Water Research 105 (2016) 56—64

journal homepage: www.elsevier.com/locate/watres

Contents lists available at ScienceDirect

WATER
RESEARCH

Water Research

Microbial source tracking in impaired watersheds using PhyloChip and
machine-learning classification

@ CrossMark

Eric A. Dubinsky ?, Steven R. Butkus °, Gary L. Andersen "

2 Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b North Coast Regional Water Quality Control Board, Santa Rosa, CA 95403, USA

ARTICLE INFO

Article history:

Received 19 April 2016
Received in revised form

16 August 2016

Accepted 19 August 2016
Available online 23 August 2016

Keywords:

Microbial source tracking
PhyloChip microarray
Machine learning

Fecal indicator bacteria
Pathogen TMDL

Microbial community analysis

ABSTRACT

Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of
non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that
detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a
single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are
common to the bacterial community of each source type. Both random forests and SourceTracker were
tested as discrimination tools, with SourceTracker classification producing superior specificity and
sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100%
correct identification of the dominant source and 84—100% specificity. The test was applied to identify
sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread
contamination by human sources during the wet season proximal to settlements with antiquated septic
infrastructure and during the dry season at beaches during intense recreational activity. The test was
more sensitive than common fecal indicator tests that failed to identify potential risks at these sites.
Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment
contained no fecal signal from humans or other animals; however these waters did contain high counts
of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and
enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with
copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting
runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results
indicate that machine-learning classification of PhyloChip microarray data can outperform conventional
single marker tests that are used to assess health risks, and is an effective tool for distinguishing
numerous fecal and environmental sources of pathogen indicators.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

are difficult to pinpoint because impaired waters typically receive
drainage from many parcels of land with assorted agricultural and

Pathogen contamination in inland and coastal waters is a urban land uses that occur throughout a watershed. Correct source

widespread problem in the United States. Under the Clean Water
Act, over 10,300 water bodies are considered impaired by patho-
gens due to high counts of fecal indicator bacteria (FIB) (U.S.
Environmental Protection Agency, 2016). In many cases the sour-
ces of this pollution are unknown and may originate from diffuse,
nonpoint sources such as urban and agricultural runoff, wildlife
droppings or even growth in the environment. Nonpoint sources
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identification is needed to accurately assess health risks and
implement effective controls for nonpoint discharge of pollutants
(U.S. Environmental Protection Agency, 2005).

Direct measurements of harmful fecal pathogens are currently
impractical for routine environmental monitoring because the as-
says are difficult, time-consuming and costly. Instead, quantifica-
tion of FIB, namely Escherichia coli or enterococci, is commonly used
as a proxy to assess pathogen risks (Gerba, 2000). Epidemiological
studies have established human health standards based on expo-
sure to these FIB recreational waters, and the reliance on these
conventional FIB to protect public health presumes high FIB counts
are caused by fecal inputs and are associated with higher rates of
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illness (Priiss, 1998; Wade et al., 2003). Conventional FIB tests,
however, are not reliably associated with health risks at beaches
with nonpoint FIB sources and provide no identification of sources.
Because E. coli and enterococci are facultative aerobes they can
survive and even grow under oxygenated conditions found in
surface waters, and FIB tests are prone to false positives caused by
extra-enteric, environmental strains of these taxa that are found in
sediments, soils, beach sands and decaying vegetation
(Byappanahalli et al, 2003, 2012; Hardina and Fujioka, 1991;
Imamura et al., 2011; Yamahara et al., 2009). Epidemiological
studies support a stronger association between fecal indicators and
waterborne diseases when sewage contamination is present,
compared to presence of high FIB originating from non-human
sources (U.S. Environmental Protection Agency, 2010). In light of
these limitations, additional tests are needed to reliably detect
potential nonpoint sources and accurately gauge health risk when
FIB tests indicate impairment.

Molecular detection of host-specific markers is increasingly
used to identify sources of FIB (Field and Samadpour, 2007;
McLellan and Eren, 2014). Most approaches measure single ge-
netic markers that are presumed to be unique to a single host. The
specificity and sensitivity of single marker tests varies among hosts.
Some hosts, such as humans, have single molecular targets that are
potentially reliable indicators of human feces (Boehm et al., 2013).
Others, such as livestock, dogs and various wildlife have less reli-
able markers that lack adequate specificity and sensitivity (Boehm
et al., 2013), and many wildlife and non-fecal FIB sources have no
known fecal markers that are suitable for identification. A toolbox
of reliable tests is needed to disentangle the complex mixture of
upstream sources that contribute FIB in watersheds with nonpoint
source problems (Ahmed et al., 2015; Noble et al., 2006).

