationary distribu- 

ions. In Fig. 3 , it can be noted that the three chains have most

ikely converged and mixed well. The trace plots are not show- 

ng any long-term pattern and the average value of the chains are 
8 
oughly horizontal. Figure S1 provides similar observations sug- 

esting the chains contain samples from the appropriate distribu- 

ion. Therefore, it can be concluded that the selected model shows 

ood convergence with minimum DIC. 

After the initial diagnostic checking for convergence, it was im- 

ortant to check for model suitability. Accordingly, posterior pre- 
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ictive checking (ppc) was performed. The reason for ppc is to 

heck whether the observed data look reasonable under the poste- 

ior predictive distribution. Accordingly, ppc p-value was estimated 

y calculating the fraction of predicted values that are more ex- 

reme for the test statistic than the observed value for that statis- 

ic. This implies that a p-value greater than, say, 0.50 indicates that 

he model fits the data.( Derpanopoulos, 2016 ). Fig. 4 shows the ppc 

lot with a p-value of 0.51. This indicates a good fit of the model 

o the data. 

. Discussion 

.1. Results on variable scale 

The 95% posterior credible intervals of the model parameters, 

he fixed intercept parameter C 0 and the random intercept pa- 

ameters c 1 , c 2 , r 1 , r 2 and r 3 , corresponding to the variables TC, 

IA, AvgI, D and ADP are shown in Fig. 5 (a). The dot corre-

ponds to the median, while the red line represents the 80% in- 

erval, and the thin black line is the 95% interval. The parameters 

 1 , c 2 , r 1 , r 2 and r 3 can be interpreted as the contribution coeffi- 

ients of the corresponding variable to the random intercept. It is 

lear that C 0 , c 2 , r 1 , r 2 and r 3 do not vary in a wide range means

hat those variables do not account for much variability in pollu- 

ant concentration at a given runoff volume. However, c 1 varies in 

 wide range. Therefore, the TC of the catchment contributes to a 

arge variability in the resulting pollutant concentration (Here the 

ntercept of the model can change largely depending on the TC) 

nd it suggests that the effect of TC is uncertain. 

The model output also shows that ADP provides a positive con- 

ribution to the intercept. This is not surprising as a long ADP re- 

ults in high loads of pollutants on the catchment surfaces at the 

eginning of a runoff event, which then increases the initial con- 

entration. Similarly, the AvgI and D shows a negative contribution. 

his implies that high intensity rainfall can quickly wash-off the 

nitial build-up pollutant load and longer duration also makes the 

nitial concentration lower. 

Fig. 5 (b) shows the credible intervals for catchment specific de- 

ay parameters r j , j = 1 .. 7 and the overall population parameter k .

t is evident that based on the catchment, the rate of decay in the 

oncentration varies significantly. Therefore, adding the catchment 

pecific decay parameter can improve the accuracy of prediction of 

ollutant concentration by accounting for the uncertainty created 

y the catchment characteristics. Similarly, Fig. 5 (c) demonstrates 

he distribution of the catchment specific random intercept param- 

ter w 0 j . It is evident that w 0 j , j = 1 . . . 7 vary in a wide positive

ange, which means that there is high variability in the intercept 

y catchment related characteristics which cannot be explained by 

ncluding those variables into the model. 

The illustrations provided in Fig. 5 highlight that adding ran- 

om effects to the basic model for deriving pollutographs can ac- 

ount for much of the variability incurred by the random variabil- 

ty in data. Adding catchment specific parameters further improves 

he model and thereby result in catchment specific pollutographs. 

ccordingly, the selected model provides relatively good estima- 

ions of model parameters and thereby can be used for modelling 

he pollutographs with associated uncertainties. It is clear that, if 

here is a single catchment with known EIA and TC, the resul- 

ant pollutograph is catchment specific, but varies depending on 

he rainfall characteristics. Therefore, this method can be used to 

enerate catchment specific runoff pollutographs with associated 

ncertainties in rainfall characteristics. 

.2. Practical implications of the study 

This study modified the existing linear relationship between 

he natural logarithmic transformed pollutant concentration in the 
9 
unoff and the runoff volume given in Equation 2 by incorporating 

 set of catchment and rainfall variables. Therefore, the outcomes 

f this approach can be used to reproduce the catchment-based 

unoff pollutographs rather than deriving separate pollutographs 

ased on runoff events. This model also helps to account for the 

ariability associated with the variability in rainfall characteristics. 

herefore, a single catchment specific model can be used to model 

he variability in runoff concentration with the associated uncer- 

ainty incurred by the uncertainty in the rainfall characteristics. 

In terms of stormwater quality treatment systems, it is impor- 

ant to design treatment facilities separately for different catch- 

ents by considering the specific characteristics of the catchments. 

n this regard, a catchment specific pollutograph is important to 

nalyse the variability in water quality at different times during 

he runoff event. Such analysis would then help to identify the 

ost polluted critical runoff volume in the overall runoff hydro- 

raph. The identification of highly concentrated runoff can then be 

reated to reduce the cost and space required for larger stormwater 

reatment systems. Therefore, this study provides a robust method- 

logy for producing runoff pollutographs separately for individual 

atchments by considering their topographical characteristics and 

hereby assist in formulating urban stormwater quality treatment 

trategies. 

. Conclusions 

This study provides a new contribution to the field of stormwa- 

er quality modelling. A new and innovative approach (Bayesian 

ierarchical linear regression) was tested with measured data in- 

orporating the uncertainty in the variables influencing stormwater 

uality characteristics. This approach overcomes significant limita- 

ions where several other model structures such as linear regres- 

ion models have failed to provide satisfactory results. 

Accordingly, Bayesian hierarchical linear regression models 

ere constructed for examining the relationship between catch- 

ent and rainfall characteristics with stormwater SS concentra- 

ion. The data collected over seven urban catchments were used 

o derive the posterior distributions. Accordingly, catchment spe- 

ific models were developed incorporating the random effects of 

ariables under consideration. 

Catchment characteristics such as the effective impervious area 

nd the time of concentration was shown to impact SS concentra- 

ion in the runoff. The hierarchical model revealed that the vari- 

bility in the rainfall characteristics significantly influence the SS 

oncentrations within the same catchment. Furthermore, the an- 

ecedent dry period, rainfall duration and the average intensity 

ere found to have relatively high contribution to the variability 

n runoff pollutant concentration. 

The model structure presented in this study was shown to be 

fficient compared to the traditional regression models as it pro- 

ides with a level of confidence, a credible interval which a param- 

ter can vary. Therefore, predictions can be more reliable and vari- 

tions in the prediction can also be determined. Further, this pro- 

ides a new insight for reproducing pollutographs. The catchment 

pecific model can be used to construct catchment-based water 

uality treatment measures through the analysis of variability in 

ollutant concentration during the occurrence of a runoff event. 
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