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a b s t r a c t

This study investigates the potential of control strategy optimisation for the reduction of

operational greenhouse gas emissions from wastewater treatment in a cost-effective

manner, and demonstrates that significant improvements can be realised. A multi-

objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal opera-

tional and control parameter values for an activated sludge wastewater treatment plant,

with objectives including minimisation of greenhouse gas emissions, operational costs and

effluent pollutant concentrations, subject to legislative compliance. Different problem

formulations are explored, to identify the most effective approach to emissions reduction,

and the sets of optimal solutions enable identification of trade-offs between conflicting

objectives. It is found that multi-objective optimisation can facilitate a significant reduc-

tion in greenhouse gas emissions without the need for plant redesign or modification of the

control strategy layout, but there are trade-offs to consider: most importantly, if opera-

tional costs are not to be increased, reduction of greenhouse gas emissions is likely to incur

an increase in effluent ammonia and total nitrogen concentrations. Design of control

strategies for a high effluent quality and low costs alone is likely to result in an inadvertent

increase in greenhouse gas emissions, so it is of key importance that effects on emissions

are considered in control strategy development and optimisation.

ª 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Global warming is an internationally recognised problem

and, to help address this, the UK has committed to reduce its

greenhouse gas (GHG) emissions by 80% by 2050 with respect

to a 1990 baseline, under the Climate Change Act 2008.

Recent studies have highlighted the significance of GHG

emissions resulting from energy use in the water industry
652.
tapple).
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(e.g. Rothausen and Conway, 2011), and Defra (2008) has

attributed 56% of the industry’s emissions to wastewater

treatment. As such, the water industry must contribute to

this target, using a range of mitigation and adaptation stra-

tegies. These demands must be met whilst also complying

with increased water quality standards required by the Water

Framework Directive. The water industry is, therefore, faced

with the huge challenge of reducing carbon emissions by 80%

whilst improving standards and remaining cost efficient.
d.
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Further challenge is posed by the knowledge that reducing

energy consumption does not necessarily correspond to a

reduction in GHG emissions and local energy optimisation

can, in fact, increase the total global warming potential of

emissions from a wastewater treatment plant (WWTP)

(Flores-Alsina et al., 2014).

It has been shown that implementing automatic control in

WWTPs can have a significant impact on GHG emissions, with

reductions of up to 9.6% achieved by Flores-Alsina et al. (2011).

However, the existence of trade-offs and the need for a

balancing act has been highlighted (Flores-Alsina et al., 2011),

and a thorough investigation into the relationships and trade-

offs between GHG emissions, effluent quality and operational

costs is needed to enable assessment of the potential im-

provements achievable in existing WWTPs by altering only

the control of the system. Multi-objective optimisation en-

ables the identification of a set of Pareto-optimal solutions,

which are non-dominated based upon a given objective set

(i.e. cannot be further improved in terms of any one objective

without worsening another); this solution set can be used to

illustrate trade-offs between objectives.

The effects of implementing a range of different control

strategies and of using different setpoints for control on GHG

emissions, effluent quality and operational costs have been

explored previously (Flores-Alsina et al., 2011; Guo et al.,

2012b). Based on this, recommendations regarding the con-

trol of WWTPs to provide high quality effluent with low

operational GHG emissions have beenmade (e.g. Flores-Alsina

et al., 2014; Flores-Alsina et al. 2011; Guo et al., 2012a, 2012b).

The importance of using multiple objectives to evaluate and

compare WWTP control strategies has been highlighted pre-

viously (Flores-Alsina et al., 2014), and trade-offs between

effluent quality and operational costs have been identified

using multi-objective genetic algorithms for the optimisation

of controller setpoints (Beraud et al., 2007; Tomita and Park,

2009). However, conclusions drawn from previous studies

regarding the reduction of GHG emissions are based onWWTP

performance under only a limited number of different control

scenarios, and a global, multi-objective optimisation of mul-

tiple operational parameters has not been used to investigate

further improvements achievable or the existence of addi-

tional optimal solutions.