High-throughput sequence analysis of microbial community
16S rRNA genes is a promising approach for detecting FIB sources in
complex environmental settings (Unno et al., 2010; Dubinsky et al.,
2012; Cao et al., 2013; Newton et al.,, 2013; Ahmed et al.,, 2015). An
advantage of community sequence approaches to source tracking is
that source discrimination is based on distinctive combinations of
potentially thousands of genetic markers and is not completely
dependent on the performance of a single marker. The 16S rRNA
gene that is used as the standard to define bacterial communities is
universally present in bacterial genomes and typically occurs in
multiple copies, supplying a highly abundant target for sensitive
detection and discrimination of fecal sources that have distinct
microbial communities. PhyloChip DNA microarray analysis has
been shown to be a highly sensitive and specific classification
method of fecal sources (Dubinsky et al., 2012; Cao et al.,, 2013). A
potential advantage of this method for source tracking compared to
next generation sequencing is the replicable detection of rare taxa
(down to 0.01% of microbial community; DeSantis et al., 2007),
which is important as sources are diluted and degraded within
diverse environmental background microbial communities (Probst
et al., 2014; Zhou et al., 2015).

Routine application of PhyloChip or other community-based
method for real world monitoring requires an automated, statisti-
cally robust classification approach to assess the likelihood that
individual sources contribute to the overall composition of the
sample microbial community. Machine-learning classification
methods have recently been adopted for community-based source
tracking (Knights et al., 2011b; Smith et al., 2010) but are untested
with PhyloChip microarray analysis for microbial source identifi-
cation in environmental samples. Supervised classification ap-
proaches to microbial source tracking use DNA sequence data from
complex microbial communities to train models to distinguish
different types of samples. These algorithms select subsets of fea-
tures from typically thousands of species or DNA sequences that are

most useful for classification and eliminate uninformative features
from the model. Random forests is an ensemble learning method
that uses decision trees, and is widely-used technique to classify
highly dimensional sequence data because of its ability to analyze
large datasets and high accuracy (Knights et al., 2011a; Lee et al,,
2005). Several studies have found random forests are the best
performing classification method for highly-dimensional micro-
array and community sequencing datasets compared to other su-
pervised classification methods (Knights et al., 2011a; Lee et al,,
2005; Smith et al., 2015). SourceTracker is a more recently devel-
oped Bayesian classification tool that uses Gibbs sampling to
calculate a posterior probability that microbial DNA from each
source is present in the microbial community of the sink, and was
shown to outperform random forest for pyrosequencing datasets
(Knights et al., 2011b). Recent studies have used SourceTracker to
detect fecal sources in next generation sequencing data (Ahmed
et al.,, 2015; Henry et al., 2016; Neave et al., 2014; Newton et al.,
2013; Staley et al., 2016); however, no source tracking studies
have evaluated the performance of phylogenetic microarrays,
including PhyloChip, with SourceTracker or random forest
classifiers.

In this study, we analyzed the performance of PhyloChip
detection and classification of fecal microbial communities using
random forest and SourceTracker. We then applied the best per-
forming method to detect sources of fecal contamination in the
Russian River watershed in Northern California, an area that is
heavily used for recreation and includes a diverse mix of land use
types including urbanized areas, dairy farms and pastureland, and
open space. Several communities along the river rely on septic
systems, many of which do not meet modern guidelines (North
Coast Regional Water Quality Control Board, 2015). The river
frequently exceeds FIB water quality limits for E. coli and entero-
cocci in both winter and summer months (Butkus, 2011; North
Coast Regional Water Quality Control Board, 2012). To support
the development of the Russian River Pathogen TMDL, the Phy-
loChip was used for microbiological source identification in the
middle and lower Russian River watershed. The goals of this study
were to determine the effectiveness of fecal source identification
using PhyloChip data and different machine-learning classifiers,
and apply the best performing method to identify sources that
impact water quality in the Russian River during periods of high
runoff and heavy recreational use.

