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Highlights 

 

 Chemical oxidation abates the electron donating capacity (EDC) more efficiently than 

UV254. 

 The efficiency on UV254 abatement ranked O3 > Mn(VII) > Fe(VI)/ClO2 

 The efficiency on EDC abatement ranked Mn(VII) > ClO2 > Fe(VI) > O3 

 Good correlation between EDC abatement and haloacetonitrile mitigation 
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Abstract 

Pre-oxidation is often used before disinfection with chlorine to decrease the reactivity of the 

water matrix and mitigate the formation of regulated disinfection byproducts (DBPs). This 

study provides insights on the impact of oxidative pre-treatment with chlorine dioxide (ClO2), 

ozone (O3), ferrate (Fe(VI)) and permanganate (Mn(VII)) on Suwannee River Natural 

Organic Matter (SRNOM) properties characterized by the UV absorbance at 254 nm (UV254) 

and the electron donating capacity (EDC). Changes in NOM reactivity and abatement of DBP 

precursors are also assessed. The impact of pre-oxidants (based on molar concentration) on 

UV254 abatement ranked in the order O3 > Mn(VII) > Fe(VI)/ClO2, while the efficiency of 

pre-oxidation on EDC abatement followed the order Mn(VII) > ClO2 > Fe(VI) > O3 and two 

phases were observed. At low specific ClO2, Fe(VI) and Mn(VII) doses corresponding to < 

50% EDC abatement, a limited relative abatement of UV254 compared to the EDC was 

observed (~ 8% EDC abatement per 1% UV254 abatement). This suggests the oxidation of 

phenolic-type moieties to quinone-type moieties which absorb UV254        ’                

EDC. At higher oxidant doses (> 50% EDC abatement), a similar abatement of EDC and 

UV254 (~ 0.9–1.2% EDC abatement per 1% UV254 abatement) suggested aromatic ring 

cleavage. In comparison to the other oxidants, O3 abated the relative UV254 more effectively, 

due to a more efficient cleavage of aromatic rings. For a pre-oxidation with Mn(VII), ClO2 

and Fe(VI), similar correlations between the EDC abatement and the chlorine demand or the 

adsorbable organic halide (AOX) formation were obtained. In contrast, O3 pre-treatment led 

to a lower chlorine demand and AOX formation for equivalent EDC abatement. For all 

oxidants, trihalomethane formation was poorly correlated with both EDC and UV254. The 

EDC abatement was found to be a pre-oxidant-independent surrogate for haloacetonitrile 

formation. These results emphasize the benefits of combining EDC and UV254 measurement 

to understand and monitor oxidant-induced changes of NOM and assessing DBP formation. 
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1. Introduction 

During water treatment, a large fraction of chlorine (Free Available Chlorine, FAC), the most 

commonly used disinfectant, reacts with natural organic matter (NOM), partially leading to 

the formation of disinfection byproducts (DBPs) (Richardson et al. 2007, Sedlak and von 

Gunten 2011, von Gunten 2018). Pre-oxidation is a possible treatment option to reduce NOM 

reactivity towards chlorine prior to disinfection and to mitigate DBP formation (Gallard and 

von Gunten 2002, Gan et al. 2015, Yang et al. 2013b). Depending on the type of oxidant, the 

water characteristics and the type of DBPs, differences in DBP mitigation efficiency have 

been observed during pre-oxidation treatment (de Vera et al. 2015, Gan et al. 2015, Jiang et 

al. 2016c, Yang et al. 2013a, Yang et al. 2013b). In previous studies, the efficiency of 

oxidants has been compared based on their concentrations/doses (Jiang et al. 2016b, Xie et al. 

2013). In other studies, virus inactivation efficiency (Selbes et al. 2014), or the concentration 

of oxidants commonly used in drinking water plants guided the choice of their doses (Jones et 

al. 2012, Xie et al. 2013, Yang et al. 2013b). However, each oxidant used for pre-oxidation 

has its own characteristics. Chlorine dioxide (ClO2) reacts with NOM moieties (e.g., activated 

aromatic moieties) through a one-electron transfer to form chlorite (ClO2
–
). Recent studies 

have also highlighted the importance of oxygen transfer mechanisms releasing FAC (Rougé 

et al. 2018, Terhalle et al. 2018). FAC released by ClO2 can then react through a two-electron 

oxidation or electrophilic aromatic substitution (Criquet et al. 2015). Ozone (O3) is 

particularly reactive towards olefins, leading to cleavage of C=C bonds through the Criegee 

mechanism, activated aromatic moieties, or neutral amines (Lim et al. 2019, von Sonntag and 
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von Gunten 2012). O3 reacts mostly by oxygen or electron transfer associated with the 

possible release of hydroxyl radical (
●
OH), singlet oxygen (

1
O2), superoxide radical (O2

●–
) or 

hydrogen peroxide (H2O2) (von Gunten 2003). 
●
OH released by O3 exhibits a very high 

reactivity towards a wide range of moieties, mostly through addition or hydrogen abstraction 

(von Sonntag 2007). Permanganate (Mn(VII)) and ferrate (Fe(VI)) can react through 

electrophilic attack on double bonds (olefins), or electron transfer, notably with phenolic 

compounds and neutral amines (Perez-Benito 2009, Shin and Lee 2016, Waldemer and 

Tratnyek 2006). Furthermore, the products of these oxidants, Mn(VI), Mn(V) and Fe(V) , are 

also highly reactive (Rush and Bielski 1995, Rush et al. 1995, Simándi and Záhonyi-Budó 

1998, Záhonyi-Budó and Simándi 1996).  

Considering the large array of reaction mechanisms, it is difficult to compare the impact of 

each pre-oxidation treatment on the mitigation of DBPs based on a specific oxidant dose. 

Comparing the reactivity of oxidants based on their impact on NOM characteristics may be 

an interesting alternative. The absorbance at 254 nm (UV254), or the SUVA254 (UV 

absorbance at 254 nm divided by the concentration of the dissolved organic carbon, DOC), 

have been widely used as proxies for NOM aromaticity and its reactivity towards chlorine 

(Croué et al. 2000, Reckhow et al. 1990, Weishaar et al. 2003). The capacity of other 

spectrophotometric indicators, e.g., the absorbance at 272 nm or spectral slopes, to 

characterize organic matter has also been investigated (Helms et al. 2008, Korshin et al. 