This study, therefore, aims to investigate the potential of

control strategy optimisation for the reduction of operational

GHG emissions resulting from wastewater treatment, and to

investigate necessary trade-offs between conflicting control

objectives. This is achieved by multi-objective optimisation of

the control of an activated sludge WWTP, in which aeration

intensities are manipulated in order to maintain a specified

dissolved oxygen (DO) concentration. Objectives considered

include the minimisation of GHG emissions, operational costs

and effluent pollutant concentrations whilst maintaining

legislative compliance. The intention of this paper is not to

prescribe a specific control strategy that can be used to reduce

emissions, since themodel used is of a hypothetical plant and

there are (necessarily) omissions in the sources of GHG

emissions modelled, rather to demonstrate that e assuming

the model represents the real phenomena reasonably well e

improvements can be realised if optimised control strategies

from multi-objective optimisation are implemented.
2. Materials and methods

2.1. Wastewater treatment plant model

2.1.1. Model scope
The modelled WWTP is based on BSM2-e (Sweetapple et al.,

2013), a modified version of the BSM2 (Jeppsson et al., 2007)

which enables modelling of dynamic GHG emissions. BSM2-e

is computationally demanding, however, and unsuitable for

multi-objective optimisation given the high simulation time

and large number of simulations required. Reductions in GHG

emissions resulting from improved plant control have been

previously attributed predominantly to differences in power

consumption and secondary treatment process emissions

(Flores-Alsina et al., 2011), and sensitivity analysis has found

there to be negligible variance in sludge line emissions

resulting from adjustment of operational parameters

(Sweetapple et al., unpublished results). This suggests that the

most significant improvements in total GHG emissions

resulting from control strategy optimisation will be due to a

reduction in emissions resulting fromwastewater rather than

sludge treatment processes and that modelling of the waste-

water treatment processes alone is sufficient to demonstrate

the potential of control strategy optimisation to reduce GHG

emissions. The BSM2-e model is, therefore, modified to

exclude sludge treatment, significantly reducing simulation

time and thereby making multi-objective optimisation

feasible. Modelling of all operational parameters to which

effluent quality, operational cost or GHG emissions are sen-

sitive is retained (Sweetapple et al., unpublished results).

The layout of the reduced model is shown in Fig. 1 and

consists of a primary clarifier, an activated sludge reactor

containing two tanks which may be operated under anoxic or

aerobic conditions, followed by three aerobic tanks in series, a

secondary settler and a sludge thickener. The primary clarifier

has a volume of 900 m3, assumes a 50% solids removal effi-

ciency and is modelled based upon Otterpohl and Freund

(1992) and Otterpohl et al. (1994). The anoxic tanks have a

volume of 1500 m3 each and the aerobic tanks volumes of

3000 m3 each; both are modelled using a version of the ASM1

(Henze et al., 2000) modified for inclusion of GHG emissions as

detailed by Sweetapple et al. (2013). The secondary settler has

a surface area of 1500 m3, volume of 6000 m3, and is modelled

based upon Takács et al. (1991). Sludge thickening is modelled

as an ideal and continuous process, with no biological activity

and assuming 98% solids removal efficiency.

Modelled GHG emissions include direct emissions from the

activated sludge reactors and indirect emissions resulting

frommanufacture of chemicals, energy generation and offsite

effluent degradation. Dynamic production of N2O due to

incomplete denitrification, associated CO2 emissions, and CO2

formed during substrate utilisation and biomass decay in the

activated sludge units are modelled as in BSM2-e, as are CO2

and N2O emissions from aerobic degradation of the effluent.

Emissions resulting from the generation of energy imported

are calculated using the modelled energy requirement for

activated sludge aeration and mixing, and pumping of the

internal recycle flow, return activated sludge flow, wastage

flow and the primary clarifier underflow. Further detail on

http://dx.doi.org/10.1016/j.watres.2014.02.018
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Fig. 1 e WWTP model layout and modelled sources of GHG emissions.
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emission modelling methodologies used is provided as

Supplementary Information.

2.1.2. Control strategy
The implementation of sensors and actuators is based on the

BSM2 default closed loop control strategy, as detailed by

Nopens et al. (2010). Key features of the control are as follows:

� A DO sensor in reactor 4

� A proportional integral (PI) controller, with setpoint, offset,

gain and integral time constant to be specified

� Manipulation of aeration intensities in reactors 3e5

(KLa3eKLa5)

� Controller output fed directly to KLa4 actuator

� Input to KLa3 and KLa5 actuators proportional to controller

output (gain for each specified separately)

� Constant aeration intensities (KLa1 and KLa2) in reactors

1e2.