2. Methods
2.1. Fecal and water sampling

A total of 70 fecal reference samples were collected and
analyzed from human waste (sewage, septage, stool), ruminants
(cows, elk, deer), cats and dogs, pigs, horses, and birds (gulls, geese,
pigeons, cormorants, pelicans, chickens). Each reference fecal
sample was collected from different locations throughout California
and was a composite of individual droppings from multiple in-
dividuals (Dubinsky et al., 2012). An additional 64 challenge sam-
ples from Boehm et al. (2013) were analyzed that were created from
freshly collected fecal material from 12 sources including: humans
(feces), sewage, septage, dogs, pigs, deer, horses, cows, chickens,
gulls, pigeons, and geese and contained either a single fecal source
(38 singletons) or two fecal sources (26 doubletons) (Table S1). The
38 singleton challenge samples included 24 full strength and
fourteen 1:10 strength singletons, which were created by filtering
200 ml and 20 ml of the corresponding singleton slurry, respec-
tively, through polycarbonate membrane filters (Isopore Millipore,
47 mm dia. 0.4 um pore size). Each of the 26 doubleton samples was
created by filtering 200 ml of a corresponding doubleton slurry
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created by mixing 90% and 10% (by volume) of the corresponding
singleton slurries. More details on the collection and preparation of
challenge samples are described elsewhere (Boehm et al., 2013).

Samples from the Russian River were collected from 12 popular
swimming beaches along the middle and lower portions of the
river extending from Healdsburg to the mouth of the river at Jenner
(Table S2). Collections occurred during the summer dry season
(August 2011) and the beginning of the wet season (October 2011)
at each location between 8:00 a.m. to 1:00 p.m. each day. Wet
periods were defined by federal regulation (40 CFR 122.21(g) (7)
(ii)) and the USEPA Storm Water Sampling Guidance Document
(U.S. Environmental Protection Agency, 1992) as greater than 0.1
inch and at least 72 h from the previously measurable (greater than
0.1 inch rainfall) storm event. Additional river samples were
collected at popular beaches in Guerneville and Monte Rio over five
consecutive days at 8:00 a.m. each day during the Russian River
Jazz & Blues festival (September 22—16, 2011) to assess daily vari-
ability during a period of intense recreational activity. Water
samples were also collected at 35 different creek sites in the
Russian River watershed that encompassed major land cover types
including forested areas, agricultural areas, rangeland, sewered
residential areas, and non-sewered residential areas with onsite
wastewater treatment (Table S2).

Water samples were collected at each site for E. coli and
enterococci quantification (100 mL) and PhyloChip analysis
(300 mL). Samples were transported on ice to the laboratory and
immediately processed for analysis. Culturable E. coli and entero-
cocci were quantified using the Colilert-24 and Enterolert tests,
respectively (IDEXX Laboratories, Westbrook, ME). Samples for
PhyloChip analysis were vacuum filtered through sterile poly-
ethersulfone membrane filters (Pall Supor 200, 47 mm dia., 0.2 pm
pore size), and filters were archived at —80 °C until DNA extraction.

2.2. DNA extraction and amplification

DNA was extracted from water filters using the DNA-EZ
extraction kit (Generite, New Brunswick, NJ). The 16S rRNA gene
was amplified from each DNA extract using PCR with bacterial
primers 27F (5-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-
GGTTACCTTGTTACGACTT-3') for bacteria (Lane, 1991). Each PCR
reaction contained 1 x Ex Taq buffer (Takara Bio Inc., Japan), 0.025
units/ul Ex Taq polymerase, 0.8 mM dNTP mixture, 1.0 pg/ul BSA,
and 200 pM each primer and 1 ng genomic DNA (gDNA) as tem-
plate for fecal samples and 10 ng gDNA for water samples. Each
sample was amplified in eight 25 pl reactions that spanned a
48—-58 °C gradient in annealing temperatures to minimize PCR bias
due to variable template annealing efficiencies and random prim-
ing effects (DeSantis et al, 2007). PCR conditions were 95 °C
(3 min), followed by 30 cycles 95 °C (30 s), 48—58 °C (25 s), 72 °C
(2 min), followed by a final extension 72 °C (10 min). Amplicons
from each reaction were pooled for each sample, purified with the
QIAquick PCR purification kit (Qiagen, Valencia, CA), and eluted in
50 pL elution buffer.