1997b, Wenk et al. 2013). These spectrophotometric indicators were shown to correlate with 

the formation of DBPs such as trihalomethanes (THMs), haloacetic acids or adsordable 

organic halogen (AOX) in some studies (Amy et al. 1987, Archer and Singer 2006, Chen and 

Valentine 2008, Croué et al. 2000, Edzwald et al. 1985, Korshin et al. 1996, 1997a, Korshin 

et al. 2002). However, poor correlations between SUVA254 or UV254 and DBP formation have 

been reported in other investigations (Ates et al. 2007, Weishaar et al. 2003). Recently, the 
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measurement of the electron donating capacity (EDC) was developed, based on a one-

electron transfer from NOM to a radical, ABTS
+● 
 2 2’-azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid) (Aeschbacher et al. 2012, Önnby et al. 2018b). Monitoring the ABTS
+●

, either 

by spectrophotometry or chronoamperometry (Chon et al. 2015, Walpen et al. 2016), allows 

for the estimation of the electrons availability in DOM for its reactions with oxidants. This 

method has been successfully applied to characterize the DOM reactivity with oxidants (de 

Vera et al. 2017, Önnby et al. 2018a, Remucal et al. 2020, Walpen et al. 2020), and used as a 

proxy for activated aromatic moieties in NOM (Aeschbacher et al. 2012, Walpen et al. 2016), 

which are important precursors of halogenated DBPs. Furthermore, the use of EDC combined 

with UV254 allowed to better understand the reaction mechanisms of ClO2, O3 and FAC with 

NOM (Önnby et al. 2018a, Wenk et al. 2013). Notably, the oxidation of phenolic-type 

moieties to quinone-type moieties leads to a higher EDC abatement (quinone-type moieties 

are poor electron-donating compounds) compared to the UV254 abatement (quinone-type 

moieties retain some absorbance). It has been demonstrated that ClO2 oxidation leads to a 

limited EDC abatement compared to UV254, which was explained by the formation of 

quinone-type moieties (Wenk et al. 2013). In comparison to ClO2, O3 abated more UV254 due 

to, in part, the opening of aromatic rings (Wenk et al. 2013). However, at near neutral pH (in 

presence of an 
●
OH quencher) the relative abatement of EDC was still more pronounced than 

for UV254, suggesting that quinone-type moieties were also formed with O3 under these 

conditions (Önnby et al. 2018a). 

The aims of this study are (i) to compare the impact of increasing doses of ClO2, O3, Fe(VI) 

and Mn(VII) on NOM properties, i.e. EDC and UV254 abatement, based on their known 

reaction mechanisms with model compounds and (ii) to explore the possibility of using the 

EDC and UV254 as complementary pre-oxidant-independent surrogates for predicting the 

chlorine demand and the formation of DBP during post-disinfection. The impact of different 
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pre-oxidant doses of ClO2, O3, Fe(VI) and Mn(VII) on Suwannee River NOM (SRNOM) 

extract characteristics was monitored using both the EDC and UV254. The pre-oxidized 

samples were then chlorinated and the chlorine consumption, the AOX, THM and 

haloacetonitrile (HAN) formation were compared to the measured NOM extract 

characteristics (EDC and UV254). 

2. Materials and methods 

2.1. Chemicals and reagents. 

Sodium chlorite (80%) and a sodium hypochlorite solution (10–15%) were purchased from 

Sigma-Aldrich, with impurities being mostly chloride and traces of chlorate (< 0.01 µM of 

ClO3
–
 per µM of NaOCl or NaClO2 .                                                       ≥ 

98%). Solutions were prepared with ultrapure water (Purelab Ultra, Elga, UK). SRNOM 

extract was purchased from the International Humic Substances Society (Cat. No. 2R101N).  

2.2. Preparation of oxidant solutions. 

Chlorine stock solutions were prepared from a sodium hypochlorite solution standardized by 

direct UV measurement at 292 nm (Ԑ292 = 362 M
-1

 cm
-1

) (Furman and Margerum 1998). ClO2 

was produced by mixing solutions of sodium persulfate (40 g L
-1

) and sodium chlorite 

(80 g L
-1

) under N2 bubbling for about 1 h (Gates 1998, Granstrom and Lee 1958). The ClO2 

was retrieved in chilled ultrapure water and standardized by direct UV measurement at 

359 nm (Ԑ359 = 1230 M
-1 

cm
-1

) (Furman and Margerum 1998). K2FeO4 was prepared by 

oxidation of 0.186 mol of ferric nitrate nonahydrate with 0.845 mol of potassium 

hypochlorite in a concentrated potassium hydroxide solution (Li et al. 2005). The final solid 

product was stable with a purity of 43%, the rest of the solid being potassium hydroxide or 

potassium chloride. Mn(VII) and Fe(VI) solutions were prepared by dissolution of KMnO4 in 

ultrapure water for Mn(VII), or of K2FeO4 in a phosphate/borate buffer (5 mM/1 mM, pH 
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9.5) for Fe(VI). The stock solutions (1–5 mM) were then filtered through 0.22 µm 

(polyethersulfone, Merck Millipore) and standardized by direct UV measurement at 525 nm 

(Ԑ525 = 2430 M
-1

 cm
-1

) (Ramseier et al. 2011) for Mn(VII) or 510 nm (Ԑ510 = 1150 M
-1

 cm
-1

) 

(Lee et al. 2005b) for Fe(VI). O3 stock solutions were prepared by bubbling an ozone-oxygen 

mixture produced by an O3 generator (American Ozone System Inc.) in ultrapure water 

cooled at < 5°C. The O3 stock solution (0.6–0.9 mM) was standardized by direct UV 

measurement at 260 nm (Ԑ260 = 3200 M
-1

 cm
-1

) (von Sonntag and von Gunten 2012). 