This strategy was selected since activated sludge DO con-

trol is known to affect effluent quality (e.g. Nopens et al., 2010),

energy consumption/operational costs (e.g. Åmand and

Carlsson, 2012) and GHG emissions (e.g. Aboobakar et al.,

2013; Flores-Alsina et al., 2011). It is thought that optimisa-

tion of the control may enable further performance improve-

ments, and KLa3eKLa5 have been identified as key operational

parameters affecting effluent quality, operational costs and

GHG emissions (Sweetapple et al., unpublished results).

For the purposes of testing, it is assumed that the sensor is

ideal (i.e. no delay and no noise); this allows evaluation of the

theoretical potential of a given control strategy.

Further details on the control strategy are provided as

Supplementary Information.

2.1.3. Simulation strategy and performance assessment
Plant performance is modelled using the predefined dynamic

influent data for BSM2 (Gernaey et al., 2011). Given the large

number of model evaluations required for multi-objective

optimisation using genetic algorithms, it is not feasible to
simulate the full 609 days of dynamic BSM2 influent data for

each evaluation. Additionally, a long stabilisation period was

required for BSM2 due to the long-term dynamics of the

anaerobic digester (Jeppsson et al., 2006), but this is not

included in the modelled WWTP. Preliminary investigation

has shown that control strategy optimisation in which eval-

uation of plant performance is based on a single, reduced time

period results in strategies which perform well during this

period but poorly on average across the year, due to seasonal

variations. Therefore, each control strategy is assessed over

two separate 14-day periods simulated using days 245e259

and 427e441 of the BSM2 influent data, representing operation

of the WWTP in summer and winter conditions respectively.

Of each 14-day period, the first 7 days are for stabilisation and

the last 7 for performance evaluation.

It is recognised that an accurate measure of plant perfor-

mance throughout the year cannot be obtained from only two

short evaluation periods, and use of a significantly reduced

dynamic stabilisation period may affect results. Further

changes in model outputs may result from improved model

initialisation. Therefore, it is recommended that the results of

this study are used only to demonstrate the potential for

control strategy optimisation to enable a reduction in GHG

emissions and to identify performance trade-offs and trends

in choice of optimum operational parameters e not to

recommend a specific control strategy.

Plant performance is assessed based on average total GHG

emissions per unit of wastewater treated, an effluent quality

index (EQI), an operational cost index (OCI) and compliance

with the European Urban Wastewater Treatment Directive

(UWWTD) requirements (European Union, 1991). The EQI is a

measure of effluent pollutant loading and is defined by

Jeppsson et al. (2007). The OCI is a measure of energy use,

chemical usage and sludge production for disposal, based on

the BSM2 definition (Jeppsson et al., 2007) but modified to ac-

count for the removal of sludge treatment.

Given that a low EQI does not necessarily ensure compli-

ance with effluent quality standards, additional indicators

(detailed in Table 1) are measured to assess compliance with

http://dx.doi.org/10.1016/j.watres.2014.02.018
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Table 1 e Discharge requirements for modelled WWTP
under the UWWTD.

Parameter 95 percentile
(g/m3)

Maximum
(g/m3)

Mean
(g/m3)

BOD5 25 50 e

COD 125 250 e

TSS 35 87.5 e

Total nitrogen e e 15
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the UWWTD. Effluent ‘ammonia and ammonium nitrogen’ is

also measured as this may be consented, despite not being a

specific requirement of the UWWTD. The following assump-

tions apply henceforth: ‘BOD5’ refers to effluent BOD5 95

percentile, ‘COD’ refers to effluent COD 95 percentile, ‘TSS’

refers to effluent TSS 95 percentile, ‘nitrogen’ refers to mean

effluent total nitrogen and ‘ammonia’ refers to effluent

ammonia and ammonium 95 percentile.

Note that, given the modifications to the WWTP layout,

results obtained in this study are not directly comparable with

those from BSM2 or BSM2-e (e.g. Nopens et al., 2010;

Sweetapple et al., 2013).