2.3. PhyloChip analysis

Detailed descriptions of PhyloChip design, validation and labo-
ratory procedures are described elsewhere (DeSantis et al., 2007;
Hazen et al., 2010). Purified PCR products were purified then
fragmented with DNAasel; the fragmented products were then
labeled with biotin followed by hybridization overnight onto the
PhyloChip microarray (Second Genome, South San Francisco, CA);
the microarray was then stained and scanned to provide raw
PhyloChip data in the form of fluorescent image files. Probe in-
tensities were background-subtracted and scaled to quantitative

standards (non-16S spike-ins) and outliers were identified as
described in Hazen et al. (2010).

Two approaches were used to analyze the fluorescent image
files following array scanning. The first approach for taxonomic
description used the standard operational taxonomic unit (OTU)
approach described in Dubinsky et al. (2012). In this approach the
presence of 59,316 different bacterial OTUs was determined by
positive hybridization of multiple probes that correspond to dis-
tinguishing 16S rRNA gene polymorphisms (average of 37 probes/
OTU). The hybridization score for an OTU was calculated as the
mean intensity of the perfectly matching probes exclusive of the
maximum and minimum. This approach yields an inventory of
detected OTUs that compose the microbial community.

The second analysis approach considered probe quartet data
(Probst et al., 2014) and is an advancement of the high performing
probe-based analysis described in Cao et al. (2013). The quartet
approach uses each of the PhyloChip's 1,015,124 probe that target
the sense, anti-sense, and corresponding mismatch probes of each
targeted sequence (Probst et al., 2014). This provides more strin-
gent positive match criteria for each targeted sequence than the
probe-based analysis described previously (Cao et al, 2013)
because it controls for non-specific hybridization and relies on
detection of both complimentary DNA strands to increase the
performance of the assay.

2.4. Machine learning classification and statistics

Probe-quartet profiles were measured in the 70 fecal reference
samples and used to define subsets of 16S rRNA gene sequences
that are common among samples of a given source type (>50% of
source samples) and rare in other fecal sources (<=1% non-source
samples). Fecal sources were categorized into six different source
types: humans (stool, sewage, septage), dogs and cats, pigs, rumi-
nants (cows, elk, deer), horses and birds. Out of 121,229 quartets
present in the dataset, 9001 were selected as the diagnostic subset
for machine learning analysis. Bacterial species that were
commonly found in each of these source types by PhyloChip OTU
analysis are shown in Fig. S1.

Two machine learning approaches to classification were evalu-
ated: SourceTracker (Knights et al.,, 2011b) and random forests
(Breiman, 2001). Analysis was conducted was conducted in R
(version 3.2.3) using SourceTracker (version 0.9.8) (Knights et al.,
2011b) and randomForest (version 4.6—12) (Liaw and Wiener,
2002) using default parameters. Quartet data from 70 reference
source samples were used to train the algorithm to detect fecal
signatures from human (20), dogs and cats (7), pigs (4), ruminants
(10), horses (5) and birds (24). The predictive performance of the
classifier was evaluated by leave-one-out cross-validation of
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Fig. 1. Cross-validation accuracy using random forest and SourceTracker classification
methods. Mean and standard deviation are shown for each fecal source.
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training data (Fig. 1). Challenge samples from Boehm et al. (2013)
were then evaluated with the superior method (SourceTracker) to
evaluate the tradeoff between specificity (true positive rate) and
sensitivity (true negative rate) as different categorical probabilities
were used as thresholds for calling a source present, and overall
accuracy of the test was calculated as area under the receiver
operating characteristic (ROC) curve (Fig. S2). Positive likelihood
ratios [LR" = Sensitivity/(1 — Specificity)] associated with each test
result were used to interpret the signal strength using conventional
guidelines for diagnostic tests as reviewed by Grimes and Schulz
(2005): strong signal (LR" > 10), moderate signal (5 < LR" <= 10)
and nominal signal (LR™ < 5) (Grimes and Schulz, 2005). Using
these LR' definitions, the categorical probability values from
SourceTracker that defined signal strength were >5.3% for strong
signal and 3.4—5.3% for moderate signal.