2.3. Pre-oxidation and chlorination experiments. 

Synthetic waters were prepared with 3.0 mgC L
-1

 of a SRNOM extract buffered at pH 8 

(40 mM borate), with or without bromide (150 or 500 µg L
-1

). pH 8 was chosen because of 

the buffering range of borate to prevent the formation of phosphate complexes notably during 

Fe(VI) or Mn(VII) oxidation (Jiang et al. 2009, Jiang et al. 2016a). For EDC and UV254 

experiments, 40 mL samples were spiked with O3 (with or without 5 mM tert-butanol, t-

BuOH), ClO2, Mn(VII) or Fe(VI) (1–133 µM), vigorously mixed for 10 seconds, kept with 

negligible headspace (< 10% of total volume) and protected from light until complete 

depletion of the oxidants. The reaction times ranged from a few seconds to several hours 

depending on the oxidant and dose. t-BuOH was used as a 
●
OH scavenger to account for 

direct O3 reactions only (Staehelin and Hoigné 1985). For higher ranges of O3 doses (> 20 

µM), the significant volume of the O3 stock solution added was taken into account by 

concentrating the matrix accordingly. After confirming the absence of the oxidants, the 

samples were filtered through 0.22 µm (polyethersulfone, Merck Millipore) and analyzed for 

EDC and UV254. The filtration step between pre-oxidation and disinfection was performed to 

remove Mn(IV) and Fe(III) particles, hence preventing their interaction with FAC. The 

filtration was not affecting the EDC or UV254 quantification. For chlorination experiments, a 

similar experimental procedure was used with 500 mL samples. After pre-oxidation, 200 mL 
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of the filtered pre-oxidized sample was chlorinated with 85 µM sodium hypochlorite (6.0 

mgCl2 L
-1

) for 3 days, with negligible headspace (< 10% of total volume) and protected from 

light. Preliminary experiments were carried out to determine the chlorine dose needed to 

obtain an oxidant residual of about 1.5 mgCl2 L
-1 

after 3 days at pH 8 for a sample without 

bromide and without pre-treatment. The oxidant residual was quenched by sulfite (10% 

excess) for adsorbable organic halide (AOX) measurements, or by a large excess (4–5 times) 

of ascorbic acid for THM and HAN measurements.  

2.4. Analytical methods. 

THMs (trichloromethane, bromodichloromethane, dibromochloromethane, tribromomethane) 

and HANs (chloroacetonitrile, bromoacetonitrile, dichloroacetonitrile, 

bromochloroacetonitrile, dibromoacetonitrile, trichloroacetonitrile) were analyzed by 

headspace GC-MS with a method adapted from previously published studies, of which details 

are given in the supporting information (SI), Text S1 (Allard et al. 2012, Kristiana et al. 

2012). The AOX was measured by combustion and ion chromatography after adsorbing 

samples on activated carbon (Langsa et al. 2017a). The residual oxidant concentrations were 

measured by ABTS (Pinkernell et al. 2000, Lee et al. 2005b, Jiang et al. 2012, Wang and 

Reckhow 2016). The dissolved organic carbon (DOC) concentration of the SRNOM stock 

solutions was standardized, as non-purgeable organic carbon, using a total organic carbon 

analyzer from Shimadzu (TOC-L). The EDC and the UV254 were measured on an Agilent 

1100 series system using a size-exclusion chromatography (SEC), followed by a post-column 

reaction with an ABTS
+● 

solution for EDC (monitored at 405 nm, see details in Text S2, SI) 

(Chon et al. 2015, Önnby et al. 2018b). The relative EDC and UV254 results are presented as 

percentage of abatement compared to the untreated sample.  
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3. Results and discussion 

3.1. Impact of oxidation on SRNOM properties. 

The relative EDC and UV254 abatements (%), were measured after treatment of 3 mgC L
-1

 of 

SRNOM at pH 8 with different specific doses of ClO2, O3 (with or without t-BuOH), Fe(VI) 

or Mn(VII) (Figs. 1a and b). Both the relative EDC and UV254 decreased with increasing 

doses of oxidants and the extent of abatement depended on the type of oxidant.  

 

Fig. 1. Relative abatement of (a) EDC and (b) UV254 as a function of the specific doses of 

ClO2, O3 (with or without t-BuOH), Fe(VI) or Mn(VII) and (c) relationship between EDC 

and UV254 abatement for the selected oxidants. Samples containing bromide are identified by 

a cross in the symbol. [SRNOM] = 3 mgC L
-1

, [Br
–
] = 0 or 150 µg L

-1
, pH 8 (40 mM borate), 

oxidant doses: ClO2 = 3.3–21.3 µM mgC
-1

, O3 in presence of t-BuOH (O3-t-BuOH) = 0.7–

31.3 µM mgC
-1

 ([t-BuOH] = 0.4 mM), O3 = 2–44.3 µM mgC
-1

, Fe(VI) = 0.7–23.3 µM mgC
-1

, 

Mn(VII) = 0.3–10 µM mgC
-1

. Error bars represent the range of results of duplicate analyses 

of a single experiment. 
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For a specific pre-oxidant dose of 4 µM ox mgC
-1

, the relative EDC abatement was highest 

for Mn(VII), with ~ 70–75% EDC abatement, similar for ClO2, Fe(VI) and O3 in presence of 

t-BuOH (O3-t-BuOH), with ~ 40–44% EDC abatement, and lowest for O3  without scavenger 

(~ 21% EDC abatement) (Fig. 1a). For specific doses > 4 µM ox mgC
-1

, O3-t-BuOH and 

Fe(VI) became less efficient than ClO2 in abating the relative EDC. At 10 µM ox mgC
-1

, 

Mn(VII) and ClO2 abated the EDC by 90 and 65%, respectively, while O3-t-BuOH and 

Fe(VI) achieved ~ 54% (Fig. 1a). In contrast to the EDC, the relative UV254 abatement with 

O3 (with and without t-BuOH) and Mn(VII) were relatively similar and higher than for ClO2 

or Fe(VI) (Fig. 1b). For a specific pre-oxidant dose of 10 µM ox mgC
-1

, ~ 30% UV254 

abatement was achieved by Mn(VII) and O3 (with and without t-BuOH), whereas ClO2 and 

Fe(VI) abated the UV254 by only 15% (Fig. 1b). To illustrate the differences between 

oxidants, the relative UV254 abatement was plotted against the relative EDC abatement (Fig. 