2.2. Multi-objective optimisation

2.2.1. Optimisation algorithm
Control strategy optimisation is carried out using the Non-

Dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al.,

2002), since it is computationally fast and has been shown to

provide better coverage and maintain a better spread of so-

lutions than other multi-objective evolutionary algorithms

(MOEAs) (Deb et al., 2002). Local optimisation methods are

very efficient in finding local optima within a convex area of

the design space, but may result in suboptimal solutions for

complex optimisation problemswithmany local optima and a

highly non-linear design space. Genetic algorithms are better

suited to the optimisation of WWTP control strategies due to

their ability to handle nonlinearities whilst requiring fewer
Table 2 e Decision variables for optimisation problem.

Variable Default (base case) Optim

Min

Qintr (m3/d) 61,944 51,620

Qw (m3/d) 300 93.5

KLa1 (/d) 0 0

KLa2 (/d) 0 0

carb1 (m3/d) 2 1.5

carb2 (m3/d) 0 0

carb5 (m3/d) 0 0

Controller setpoint

(g/m3)

2 0

Controller offset 120 0

Controller amplification 25 0

Controller integral

time constant

0.002 0.0005

KLa3 gain 1 0

KLa5 gain 0.5 0
objective function evaluations than alternative techniques

(Cosenza et al., 2009), and to findmultiple optimal solutions in

a single simulation run (Deb et al., 2002). Problems with mul-

tiple objectives can be tackled by transforming them into

single objective problems with a weighting system applied to

the objectives; in this instance, however, an MOEA is selected

to enable a set of non-dominating solutions to be identified

and trade-offs between objectives to be investigated without

the need for a weighting system.

NSGA-II is implemented as follows:

1. Initialise the population (solution set for evaluation), P(0),

with random values for N individuals

2. Calculate objective values for each individual in P(0)

3. Fast non-domination sort of P(0)

4. Repeat following for t generations:

a. Use binary tournament selection to select parent pop-

ulation, Pp(t), from P(t)

b. Perform crossover and mutation of Pp(t) to create child

population, Pc(t)

c. Form intermediate population, Pi(t), from Pp(t) and Pc(t)

d. Fast non-domination sort of Pi(t)

e. Form next generation, P(t þ 1) from N best individuals of

Pi(t)

In the non-dominated sorting, Pareto dominance is used to

rank all individuals of a population. Those which are not

dominated by any other (an individual dominates another if it

performs equally well in all objectives and better in at least

one) are assigned a rank of 1. This procedure is repeated for

the remaining population to find individuals with a rank of 2,

then 3 etc. Selection of the best solutions is based on both rank

and crowding distance.

2.2.2. Decision variables
Selection of operational parameters for optimisation is guided

by the results of previous sensitivity analyses (Sweetapple

et al., unpublished results). Parameters identified as
isation range Notes

Max

72,268 BSM2 default � 10% of feasible range

506.5 BSM2 default � 10% of feasible range

24 BSM2 default � 10% of feasible range

24 BSM2 default � 10% of feasible range

2.5 BSM2 default � 10% of feasible range

0.5 BSM2 default � 10% of feasible range

0.5 BSM2 default � 10% of feasible range

10 Based on DO sensor range

240 Based on allowable KLa actuator range

500 Arbitrary range to give appropriately

scaled output

0.0035 Arbitrary range, centred on BSM2 default

1 Selected to ensure KLa3 is within

allowable actuator range

1 Selected to ensure KLa5 is within

allowable actuator range

http://dx.doi.org/10.1016/j.watres.2014.02.018
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contributing significantly to variance in effluent quality,

operational cost and/or GHG emissions are either included as

decision variables or dynamically controlled, with the control

parameters and controller tuning parameters also used as

decision variables. Exceptions to this are:

� Carbon source addition rate in the fourth activated sludge

reactor is not optimised despite being classed as sensitive

based on OCI, since adjustment from the base case value

resulted only in an increase in operational costs in one-

factor-at-a-time (OAT) sensitivity analysis.