To evaluate the Russian River watershed samples, the algorithm
was trained with all fecal samples, 8 equipment blank samples to
account for any contamination signal, and 28 background water
samples from the Russian River watershed that had FIB counts
below USEPA precautionary thresholds (Table S2) in order to ac-
count for any influence of background microbial communities on
the diagnostic probe sets. By training the model with background
water samples, source probes that were cross-reactive with the
sink microbial community were reduced in importance for classi-
fication, minimizing the influence of background interference on
source detection. Water samples were separated based on FIB
precautionary thresholds because the goal of the microbial source
tracking study was to identify fecal sources that were associated
with high FIB counts. In addition, we accounted for the possibility
that low FIB samples could have fecal DNA signal by evaluating each
candidate background sample with the SourceTracker leave-one-
out validation procedure. Only samples with both low FIB counts
and no detectable fecal signals were recruited into the background
set that was used to train the final model.

Comparisons of overall bacterial community structure were
conducted with multivariate statistics in Primer 6 (Clarke and
Gorley, 2006). Nonmetric Multidimensional Scaling (NMDS) using
the Bray-Curtis distance metric was used to visualize community
differences and differences in community structure. Differences
among groups were tested by Analysis of Similarity (ANOSIM).
ANOSIM R values range from 0 to 1, with values close to 1 indicating
strong separation between groups and values close to 0 indicating
no significant separation. Similarity Percentage (SIMPER) analysis
was used to identify the taxa that were primarily responsible for
observed differences in community structure between groups.
Culturable FIB counts and PhyloChip results were compared by
regression analysis in R (version 3.2.3).

3. Results
3.1. Method evaluation

Random forest and SourceTracker classification tools were
cross-validated for all animals in the fecal reference library (Fig. 1).
SourceTracker outperformed random forest classification for
mammalian sources. Predicted cross-validation probabilities for all
mammalian sources were greater than 0.92 using SourceTracker
(perfect classification = 1.00), whereas probabilities were mostly
less than 0.80 using random forest classification. Avian source
prediction was similar between methods with all predicted cate-
gorical probabilities above 0.80 and most above 0.92. Based on
these results, SourceTracker was chosen as the classification
method for all subsequent analyses.

Sensitivity and specificity of PhyloChip quartet analysis with
SourceTracker classification was further evaluated with 64 single-

or dual-source samples using variable dilutions of 12 different
avian and mammalian sources (Boehm et al., 2013). Categorization
was highly accurate with an area under the ROC curve of 0.97
(Fig. S2). At the optimal threshold for categorical probability (5.3%),
determined by analysis of the ROC curve (Fig. S2), the assay had a
detection sensitivity of 100% each source type human waste, dogs,
ruminants, birds, horses, pigs) when it was the dominant source in
the mixture (Table 1). Specificities ranged from 84 to 100% for each
source type (Table 1). The overall sensitivity and specificity of the
assay aggregated for all sources were 96% and 90%, respectively,
when minor sources were included.

3.2. Russian River fecal signal detection

Field water samples from the Russian River watershed were
tested using PhyloChip quartet analysis with SourceTracker detec-
tion using the 70 sample training set described in Section 2.1.
Frequent occurrence of human fecal signal was detected in the
lower portions of the watershed during the wet season (Figs. 2 and
3). All five beaches sampled between Forestville (FAB) and the
mouth of the river at Jenner (JBR) contained moderate to strong
human fecal signal in the wet season (Fig. 2). The beaches with
human fecal signal were adjacent to or downstream from tribu-
taries that flow through residential areas in Forestville, Guerneville
and Monte Rio where the Regional Water Quality Control Board has
identified high densities of parcels with possible antiquated and/or
insufficient onsite wastewater treatment systems. Strong fecal
signal from dogs was also detected in the wet season at beaches in
Guerneville (JB) and Monte Rio (MRB) (Fig. 2). Moderate ruminant
fecal signal was present in the wet season at Russian River beaches
directly downstream of the confluence with Mark West Creek
(Fig. 3). Mark West Creek drains the Laguna de Santa Rosa water-
shed, an area with numerous dairies and pasturelands. Ruminant
fecal signal was detected at all sites in the southern portion of the
Laguna de Santa Rosa watershed in the wet season (Fig. 3).

Community analysis revealed that river samples were enriched
in Bacteroidales and Clostridia that are common human gut bac-
teria (Fig. S3). The most enriched OTUs (SIMPER analysis top 10%) in
samples with human fecal signal were human Bacteroidales
(genera Bacteroides, Prevotella) and Lachnospiraceae and Rumino-
coccaceae in the Clostridiales phylum (genera Blautia, Clostridium,
Coprococcus, Eubacterium, Roseburia, Ruminococcus, Faecalibacte-
rium). In addition, several OTUs of potentially pathogenic Bacillales
(genus Staphylococcus) were highly enriched in samples with
strong human and signals (Fig. S3).