1c). Figs. 1a-c show that O3 abated the relative EDC and the relative UV254 to a similar extent 

(~ 36% and ~ 34%, respectively, at 10 µM ox mgC
-1

) while O3-t-BuOH, ClO2, Fe(VI) and 

Mn(VII) exhibited much higher relative EDC abatements compared to UV254 (> 50% for 

        ≤ 30% for UV254 at 10 µM ox mgC
-1

). Fig. 1c shows two distinct phases for all four 

oxidants. In phase I (< 50% EDC abatement), a very limited relative UV254 abatement was 

observed compared to the EDC, whereas in phase II (> 50% EDC abatement), the relative 

UV254 abatement was more pronounced (Fig. 1c). In phase I, the ratio of relative 

∆   /∆UV254 abatement was 3 for O3-t-BuOH and 7–8 for ClO2, Fe(VI) and Mn(VII) 

(Table S1, Fig. 1c). In phase II, the relative EDC and UV254 abatements were almost 

equivalent for ClO2, Fe(VI) and O3-t-BuOH (∆   /∆UV254 = 0.9–1.2, Table S1 and Fig. 1c) 

while Mn(VII) still had a higher relative EDC abatement compared to UV254 (∆   /∆UV254 

 2). In absence of t-BuOH, O3 featured only one phase (Fig. 1c).  
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The impact of bromide on the EDC and UV254 abatement was also tested. The oxidants 

exhibit different reactivities with bromide. Among the selected pre-oxidants, O3 is the most 

reactive and will oxidize bromide with a moderate rate to free available bromine or even to 

bromate depending on the ozone exposure, pH and the bromide concentration (von Gunten 

and Hoigné 1994). Fe(VI) can also oxidize bromide but with a much lower second order rate 

constant (Jiang et al. 2016a). ClO2 and Mn(VII) are not reactive towards bromide (Hoigné 

and Bader 1994, Lawani and Sutter 1973), but ClO2 can release FAC during reactions with 

NOM (Rougé et al. 2018), which in turn can oxidize bromide to free available bromine 

(Kumar and Margerum 1987). The EDC and the UV254 abatements were not affected by the 

addition of bromide (150 and 500 µg L
-1

, Fig. S1, SI). This suggests that the potential free 

available bromine formed by O3 and Fe(VI) had limited impact on the NOM properties, 

probably due to the efficient reactions of the oxidant-reactive NOM moieties with the 

primary oxidant. In the case of ClO2, it can be hypothesized that free available bromine     ’  

impact NOM characteristics differently than the in situ released FAC. 

3.2. Mechanistic interpretations. 

Activated aromatic moieties such as phenols are considered as major EDC contributors 

(Aeschbacher et al. 2012). Previous studies showed that ClO2, O3, Fe(VI) and Mn(VII) are 

reacting with such compounds (Lee et al. 2005a, Waldemer and Tratnyek 2006, Tentscher et 

al. 2018, Hoigné and Bader 1994), which is consistent with the ability of all oxidants to 

readily abate EDC (Fig. 1a). 

3.2.1. EDC and UV254 abatement by Mn(VII), Fe(VI) and ClO2. 

As shown in Fig. 1a the relative EDC abatement was higher for Mn(VII) compared to the 

other oxidants. This is in agreement with the theoretical ability of Mn(VII) to abstract more 

electrons than the other oxidants (depending on the final oxidation state of Mn, between 3 
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(reaction to Mn(IV)) and 5 electrons (reaction to Mn(II))). It was verified that the relative 

EDC abatement by Mn(VII) was not due to the adsorption of NOM onto MnO2 particles and 

subsequent filtration of MnO2 (Allard et al. 2017). The DOC concentration was similar 

before and after filtration, and a difference ≤ 4% for the EDC abatement was measured 

between the filtered and unfiltered samples. Similarly to Mn(VII), Fe(VI) is theoretically able 

to abstract up to 3 (formation of Fe(III)) or 4 electrons (formation of Fe(II)). However, at 

equivalent specific doses, the EDC abatement for Fe(VI) was much lower than for Mn(VII) 

(Fig. 1a). Fe(VI) and its reduced products are known to rapidly self-decay (Lee et al. 2014, 

Rush and Bielski 1989). Therefore, since Fe(VI) exposure is reduced, the EDC abatement is 

lower than expected. Furthermore, the auto-decomposition of the intermediates Fe(V) and 

Fe(IV) is likely to be faster than their reaction with NOM moieties (Lee et al. 2014, Rush and 

Bielski 1995, Rush et al. 1995). In contrast, the much more efficient EDC abatement by 

Mn(VII) suggests that its reduced products Mn(V) and Mn(VI) are likely to react with NOM 

moieties. More details on kinetics and degradation pathways of Fe and Mn species are 

provided in Text S3 (SI). Comparatively to Mn(VII), the lower relative EDC abatement by 

ClO2 is consistent with the known one-electron transfer producing ClO2
–
 (Fig. 1a) (Gordon et 

al. 1972), although other mechanisms, notably oxygen transfer which can release FAC 

(Rougé et al. 2018), coexist and may enhance the oxidation capacity of ClO2 (discussed in 

section 3.2.3). The relative EDC and UV254 abatements obtained with ClO2 (Figs. 1a-c) are 

consistent with a previous study conducted with Suwannee River Fulvic Acid at pH 7 (Wenk 

et al. 2013). 

The generally higher relative EDC abatement compared to UV254 abatement was previously 

explained by the formation of quinones from the oxidation of phenolic moieties, which leads 

to an abatement of the EDC but not the UV254 (quinones also absorb UV light) (Wenk et al. 