� Internal recycle flow rate (Qintr) and carbon source addition

rate in the second activated sludge reactor (carb2) are

included despite not being classified as sensitive, since

OAT sensitivity analysis suggests that they can be adjusted

to reduce GHG emissionswith negligible impact on effluent

quality.

All decision variables are listed in Table 2, with details of

their default values and range of values considered for opti-

misation given. Default values, as defined in the BSM2 default

closed loop control strategy (Nopens et al., 2010), represent the

base case (note: despite being a useful reference point, this

control strategy was designed only to provide a starting point

for further development, and not to be optimal in any way).

2.2.3. Optimisation problem formulations
Three different optimisation problem formulations with

different objective sets are implemented in separate optimi-

sation runs, in order to investigate the effectiveness of

different approaches and to enable a comparison of the po-

tential benefits achievable and the associated trade-offs. The

objective sets for the three problem formulations are defined

as follows:
Set X: 1. Minimise OCI

2. Minimise total GHG emissions
Set Y: 1. Minimise OCI

2. Minimise total GHG emissions

3. Minimise EQI
Set Z: 1. Minimise OCI

2. Minimise total GHG emissions

3. Minimise BOD5

4. Minimise ammonia

5. Minimise nitrogen

Fig. 2 e Performance of non-dominated solutions derived

using objective set X, with regard to corresponding

objective functions.
In each case, constraints are implemented for maximum

effluent pollutant concentrations, to ensure compliance of

solutions with the UWWTD. Objective set X aims to identify

the greatest possible theoretical reduction in cost and GHG

emissions whilst maintaining legislative compliance; how-

ever, performance with regards to effluent quality is likely

to be poor and with little headroom for maintained

compliance in the case of a significant change in influent.

Objective sets Y and Z, therefore, also include measures of

effluent quality, to allow analysis of the trade-offs. Objective
set Y uses a single measure, EQI, to assess plant perfor-

mance, since evolutionary multi-objective algorithms are

inefficient with a large number of objectives and produce

trade-offs which are hard to represent and difficult for a

decision maker to consider (Deb and Jain, 2012). However, a

low EQI does not necessarily correspond with a compliant

solution: therefore, performance assessment in objective set

Z is based directly on the UWWTD requirements. Mini-

misation of COD and TSS are not included as analysis of

preliminary optimisation results shows a strong positive

correlation between BOD5 and COD, and effluent TSS is

found not to be critical. Minimisation of ammonia is also

included since, despite not being limited by the UWWTD,

discharge consents commonly specify a limit; where

applied, this is expected to be a critical factor given the slow

rate of nitrification relative to organic removal.

2.2.4. Algorithm parameters
It is necessary to achieve a balance between the number of

simulations carried out and NSGA-II performance, given the

high computational demand of the model. For each objec-

tive set, a setting of 25 generations with a population size of

500 (i.e. 500 solutions for evaluation in each generation),

repeated 10 times, is found to be sufficient to derive the

Pareto front. A crossover probability of 0.9 and a mutation

probability of 1/n, where n is the number of decision vari-

ables, are selected.
3. Results and discussion

3.1. Multi-objective optimisation results

Optimal solutions derived using each objective set and an

analysis of the associated trade-offs are presented in Sec-

tions 3.1.1e3.1.3. Solutions enabling simultaneous

http://dx.doi.org/10.1016/j.watres.2014.02.018
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reduction of GHG emissions and OCI whilst maintaining

legislative compliance were found using each set, but no

solutions also bettering the base case effluent quality were

identified.

3.1.1. Minimising GHG emissions and operational costs
whilst retaining compliance
The performance of the base case and non-dominated solu-

tions derived using objective set X is presented in Fig. 2. All

solutions provide a reduction in both GHG emissions and OCI

with respect to the base case and a maximum reduction of

emissions of 18.5% is shown to be achievable with a corre-

sponding 4.1% reduction in operational costs. There is a

distinct trade-off between operational costs and GHG emis-

sions, however, with the lowest emission solutions incurring

the highest operational costs.
Fig. 3 e Performance of non-dominated solutions derived using

functions.
3.1.2. Minimising GHG emissions, operational costs and a
single effluent quality measure
Performance of all non-dominated solutions derived using

objective set Y, with regard to the corresponding objective

functions, is shown in Fig. 3 and solutions which better the

base case in terms of both GHG emissions and OCI are iden-

tified (as illustrated by the dotted lines in Fig. 3d). A reduction

in GHG emissions of up to 18.8% is achievable without

increasing costs, although the lowest emission solutions

worsen the EQI.