In the dry season, strong bird signal was detected at the Jenner
sampling location (JBR) where the river meets the Pacific Ocean
(Fig. 2). This result is consistent with observations of abundant
shorebird populations at this site. The widespread detection of
human fecal signal observed in the wet season was not observed in
the summer likely due to drought conditions that limit runoff from
adjacent settlements. There was, however, localized detection of
human fecal signal at Johnson's Beach in Guerneville during the
Jazz Festival (Fig. S4) that may be caused by leaking bathrooms or

Table 1
Sensitivity and specificity of PhyloChip SourceTracker assay for dominant sources.
Sensitivity Specificity n

Human 100 88 22
Bird 100 93 18
Dog 100 100 6
Horse 100 99 4
Pig 100 96 6
Ruminant 100 84 8
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Fig. 2. Dry and wet season fecal signal detected at Russian River beaches. Sites are
ordered from upstream to downstream. Positive likelihood ratios were calculated from
each SourceTracker test result [Positive Likelihood Ratio = Sensitivity/(1 — Specificity].
Values above the solid line indicate a strong signal (likelihood ratio > 10). Values above
the dashed line and below the solid line indicate a moderate signal (likelihood ratio >5
and < 10). No fecal signals were detected in dry season samples except bird signal at
the mouth of the river. Strong human and dog, and moderate ruminant signals were
detected in the wet season at downstream beaches in the lower watershed.

bather shedding in the river.

DNA signals from humans, dogs and birds were detected at
several beaches in the lower Russian River (Fig. 3), however most of
these samples did not exceed the most protective U.S. EPA water
quality thresholds for E. coli [2012 Beach Action Value (BAV) of 190
units/100 mL] and only one exceeded the most protective threshold
for enterococci (BAV of 60 units/100 mL) (Table S2). Conversely,
most creek samples exceeded E. coli and enterococci water quality
thresholds in the wet season, however most creek samples with FIB
exceedances were unaffiliated with any fecal signal (Table S2).

4. Discussion

PhyloChip quartet analysis and SourceTracker classification is
capable of highly accurate identification of fecal sources for mi-
crobial source tracking. The sensitivity and specificity of the test
was significantly improved compared to the OTU-based classifica-
tion approach evaluated previously (Dubinsky et al., 2012; Boehm
et al,, 2013; Cao et al., 2013), and, unlike the previous evaluation
of PhyloChip performance compared with other community anal-
ysis methods (Cao et al., 2013), this study did not use any exact
matches to target sources as reference samples. We found Sour-
ceTracker outperformed random forests for classification of Phy-
loChip data, consistent with previous work that evaluated these
methods using 16S rRNA pyrosequencing data (Knights et al,,
2011b), Different animals have distinct fecal microbiomes that
can be used for microbial source tracking (Dubinsky et al., 2012).
Within a source type (e.g. humans) there are unique taxonomic
groups of bacteria, or distinctive combinations of several taxonomic

groups, that can be used to distinguish one source type from
another (Fig. S1). The modified PhyloChip analysis for source
detection focuses on 9001 of the most useful 16S rRNA gene targets
that distinguish human, ruminant, horse, pig, dog and bird sources
based on the composition of their fecal microbial communities. An
advantage of the quartet method was the significant reduction of
probes needed for fecal identification, approximately 3% of the total
probes present on the PhyloChip. For routine screening of fecal
sources the next logical step would be to create a smaller, more
inexpensive microarray with only probes that are useful for source
tracking.

In the Russian River, frequent detection of fecal signal in samples
with FIB counts below USEPA precautionary thresholds (Beach
Action Values) indicate that PhyloChip quartet analysis is a more
sensitive indicator of fecal contamination than conventional FIB
tests. PhyloChip categorization primarily relies on molecular
detection of Bacteroides and Clostridia sequences that comprise an
overwhelming majority (~95%) of the bacteria population in human
stool (Eckburg et al., 2005; Segata et al,, 2012) (Figs. S1, S3). In
contrast, E. coli and enterococci each comprise less than 0.2% of
human stool bacteria (Eckburg et al., 2005; Segata et al., 2012), and
thus may be diluted and degraded to extinction faster than Bac-
teroides and Clostridia that are 10>-10% times more abundant than
FIB used for water quality tests. Furthermore, FIB assays measure
only culturable bacteria that grow upon incubation, whereas the
DNA-based assay is unaffected by the degree to which different
environmental conditions alter bacterial culturability, although the
DNA-based microbial signature may overestimate risk if the
signature bacteria and associated pathogens are nonviable. The
community DNA approach takes advantage of all high-abundance
gut bacteria to enhance the sensitivity and specificity of the assay
compared to single target tests.