2013). The relative EDC versus UV254 abatements for Mn(VII) and Fe(VI) were similar to 
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the observations for ClO2 (Fig. 1c). This suggests that analogous reaction mechanisms may 

occur with Mn(VII) and Fe(VI), i.e., the formation of quinones. This is consistent with 

one-electron transfer pathways suggested for the reaction of Mn(VII) and Fe(VI) with 

phenolic compounds, leading to quinones and/or dimeric structures (Huang et al. 2001, Jiang 

et al. 2012, Rush et al. 1995, Waldemer and Tratnyek 2006). The presence of two phases for 

the relative EDC versus UV254 plots can provide further insights on the impact of the 

different oxidants on SRNOM characteristics (Fig. 1c). It is suggested that in phase I (< 50% 

EDC abatement), ClO2, Mn(VII) and Fe(VI) oxidized phenolic-type moieties to quinone-type 

moieties, mainly leading to an abatement of the relative EDC and a limited decrease of the 

relative UV254 (Fig. 1c, Table S1). In phase II (> 50% EDC abatement), the oxidation of less 

reactive NOM moieties led to aromatic ring cleavage, resulting in larger UV254 abatements 

(Fig. 1c, Table S1) (Chen et al. 2016, Gordon et al. 1972, Li et al. 2008). 

3.2.2. EDC and UV254 abatement by O3 with and without t-BuOH. 

Compared to the other oxidants, O3 led to lower relative EDC and higher relative UV254 

abatements (Figs. 1a and 1b). The main mechanisms for the O3 reactions are oxygen transfer 

(two-electron abstraction) and electron transfer (one-electron transfer) (von Sonntag and von 

Gunten 2012). For electron transfer, the secondary oxidant 
●
OH is formed, which needs to be 

taken into consideration during ozonation (de Vera et al. 2015, von Sonntag and von Gunten 

2012). 
●
OH can further react with NOM, by hydroxylation or H atom abstraction (von 

Sonntag 2007), or can catalyze O3 decomposition (von Sonntag and von Gunten 2012). To 

evaluate the impact of 
●
OH on NOM properties, t-BuOH was added as a scavenger. Similar 

UV254 abatements were obtained with or without t-BuOH (Fig. 1b), while the EDC was 

significantly more abated in presence of t-BuOH (Fig. 1a). The similar UV254 abatement 

observed with or without t-BuOH suggests that fast-reacting moieties leading to ring cleavage 

are not affected by the 
●
OH-catalyzed decomposition of O3 (Fig. 1b). However, in absence of 
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t-BuOH, the lower O3 exposure (due to 
●
OH-catalyzed decomposition), leaded to a lower 

EDC abatement (Fig. 1a). Additionally, in absence of t-BuOH the hydroxylation of aromatic 

moieties by 
●
OH, which may lead to the formation of electron-donating compounds, can also 

result in a lower EDC abatement.  

Despite the higher relative EDC abatement compared to the UV254, similar to the other 

oxidants in phase I (Fig. 1c), O3-t-BuOH oxidation led to a lower relative ∆   /∆UV254 

                 Δ   /ΔUV254 ≈ 3     O3-t-BuOH versus 7–8 for the other oxidants, Table 

S1). Similarly to ClO2, the higher EDC abatement compared to UV254 obtained with O3-t-

BuOH has previously been explained by the formation of quinones (Önnby et al. 2018a). 

However, while benzoquinone is formed stoichiometrically by oxidation of phenol with ClO2 

(Rougé et al. 2018), multiple products are formed (along with benzoquinone) with O3-t-

BuOH (Mvula and von Sonntag 2003, Tentscher et al. 2018). In particular, aliphatic 

compounds are produced by O3-t-BuOH through a Criegee-type mechanism leading to a 

cleavage of C=C bonds (Ramseier and von Gunten 2009), which mitigates both EDC and 

UV254 and can explain the lo    Δ   /ΔUV254 ratios compared to ClO2 (Fig. 1c, Table S1).  

3.2.3. Impact of in situ formed FAC on EDC and UV254 abatements during ClO2 treatment. 

Although ClO2 is generally described as reacting through one-electron transfer reactions 

(Gordon et al. 1972), oxygen transfer with radical intermediates can also occur, 

corresponding to a three-electron transfer releasing FAC (Rougé et al. 2018). The in situ 

formed FAC can further react, increasing the oxidation capacity of ClO2 and potentially the 

relative EDC abatement. The impact of FAC on the EDC abatement was tested by quenching 

the in situ formed FAC with NH4Cl, forming NH2Cl which is significantly less reactive with 

NOM than FAC (Deborde and von Gunten 2008, Heeb et al. 2017). It was shown that 

quenching FAC was not or only slightly impacting the EDC abatement whereas it 

significantly inhibited the UV254 abatement (see details in Text S4 and Fig. S2 in SI). The 
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impact of FAC on UV254                                       ’                     -

donating compounds, probably because they are already abated by ClO2, or if FAC reacts, 

electron-donating compounds may still lead to EDC (e.g., chlorophenols). However, FAC 

could react with chromophoric compounds that have little reactivity with ClO2. For instance, 

FAC can react with quinone-type structures by electrophilic substitution (Zhao et al. 2012). 

                        ’                         -type structures are already oxidized, while 

the UV254 may decrease. The halogenation of quinones can reduce their UV-absorbing 

properties at 254 nm. As an example, 1,4-   z               ε254 ≈ 1.6 x 10
4
 M

-1
 cm

-1
 

whereas for 2,6-dichloro-1,4-benzoquinone and 2,3,6-trichloro-1,4-   z         ε254 ≈ 4 x 

10
3
 M

-1
 cm

-1
 (Qian et al. 2013, Wilke et al. 2013). Multi-halogenation of quinones can also 

lead to ring cleavage (Rook 1977), which would significantly mitigate their UV254. 

Halogenation of NOM by in situ produced FAC during ClO2 treatment has previously been 

demonstrated (Rougé et al. 2018). 

3.3. Correlation of chlorine demand and DBP formation with NOM characteristics. 

The impact of pre-oxidation on DBP formation and FAC demand are presented in Figs. 2a-h. 

In practice, other treatments, coagulation/sedimentation or (bio)filtration, may be applied 

between pre-oxidation and disinfection, which would also affect NOM properties as well as 

the formation of DBPs (Krasner 2009). Therefore, the correlations presented below solely 

discuss NOM transformations induced by pre-oxidation and are likely to differ in a more 

realistic water treatment scheme. 