Fig. 3c) shows that few solutions enable a reduction in GHG

emissions with little or no trade-off in effluent quality, and

those that do result in an increase in operational costs.

However, all solutions presented produce a compliant effluent

and solutions enabling a reduction in GHG emissions with no

additional operational costs are identifiable.
objective set Y, with regard to corresponding objective

http://dx.doi.org/10.1016/j.watres.2014.02.018
http://dx.doi.org/10.1016/j.watres.2014.02.018


wat e r r e s e a r c h 5 5 ( 2 0 1 4 ) 5 2e6 258
These results also highlight the importance of considering

the effects on GHG emissions when developing control stra-

tegies: 87.6% of non-dominated solutions which improve the

base case EQI also result in an increase in emissions, sug-

gesting that if reduction of operating costs and improvement

of effluent quality are prioritised in control strategy develop-

ment, emissions may inadvertently be increased. This finding

is supported by the results of scenario analysis by Flores-

Alsina et al. (2011), in which a reduction in EQI was found to

correspond with an increase in GHG emissions in several

control strategies implemented.

3.1.3. Minimising GHG emissions, operational costs and
specific effluent pollutant loads
A pair-wise representation of the performance of all non-

dominated solutions derived using objective set Z with re-

gard to GHGs, OCI, ammonia and total nitrogen is given in

Fig. 4. Of the 2194 solutions presented, 28.9% better the base

case GHG emissions and only 23.0% do so without increasing

costs. The lowest cost solutions offer negligible reduction in

GHG emissions; however, emissions can be reduced by up to

17.4% whilst also cutting the OCI by 3.6%.

The results suggest that, for the control loop studied, a

reduction in GHG emissions and/or OCI corresponds with an

increase in ammonia concentration e and, based on objective
Fig. 4 e Performance of non-dominated solutions derived using o

nitrogen.
set Z, all optimal solutions which improve upon the base case

ammonia concentration result in an increase in both GHG

emissions and OCI. A strong correlation between ammonia

and total nitrogen is also observed and 89.1% of solutions of-

fering a reduction in GHG emissions and operating costs also

increase total nitrogen, although UWWTD compliance is

maintained in all cases. This corresponds with previous

research (Flores-Alsina et al., 2011), in which adjustment of

operational or control parameters to reduce GHG emissions

resulted in a significant increase in ammonia and nitrogen

time in violation. Non-dominated solutions which better the

base case GHG emissions and/or OCI also typically increase

the effluent BOD5, although in all cases the BOD5 is signifi-

cantly below the limit for compliance.

For all effluent quality indicators used in the objective

functions, the solutions providing the lowest pollutant levels

increase GHG emissionswith respect to base case performance,

again highlighting the importance of including assessment of

GHG emissions in the development of control strategies.

3.2. Performance and legislative compliance of optimised
control strategies

Further investigation is required to determine the extent to

which it is necessary to compromise effluent quality if GHG
bjective set Z, with regard to GHGs, OCI, ammonia and total

http://dx.doi.org/10.1016/j.watres.2014.02.018
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emissions are to be reduced without incurring additional

operational costs, and to identify the most effective objective

set for optimising WWTP control to reduce GHG emissions

whilstmaintaining satisfactory effluent quality and costs. Due

to the constraints set in optimisation, all control strategy so-

lutions presented produce an effluentwhich is fully compliant

with the requirements of the UWWTD during the evaluation

periods considered; however, some solutions are close to

breaching total nitrogen effluent limits and might not, there-

fore, remain compliant throughout an extended evaluation or

under significant system disturbances. Fig. 5, therefore, gives

an overview of the distribution of total nitrogen performance

for the sets of optimised control strategies from each objective

set with respect to the UWWTD requirement, with the base

case value indicated.