As demonstrated in this study, machine-learning models can be
trained with both fecal sources and environmental background
samples to account for cross-reactivity with 16S rRNA gene se-
quences that overlap between fecal and the environmental back-
ground. This approach increases the specificity of the assay and
minimizes cross-reactivity problems with 16S rRNA gene se-
quences that are common among fecal and environmental sources.
Evidence is emerging that sediments and other environmental
habitats can promote survival and growth of Bacteroides that are
considered host-specific and increasing used for (Drexler et al.,
2014; Kim and Wuertz, 2015). Most microbial source tracking
tests are validated in controlled laboratory experiments against
other fecal sources, but cross-reactivity with environmental sour-
ces such as anaerobic sediments and decaying vegetation is less
frequently tested. Fecal source identification by PhyloChip mini-
mizes cross-reactivity problems through the parallel detection of
thousands of phylogenetically diverse markers, the combination of
which are not found in environmental sources. In addition, the
machine learning classification approach deemphasizes any cross-
reactive sequences that occur among training sets to further
improve specificity.

In many samples with high counts of E. coli and enterococci
there was no detectable fecal signal from any source (Table S2). The
highest FIB counts occurred during the wet season in tributaries
throughout the watershed (Fig. S5, Table S2), and conventional
E. coli and enterococci counts were correlated with the average OTU
hybridization intensity of Escherichia OTUs (r? = 0.73) and Entero-
coccus OTUs (1> = 0.46), respectively (Fig. S5). High FIB counts were
associated with large shifts in overall microbial community struc-
ture (Fig. S5). Nearly all (96%) of the 500 most enriched OTUs in
samples with FIB exceedances occurred in the Flavobacteria (Fla-
vobacterium), Sphingobacteria (Pedobacter), Alphaproteobacteria
(Sphingomonas), Betaproteobacteria (Janthinobacterium, Massilia)
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Fig. 3. Detected sources of fecal bacteria in the Russian River watershed in all dry and wet season samples. Closed colored symbols represent strong source signals (likelihood
ratio > 10), open symbols represent moderate source signals (likelihood ratio >5 and < 10) and black circles represent no signal (all likelihood ratios < 5). Some locations were
sampled at multiple time points. See Table S2 for exact sample locations and times. The tributaries in the southeast portion of the watershed are Mark West Creek and Laguna de

Santa Rosa.

and Gammaproteobacteria (Citrobacter, Erwinia, Klebsiella, Pantoea,
Pseudomonas) (Fig. 4). With the exception of some Enter-
obacteraceae OTUs (coliforms), none of the OTUs that were most
enriched in samples with high FIB counts were features commonly
found in any fecal microbial communities (>25% of samples in any
one source type). However, the Flavobacteria, Sphingobacteria and
Proteobacteria genera that were enriched in high FIB samples are
common bacteria in freshwater ecosystems and include taxa that
rapidly grow in response to nutrient and carbon enrichment
(Kirchman, 2002; Fierer et al., 2007; Newton et al., 2011). These
organisms, along with coliforms and enterococci, are typically

found attached to suspended particles transported during storm-
water events (Jeng et al., 2005; Pachepsky and Shelton, 2011; Fisher
et al., 2015). Flavobacteria and Sphingobacteria are often found to
be associated with detrital particles and algal blooms (Kirchman,
2002). Betaproteobacteria are also dominant bacteria on organic
aggregates and streams with high detrital loading (Fazi et al., 2005;
Simon et al., 2002).