3.3.1. Correlations of NOM characteristics with FAC demand and AOX formation. 

Experiments carried out with solutions containing 3 mgC L
-1

 of SRNOM at pH 8, a chlorine 

dose of 85 µM (6.0 mgCl2 L
-1

), without or with bromide (150 µg L
-1

) and without pre-

oxidation treatment showed that 58 ± 2 µM of FAC was consumed (Figs. 2a-b) while 
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16 ± 0.4 µM of AOX was produced after 72 h (Figs. 2c-d). The presence of bromide was not 

significantly impacting the FAC demand over 72 h. Similarly, the total molar AOX formation 

was not affected by the presence of bromide, however, part of the chlorine was most likely 

substituted by bromine in NOM (Langsa et al. 2017b).  

The FAC demand after 72 h was decreasing with increasing pre-oxidant doses and the 

different oxidants exhibited different patterns (Fig. S3a, SI). For example, specific pre-

oxidant doses of 2, 5, 7 and 17 µM ox mgC
-1

 were needed to reduce the FAC demand by 

~ 20% for Mn(VII), ClO2, O3-t-BuOH and Fe(VI), respectively. The formation of H2O2 

during O3-t-BuOH pre-treatment (Acero and Gunten 2000, Tentscher et al. 2018), is 

suspected to be responsible for a significant fraction of the FAC demand (see details in Text 

S5, SI) (Held et al. 1978). Therefore, a FAC demand corrected for the impact of H2O2 is also 

presented in Figs. 2a-b and Fig. S3a (SI) (open circles) and is used for the discussion. H2O2 is 

also formed during Fe(VI) decomposition, but it is quickly degraded by Fe(III), Fe(IV) and 

Fe(V) in absence of phosphate (Jiang et al. 2016a, Lee et al. 2014). The AOX formation after 

72 h chlorination also varied depending on the pre-oxidant (Fig. S3b, SI). To achieve a 

~ 20% reduction in AOX, specific pre-oxidant doses of 2–3 µM ox mgC
-1

 for O3-t-BuOH or 

Mn(VII) and 13 and 17 µM ox mgC
-1

 for ClO2 and Fe(VI) were needed, respectively. Figs. 

2a-b and 2c-d show the FAC demand and the AOX formation compared to the relative UV254 

and EDC abatement for the different oxidants, respectively.  

The FAC demand was poorly correlated to the relative UV254 abatement (Fig. 2a). The 

correlation factor was driven by the O3-t-BuOH data corrected for the H2O2/FAC reaction 

(R
2
 = 0.840 and 0.693 with and without the corrected O3-t-BuOH data, respectively, Fig. 2a). 

In comparison, a two-step correlation was observed between the FAC demand and the 

relative EDC abatement for ClO2, Fe(VI) and Mn(VII) (Fig. 2b). In the first step, < 50% EDC 

abatement, the FAC demand was not significantly reduced. In the second step, > 50% EDC 
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abatement, the FAC demand was significantly reduced and correlated to the relative EDC 

abatement (R
2
 = 0.772, Fig. 2b). Compared to other oxidants (ClO2, Fe(VI), and Mn(VII)), 

the O3-t-BuOH (corrected for H2O2/FAC reaction) exhibited a higher FAC demand 

abatement relative to the % EDC abatement (Fig. 2b).  

The AOX formation for ClO2, Fe(VI) and Mn(VII), relative to the % EDC abatement also 

exhibited a two-step correlation (Fig. 2d). The AOX formation was poorly abated in the first 

step (< 50% EDC abatement) and significantly abated in the second step (> 50% EDC 

abatement). The AOX formation after pre-oxidation with ClO2, Fe(VI) and Mn(VII) had a 

good correlation with the relative EDC abatement (R
2
 = 0.938 in phase II, Fig. 2d) and the 

relative UV254 abatement, although the correlation with the latter was driven by O3-t-BuOH 

data (R
2
 = 0.902 and 0.770 with and without the O3-t-BuOH data, respectively, Fig. 2c). The 

reduction of AOX formation as a function of the relative EDC abatement was more efficient 

after O3-t-BuOH pre-oxidation compared to the other oxidants in both phases (Fig. 2d). It has 

to be noted that the lower FAC exposure induced by the presence of H2O2 after O3-t-BuOH 

pre- x             ’                            OX                                   

excess and the chlorination experiments were run over 72 h.  

The two-phase trend between the FAC demand, or the AOX formation, and the EDC 

abatement are explained based on the mechanisms previously described. In phase I, ClO2, 

Mn(VII) and Fe(VI) mainly oxidized highly reactive phenolic-type moieties to quinone-type 

moieties. These moieties have a lower EDC, but can still react with chlorine (Zhao et al. 

2012). Therefore, a limited reduction in FAC demand was observed (< 10%) at low relative 

EDC abatement (50%, Fig. 2b). Due to the limited reduction in FAC demand, the AOX 

formation was not significantly reduced (< 10%, Fig. 2d). In phase II, less-reactive aromatic 

moieties were cleaved to aliphatic-type moieties. These aliphatic-type moieties are likely to 

be less readily chlorinated than the original aromatic moieties (Dickenson et al. 2008). 
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Therefore, the FAC demand (Fig. 2b) and consequently the AOX formation (Fig. 2d) were 

greatly decreased. For O3-t-BuOH, UV254 was significantly abated for low relative EDC 

abatements (< 50%) (Fig. 1c). Therefore, the availability of reactive aromatic moieties was 

reduced and led to lower AOX formation and FAC demand (when corrected for H2O2/FAC 

reaction, see details in Text S5, SI) compared to the other oxidants (Figs. 2b and 2d).  