Each objective set results in a set of solutions which have a

range of no more than 6% of the compliance limit and are less

than 15%, 46% and 57% of the UWWTD limits for BOD5, COD

and TSS respectively. The most significant difference in the

solutions derived using each objective set is in the nitrogen

concentrations. Objective set X provides a set of solutions

with the lowest GHG emissions and operating costs, but this is

at the expense of elevated effluent nitrogen concentrations;

over 50% of solutions produce an effluentwith a safetymargin

of less than 6% of the UWWTD limit, suggesting that the

likelihood of failure over an extended period is highest for

solutions selected from this set. This may be attributed to

highly optimised control strategies providing insufficient time

and/or unsuitable conditions for adequate removal of nitro-

gen since, for example, bacteria responsible for nitrification of

ammonia grow much more slowly than the heterotrophic

bacteria responsible for removal of organic matter (Metcalf

and Eddy, 1994) and it is observed that, whilst BOD5 concen-

trations are acceptable, ammonia contributes up to 84% of the

high effluent total nitrogen. Optimising tominimise EQI (set Y)

rather than individual effluent concentrations (set Z) gives the

greatest proportion of solutions with a safety margin of at

least 20%.

Overall, control strategy optimisation based on the mini-

misation of GHG emissions and operational costs alone,

subject to legislative compliance, produces a set of solutions

with the poorest effluent quality and the smallest safety

margin. The wider spread of solutions derived from objective

sets Y and Z is likely to be more useful to a decisionmaker, as

these give more choice and allow for a more complete

assessment of necessary trade-offs, depending on the case-

specific priorities. Using a single index to represent effluent
Fig. 5 e Performance distribution of optimised control

strategies bettering base case GHG emissions and OCI.
quality simplifies the comparison and selection of solutions,

and it is shown that, for a fixed number ofmodel evaluations,

optimisation using objective set Y yields solutions of a

similar or better standard (with regard to effluent quality) as

those developed when specific pollutant loadings are

minimised.

3.3. Optimal control strategy designs

To allow further exploration of control strategy features

which contribute to an effective, efficient and low emission

solution, and to demonstrate the effects of optimisation on

dynamic performance, three control strategies are presented

in this section (one derived from each objective set). In each

case, a solution providing a 10% reduction in GHG emissions

without increasing the operational cost is selected. For

objective set Y, the solution with the lowest EQI which fits

these criteria is selected, and for objective set Z, the solution

with the lowest nitrogen, since this is shown to be closest to

the failure limit.

Performance indicators and optimised decision variables

for each solution and the base case are shown in Fig. 6. Deci-

sion variables are normalised within the optimisation range

and performance indicators are normalised within the

compliant range where applicable, else from zero to the

maximum observed value.

Common features in the three optimised control strategies

include:

� Introduction of a low level of aeration in the first two re-

actors, thereby creating aerobic conditions and removing

the conventional anoxic zone

� Decrease in carbon source addition in the first reactor and

an increase in the second (note that only static carbon

source addition rates were considered; additional im-

provements may be achievable with dynamic control to

reflect variations in the influent flow rate and carbon/ni-

trogen ratio deficiency)

� Reduction in controller offset (and therefore in aeration

intensity in the fourth reactor)

� Reduction in KLa3 gain, and therefore in aeration intensity

in the third reactor

� Increase of the controller integral time constant

Low level aeration in the anoxic zone is unconventional

and may not represent operating practice, but optimisation

may have led to solutions with smaller variation in DO con-

centrations of adjacent reactors since transition between

anoxic and aerobic conditions is a key condition leading to

N2O emissions (Law et al., 2012). Low aeration in the anoxic

zone may occur naturally as a side effect of mixing and pre-

vious studies have assumed this to provide a KLa of 2 d�1

(Flores-Alsina et al., 2011); however this would not fully ac-

count for the aeration intensities of up to 24 d�1 in the opti-

mised solutions. Reduction of aeration intensities in the

aerobic reactors in optimised control strategies may be

attributed to the contribution of aeration to GHG emissions

due to the significant associated energy consumption

(Fernandez et al., 2011) and effects on stripping of N2O from

solution (Law et al., 2012).