The occurrence of abundant coliforms and enterococci in the
absence of Bacteroidales and Firmicutes that dominate fecal sour-
ces indicates that the majority of FIB in the Russian River watershed
do not originate from fecal inputs, but are likely sourced from the
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Fig. 4. Most abundant bacterial taxa in samples with either strong fecal signal or no fecal signal with high numbers of FIB. Water samples with the strongest fecal signal (positive
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surrounding environment and growing in situ. Co-enrichment of
FIB with aquatic bacteria that naturally thrive in nutrient and car-
bon rich waters suggests FIB are responding to growth-promoting
conditions following rainfall. Wet season runoff flushes carbon
and nutrients into streams, and may also flush in particle-
associated bacteria from stream bank sediments and soils. Both
types of widely used fecal indicator bacteria, E. coli and enterococci,
naturally occur in a variety of environmental habitats that may
influence stream and river microbial communities after runoff,
including soils, sediments, beach sands, and a variety of aquatic
vegetation (Badgley et al., 2010; Byappanahalli et al., 2003, 2012;
Hardina and Fujioka, 1991; Ishii et al., 2006; Whitman et al,,
2014; Yamahara et al.,, 2007). These naturalized populations are
stable and ubiquitous in many geographic areas and confound the
use of E. coli and enterococci as indicators of fecal contamination.

Microbial community analysis is likely to be an increasingly
valuable tool for identifying both fecal and environmental sources
of FIB so long as E. coli and enterococci are the standard indicators
used to assess recreational water quality and serve as the basis for
pathogen TMDLs. Rapidly evolving sequencing technologies and
bioinformatics is enabling more comprehensive interrogation of
microbial communities for microbial sources tracking. Recent
studies have begun to compare molecular community approaches
for source tracking in simple laboratory experiments (Cao et al.,
2013), but more work is needed to evaluate performance under
field conditions with decayed fecal signals in complex microbial
backgrounds.

We hypothesize that the closed format of the PhyloChip
microarray has an advantage over open format next-generation
sequencing for reliably identifying fecal signal within background
environmental microbial communities because it avoids problems
with non-uniform sample depth, low reproducibility due to
random sampling, and sequencing biases (Probst et al., 2014; Zhou
et al., 2015). Advantages of the microarray approach for source
tracking are its more consistent detection of low abundance taxa,

and fixed targeting of an established set of important marker genes
from source microbiomes that are always probed for rather than
randomly sampled. This yields better reproducibility, better
comparability among samples, and less variation in sensitivity due
to fluctuations in dominance of background microbial populations
(Zhou et al., 2015). We also hypothesize that the PhyloChip method,
which is based on 16S rRNA gene amplicon analysis, produces more
reproducible and accurate results than methods based on whole
genome amplification such as the recently described MST micro-
array (Li et al,, 2015). Whole genome amplification is known to
produce non-uniform distortions across phylogenetic clades and
different sample types that can negatively affect its performance for
fecal source tracking and detection of waterborne pathogens
(Probstet al., 2015). Nonetheless, PCR bias and inhibition are always
a concern with any PCR-based source tracking method, including all
commonly used methods that target 16S rRNA genes such as Phy-
loChip, quantitative PCR, next generation sequencing and TRFLP.
Another limitation of the PhyloChip approach is that the method is
currently designed for source detection rather than source appor-
tionment and quantification.

Comparative trials will need to further evaluate the perfor-
mance and practicality of PhyloChip and other emerging technol-
ogies, and explore toolbox approaches that couple these methods
with more targeted markers for even better results (Ahmed et al.,
2015). Future work should evaluate the performance of these
methods as source signals are decayed and diluted in the envi-
ronment. Source tracking investigations can only benefit from more
complete microbial surveillance to disentangle the complexities of
non-point source pollution.

5. Conclusions

e A microbial source tracking test based on the PhyloChip
microarray can simultaneously detect fecal signals from
humans, dogs, birds, ruminants, horses and pigs. The use of a
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core set of diagnostic probes with a machine-learning classifier
results in accurate identification of these source types. The
SourceTracker classifier performed better than the random
forest classifier.

e The test is more sensitive than conventional FIB tests for
detecting fecal pollution. Human fecal signal was frequently
detected in the Russian River near communities with onsite
wastewater treatment, even when conventional FIB counts were
below water quality limits. Ruminant contamination was also
detected in areas near dairy farms and pastureland.

e Concurrent characterization of microbial community structure
in the Russian River watershed suggested high FIB counts were
often not from fecal sources but due to environmental pop-
ulations enhanced by runoff.

e Source tracking based on phylogenetic microarrays gives a
comprehensive assessment of the bacterial community associ-
ated with indicator organisms and can reveal both fecal and
environmental causes of FIB impairments.
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