Fig. 2. (a-b) FAC demand and the formation of (c-d) AOX, (e-f) THM and (g-h) HAN as a 

function of the relative UV254 and the relative EDC abatement, respectively. For O3-t-BuOH 

pre-treatment, the FAC demand was corrected for the H2O2 produced in this process (open 

circles, see Text S5, SI). Black and red correlation factors (p-value < 0.0001) include and 

exclude O3-t-BuOH data (corrected for H2O2/FAC reaction in Fig. 2a), respectively. Linear 

regressions were done on 32 samples in Figs. a, c, f and h (24 without O3-t-BuOH data) and 

on 12 samples in Figs b and d. Samples containing bromide are identified by a cross in the 

symbol. [SRNOM] = 3 mgC L
-1

, [Br
–
] = 0 or 150 µg L

-1
, 40 mM borate (pH 8), pre-oxidant 

doses: ClO2 = 1.2–13 µM mgC
-1

, O3-t-BuOH = 0.7–31 µM mgC
-1

 ([t-BuOH] = 0.4 mM), 

Fe(VI) = 0.8–17 µM mgC
-1

, Mn(VII) = 0.3–6.6 µM mgC
-1

; post-chlorination: FAC dose = 85 
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µM, 72 h. The data points for DBP formation represent the average of duplicate or triplicate 

experiments and the error bars the range of obtained data (the two highest doses of Fe(VI) 

and Mn(VII) were not duplicate experiments). 

3.3.2. Correlations of NOM characteristics with THM and HAN formation. 

The impact of pre-oxidation on THM and HAN formation was also evaluated. THMs are 

important regulated DBPs (USEPA 1998), and HANs are unregulated but highly toxic 

(Muellner et al. 2007). Chlorination experiments (85 µM, 6.0 mgCl2 L
-1

) carried out with 

solutions containing 3 mgC L
-1

 of SRNOM at pH 8, with or without bromide (150 µg L
-1

) 

and without pre-oxidation treatment showed that 2.8 ± 0.1 µM of THMs (Figs. 2e-f) and 

48 ± 2 nM of HANs (Figs. 2g-h) were formed after 72 h. The presence of bromide did not 

affect the total formation of THMs and HANs even though brominated DBPs were formed.  

As observed for AOX and FAC demand, the correlation between the THM formation and 

UV254 was largely driven by the O3-t-BuOH data (R
2
 = 0.752 and 0.574 with and without the 

O3-t-BuOH data, respectively, Fig. 2e). Overall, the THM formation was poorly correlated to 

both the relative abatements of UV254 (R
2
 = 0.574 for THMs/UV254, Fig. 2e) and EDC 

(R
2
 = 0.485 for THMs/EDC, Fig. 2f). The THMs/EDC correlation for O3-t-BuOH pre-

treatment was in agreement with a previous study conducted under different experimental 

conditions (Fig. S5b, SI) (Önnby et al. 2018a). These results suggest that, even though 

correlations between THM formation and UV254 have already been shown in several previous 

studies (Amy et al. 1987, Edzwald et al. 1985), neither UV254 nor EDC were found to be 

good pre-oxidant-independent THM precursor surrogates.  

The formation of HANs was not correlated to the dose of oxidants (Fig. S3d, SI) or the 

relative UV254 abatement (Fig. 2g), which is consistent with a previous study (Hua et al. 

2015). Conversely, a good correlation was found with the relative EDC abatement 
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(R
2
 = 0.916, Fig. 2h). HAN formation has been extensively studied, and primary amines are 

suggested as main precursors (Shah and Mitch 2012). Table S3 summarizes published second 

order rate constants for the reactions of ClO2, O3, Mn(VII) and Fe(VI) with phenol and some 

amino acids. Aliphatic amino acids such as alanine or aspartic acid are commonly found in 

water (Dotson and Westerhoff 2009), and can produce HANs upon chlorination (Bond et al. 

2009, Bond et al. 2014). However, these amino acids are unreactive with ABTS
+●

 and will 

hence not contribute to the EDC (Zheng et al. 2016). More importantly, although O3-t-BuOH 

and Fe(VI) exhibit some reactivity with aliphatic amino acids (apparent second order rate 

constants of 10
2
–10

3 
M

-1
 s

-1
 and 10

1
–10

2 
M

-1
 s

-1
, respectively, at pH 8) (Hoigné and Bader 

1983, Noorhasan et al. 2010, Pryor et al. 1984), Mn(VII) (apparent second order rate 

          ≤ 10
-3

 M
-1

 s
-1

 at pH 8) (de Andres et al. 1988, Perez-Benito 2009) and ClO2 

  pp                                  ≤ 10
-2 

M
-1

 s
-1

 at pH 8) (Hoigné and Bader 1994, Noss et 

al. 1986) are essentially unreactive with these compounds. Therefore, since a similar HAN 

mitigation was observed for all the oxidants (Fig. 2h), other precursors might be responsible 

for HAN formation.  

Aromatic amino acids such as tryptophan and tyrosine, commonly used to characterize NOM 

by fluorescence (Coble et al. 1990), are accounted for in the EDC (Zheng et al. 2016), and 

yield to significant HAN formation from chlorination (Bond et al. 2009, Jia et al. 2016). The 

correlation between HAN formation and EDC abatement may be explained by the reactivity 

of the pre-oxidants with HAN precursors, namely, aromatic amino acids. At pH 8, 

tryptophan, tyrosine and phenol react with second order rate constants of a similar order of 

magnitude with O3 (10
6
–10

7 
M

-1
 s

-1
 at pH 8), and ClO2 (10

5
–10

6
 M

-1
 s

-1
 at pH 8) (Hoigné and 

Bader 1983, 1994, Pryor et al. 1984, Stewart et al. 2008) (Table S3). Similarly, Fe(VI) 

oxidizes tryptophan and phenol with similar second order rate constants (10
1
–10

2
 M

-1
 s

-1
 at 

pH 8) (Casbeer et al. 2013, Lee et al. 2005a) (Table S3). No data is available for the second 
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order rate constants for the reaction of tryptophan or tyrosine with Mn(VII), but rough 

estimations from literature indicate apparent second order rate constants of < 5 M
-1

 s
-1

 (almost 

no reaction observed) and 10
2
 M

-1
 s

-1
, respectively, at pH 7.2 (Kim et al. 2018). These second 

order rate constants are within an order of magnitude of the reaction of Mn(VII) with phenol 

(7–45 M
-1

 s
-1 

at pH 7–8) (Du et al. 2012). Overall, tryptophan-like or tyrosine-like moieties 

will degrade to an extent similar to phenolic moieties with all the different pre-oxidants, and 

their degradation should be correlated to the EDC abatement (more kinetic data are needed to 

be conclusive for Mn(VII)). This may explain the concomitant abatement of EDC (through 

the degradation of phenolic compounds) and HAN mitigation (through the abatement of 

tryptophan-like or tyrosine-like precursors).  