http://dx.doi.org/10.1016/j.watres.2014.02.018
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Fig. 6 e Decision variables and performance indicators for selected optimal solutions providing 10% reduction in GHG

emissions with no increase in OCI.
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Optimal values for carb1 and the integral time constant are

at or near the limits of their respective optimisation ranges. As

these ranges do not correspond with physical constraints,

further improvements may be achievable with a lower carb1

value and higher integral time constant.
Fig. 7 e Dynamic performance of selected optimal control strate

during the summer (days 252e259) and winter (days 434e441)
In addition to a 10% reduction in GHG emissions, the re-

sults of these changes include increases in EQI and ammonia

in all cases. Implementation of the objective set X solution

causes the greatest increase in EQI, due to its significantly

elevated nitrogen and ammonia concentrations e solutions
gies with respect to nitrogen, ammonia and GHG emissions

evaluation periods.
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from objective sets Y and Z are able to provide the same

emission reduction whilst maintaining a better effluent

quality and not increasing costs; this supports the theory that

multi-objective optimisation objectives should include mini-

misation of effluent pollutant loadings in addition to cost and

emission considerations. Representation of the pollutant

loadings by a single measure (as in objective set Y) enables the

required emission reduction to be achieved with no increase

in cost and the smallest impact on effluent quality.

Analysis of the dynamic performance of these control

strategies offers an insight into the source of overall perfor-

mance variations. The rate of GHG emissions through both the

summer and winter evaluation periods is shown in Fig. 7.

Dynamic effluent nitrogen and ammonia concentrations are

also shown since these are of greatest concern and differ

significantly between the solutions.

The rate of GHG emissions fluctuates significantly and is

greatest during the winter period, but there is little to distin-

guish the control strategies. All three proposed strategies yield

small but consistent improvements throughout, with some

greater reductions observed at the points of peak emissions in

the base case. On the basis of these results alone, no one

control strategy is preferable, as all provide the required

emission reduction. Analysis of the dynamic nitrogen and

ammonia concentrations, however, highlights the differences

between the control strategies.

The departure in effluent quality from the base case values

is most distinct in the winter period, and in particular for the

set X solution. This is likely to be due to a combination of the

reduced, optimised DO setpoints resulting in insufficient ox-

ygen for nitrification and the lower temperature reducing the

nitrifier growth rates. Over the winter period, when nitrogen

and ammonia concentrations are higher, the solution from

objective set Y consistently produces effluent with the lowest

nitrogen and ammonia concentrations (of the optimised

control strategies), reinforcing the theory that control strategy

optimisation using a single indicator to represent effluent

quality is preferable. Performance of the set X solution, opti-

mised for just GHG emissions and operational cost, is likely to

be unacceptable as nitrogen concentrations in the winter are

greater than 15 g N/m3 and, in one instance, exceed 25 g N/m3.

Whilst this solution (just) complies with the UWWTD

requirement for an annual mean total nitrogen concentration

of less than 15 g N/m3 based on the two evaluation periods

considered, failure in an extended evaluation is highly likely.
4. Conclusions

This paper has demonstrated the potential of multi-objective

optimisation of WWTP control strategies for the reduction of

GHG emissions in a cost effective manner. Exploration of

different problem formulations for the optimisation process,

investigation into performance trade-offs and analysis of

optimised solutions has led to the following key findings:

� Multi-objective optimisation of WWTP operational pa-

rameters and controller tuning parameters enables a sig-

nificant reduction in GHG emissions without the need for
plant redesign or modification of the control strategy

layout.

� A large range of options are available for reducing GHG

emissions without incurring additional operational costs

which also maintain an acceptable effluent quality.

� GHG emissions may be reduced with no loss in effluent

quality, but this is likely to incur increased operational

costs.

� If operational costs are not to be increased, reduction of

GHG emissions is likely to incur an increase in effluent

nitrogen and ammonia concentrations.

� If control strategies are selected with a preference for high

effluent quality and low costs alone, GHG emissions may

be inadvertently increased. It is, therefore, of key impor-

tance that effects on emissions are considered in control

strategy development and optimisation.

� When using multi-objective optimisation of control stra-

tegies to reduce GHG emissions, it is preferable to include

minimisation of pollutant loadings in the objective func-

tions. However, using a single index to represent effluent

quality is more effective than optimising to minimise

specific pollutants and simplifies comparison of optimal

solutions.
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