The results presented in Fig. 2h suggest that aliphatic amino acids, may not be the primary 

HAN precursors in the examined system. Furthermore, the mitigation of HAN formation may 

occur through the degradation of a side chain (e.g., indole or phenol group in tryptophan and 

tyrosine, respectively) rather than direct reaction with the primary amine since ClO2 and 

Mn(VII) have low reactivities with primary amines. For example, ClO2 and O3 have been 

shown to oxidize the phenolic side-chain of tyrosine, leading to the formation of a quinone 

followed by spontaneous cyclization between the primary amine and the quinone, i.e. the 

formation of dopachrome (Napolitano et al. 2005, Verweij et al. 1982). Although the 

chlorination of dopachrome is unknown, it can be hypothesized that the HAN yield from this 

compound will be lower compared to the tyrosine. N-containing structures other than amino 

acids may produce HANs (Ueno et al. 1996, Yang et al. 2012), but are not discussed here due 

to a lack of literature on their reactivities with oxidants.  

3.3.3. Correlations of NOM characteristics with calculated toxicity. 

The total relative cytotoxicity has previously been used as a tool to assess the adverse effects 

induced by the formation of DBPs and compare different treatment options (Allard et al. 

                  



 23 

2015, Ersan et al. 2019, Smith et al. 2010). The total relative cytotoxicity is calculated as the 

sum of the ratios between the concentration of a specific DBP (C) and its cytotoxicity (C50) 

(eq 1). The cytotoxicity is represented by the concentration of a specific DBP resulting in a 

50% reduction of Chinese hamster ovary cells density after 72 h (Plewa et al. 2008).  

                          ∑
 

   
         (1) 

Although the THM concentration was about 50 times higher than the HAN concentration 

(Figs. 2e-h), the cytotoxicity of HANs is several orders of magnitude higher (C50 = 10
-3
–10

-2
 

and 10
-6
–10

-4
 M for THMs and HANs, respectively, see Tables S4, SI) (Plewa et al. 2008). 

Therefore, under our experimental conditions, THM-induced cytotoxicity was much lower 

than HAN-induced toxicity, as illustrated in Fig. 3. Even though only two DBP classes were 

monitored, the importance of HAN-induced toxicity is consistent with previous studies 

(Plewa et al., 2017, Ersan et al. 2019).  

 

Fig. 3. Calculated cytotoxicity as a function of the EDC abatement. For each linear 

regression, the number of samples was 16. [SRNOM] = 3 mgC L
-1

, 40 mM borate (pH 8), no 

Br
–
, pre-oxidant doses: ClO2 = 1.2–13 µM mgC

-1
, O3-t-BuOH = 0.7–31 µM mgC

-1
 ([t-BuOH] 

= 0.4 mM), Fe(VI) = 0.8–17 µM mgC
-1

, Mn(VII) = 0.3–6.6 µM mgC
-1

; post-chlorination: 
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FAC dose = 85 µM, 72 h. The data used for the cytotoxicity calculations are provided in 

Tables S4 and S5 (SI). 

The good correlation observed between EDC abatement and HAN formation (Fig. 2h) 

translated, in absence of bromide, to a good correlation between EDC abatement and 

calculated cytotoxicity (R
2
 = 0.904, Fig. 3). Conversely, the poor correlation between UV254 

abatement and HAN formation led to a poor correlation between UV254 abatement and 

calculated cytotoxicity (R
2
 = 0.637, Fig. S6, SI). In presence of 150 µg L

-1
 bromide, the 

calculated total relative cytotoxicity was not correlated with the EDC abatement (R
2
 = 0.262, 

Fig. S7b, SI), due to the very potent brominated HANs which were less efficiently mitigated 

(see Table S6, SI). Alternatively, a total relative genotoxicity, representing DBP-induced 

DNA damage, can be calculated (see details in Text S6 and Fig. S8, SI) (Muellner et al. 

2007).                       x         M                             ’                       

DNA damage) (Plewa et al. 2008) while bromide highly affected genotoxicity and led to a 

poor correlation with EDC abatement (Fig. S8, SI). Other DBPs such as haloacetamides, 

halonitromethanes or haloaldehydes exhibit significant cytotoxicity and genotoxicity 

(Wagner and Plewa 2007, Plewa et al. 2017), and could strongly impact the correlation 

observed between EDC abatement and calculated toxicity. Therefore, monitoring these 

DBPs, or performing toxicity assays, is essential to better assess the suitability of UV254 and 

EDC as surrogates for pre-treatment efficiency related to toxicity.  

4. Conclusions 

An efficient control of the pre-oxidant dose is a prerequisite for an optimized disinfectant 

demand, to mitigate the formation of potentially toxic DBPs while maintaining a disinfectant 

residual. For pre-oxidation with ClO2, Mn(VII) or Fe(VI), a minimum EDC abatement (50% 

under our experimental conditions) is required to abate FAC-reactive moieties efficiently. 
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Compared to the EDC, the relative UV254 abatement occurs to a much lower extent, which 

leads to a significantly smaller measurement range and hence accuracy problems. This is 

especially important for low pre-oxidant doses and can be amplified by interferences from 

UV-absorbing compounds commonly found in natural or treated waters such as nitrate, 

chlorite or metals (Weishaar et al. 2003). These inaccuracies can lead to an overdosing of 

FAC, resulting in the formation of higher concentrations of DBPs. To address the growing 

concern about potent DBPs, additional emerging DBPs will probably be regulated. Although 

UV254 has been shown to be a good surrogate for AOX, it is poorly correlated to emerging 

DBPs (Hua et al. 2015). The correlation observed between HAN formation and EDC 

abatement is promising and EDC should be further explored as a surrogate for the formation 

of emerging DBPs. To mimic more realistic water treatment conditions, the impact of real 

water matrices and of all treatment steps between pre-oxidation and chlorination on NOM 

reactivity, notably biofiltration, needs to be investigated. Overall, EDC and UV254 can be 

used to determine the degree of oxidative pre-treatment and the required disinfectant dose to 

achieve optimal water treatment, hence minimizing the DBP-induced toxicity. 
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