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Abstract

This study introduces natural occurring magneticrriptite (NP) as an
environmentally friendly, easy available, and cef$éctive alternative catalyst to
activate persulfate (PS) of controlling microbiater contaminants. THe coli K-12
inactivation kinetics observed in batch experimemtas well described with
first-order reaction. The optimum inactivation réte= 0.47 log/min) attained at a NP
dose of 1 g/L and a PS dose of 1 mM, corresponttirigtal inactivation of 7 log
cfu/mL cells within 15 min. Measure#t increased > 2-fold when temperature
increased from 20 to 50 °C; and > 4-fold when pldreased from 9 to 3. Aerobic
conditions were more beneficial to cell inactivatilhan anaerobic conditions due to
more reactive oxygen species (ROS) generated. R§nsible for the inactivation
were identified to be SO > «OH > KO, based on a positive scavenging test iand
situ ROS determinatiorin situ characterization suggested that PS effectiveld lban
NP surface was likely to form charge transfer carpEFe(ll)---O3SO-0SQ),
which mediated ROS generation arifl coli K-12 oxidation. The increased
cell-envelope lesions consequently aggravated delrdar protein depletion and
genome damage to cause definite bacterial death. Nf still maintained good
physiochemical structure and stable activity evéierad cycle. Moreover, NP/PS
system also exhibited godfl coli K-12 inactivation efficiency in authentic water

matrices like surface water and effluents of seaonpaastewater.

Key words: Natural pyrrhotite, Persulfate, Sulfatedical, Water disinfection,

Heterogeneous catalysis
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1. Introduction

With increasing populations and uncertain globahate changes, the shortages
of fresh and sanitary water require increased waigycle and reuse (Rietveld et al.,
2011; Haaken et al., 2014). Biohazards such aghacviruses, and fungi are widely
presented in wastewater, which can cause a varietsater-borne diseases to humans
and animals (Dobrowsky et al., 2014; Soller et2014). Unfortunately, conventional
water disinfection technologies, including chlotina, ozone, and ultraviolet (UV),
have some disadvantages during application. Ftanos, a number of biohazards are
naturally resistant to UV and chlorination (Eischet al., 2011; Rizzo et al., 2013a,
b); the toxic and corrosive characteristics of ezdimit its practical application
(Anastasi et al., 2013); the formation of disinfest byproducts (DBPs) by
chlorination and ozonation are with potential caogenicity or toxicity (Parker et al.,
2014; Sharma et al., 2014). Therefore, effectivelpoving biohazards from water is
a challenge that has received great attention ¢6ah, 2014; Huang et al., 2017), and
versatile new technologies are highly needed takaneously inactivate biohazards
and eliminate disinfection debris.

In recent decades, sulfate radicals (¢3(based advanced oxidation process
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(AOP) has attracted increasing interests in wateatinent, due to their high
efficiency in degrading a wide range of recalcitramcro-contaminants (Drzewicz et
al., 2012; Yuan et al., 2014) and even inactivabrahazards (Anipsitakis et al., 2008;
Tsitonaki et al., 2008; Chesney et al., 2016). iRstance, Michael-Kordatou et al.
(2015a) evidence that the UVC/PS process can rasultapid and complete
erythromycin (ERY) degradation and ERY-resistBatherichia coli inactivation in
secondary treated wastewater, thus to produce & fiinated effluent with lower
phytotoxicity (<10%) compared to the untreated wastter. The good performance
of «SQ, based AOP in wastewater is mainly attributed te lrge formation of
highly reactive species, such as sS@.5-3.1 eV) and its derived *OH (2.7 eV)
occurring in natural conditions (Michael-Kordatduaé 2015a). Moreover, Ahn et al.
(2013) use zero valent iron (ZVI) to activate péete (PS, $0s°") for disinfecting
ballast water and achieve a result that the mapimgoplankton could be totally
inactivated and mineralized without formation ofrthéul byproducts. In analogy,
*SQO, based AOP may hold promise to be more effectiam tbonventional water
disinfection processes in inactivating biohazands tb their more powerful oxidation
capabilities and lower tendency to form DBPs.

Generally, *S@ can be produced by the activation of PS and PM&n@/ét al.,
2015; Zhong et al., 2015; Feng et al., 20Approaches of PS/PMS activation mainly
include heat, microwave, UV, and addition of tréiosi metals or carbon materials
(Waldemer et al., 2007; Johnson et al., 2008; Gataad., 2011; Matzek and Carter,
2016). Especially, the utilization of transition tale (zero valent iron, G@Q,,
CuO/Feg0,, etc.) has received particular attention to hefeneously activate
PS/PMS, because they are not consumed during tineateon and no additional

energy is required (Guan et al., 2013; Zhang eR@ll3; Zeng et al., 2015; Oh et al.,
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2016). However, many limitations for the wide-spagpplication of these synthetic
catalysts still exist: (1) the complex fabricatipnocedure and expensive massive
production of these catalysts (Wang et al., 20(2)the potential leaching of heavy
metals in the synthetic catalysts like?Cor CUf* are hazardous to environment (Hu
et al., 2016; Ren et al., 2015); (3) the recycld sruse of these nano-size catalyst is
difficult. Therefore, developing new catalysts flurther decreasing the cost of
synthesis, potential secondary pollution, and easycle is necessary.

Naturally occurring minerals enriched in transitionetals may provide an
economical alternative for practical water treatmas which can be readily supplied
in large quantities at low cost (Teel et al., 20Y&n et al., 2015). In this work,
natural pyrrhotite (NP, kgS) is suggested to be a good catalyst to effegtaetivate
PS/PMS for water treatment: the great involveméied” in NP is beneficial for PS
activation and the leached Fe ions are environréigadly, as well as the specific
ferromagnetic properties can facilitate its sepamatind recycling after utilization
(Xia et al., 2015a). In fact, NP is widely dispetse natural settings and always
discarded as a waste due to its over-supply irsthieiric acid market (Yang et al.,
2014). Therefore, it is beneficial to investigatee tPS/PMS activation ability of
reusing NP waste for both water treatment and rtafieg remediation. Moreover,
there still exists contradictory interpretationsthwirespect to the identity of the
reactive species and the PS/PMS activation meamanise., radical vs non-radical
mechanisms, Zhang et al., 2014), which also neebdetamnalyze when NP was
involved for PS/PMS activation.

In this work, natural pyrrhotite was first utilizeéd activate PS foE. coli K-12
inactivation, a model bacterial strains in watera(¥t al., 2015b)lo test the activity

and applicability of NP/PS system, the inactivatikinetics of E. coli K-12 were
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measured at varying cell density, NP/PS dose, testyre, pH, bicarbonate, authentic
wastewater matrix, etc. Meanwhile, its efficiennoytérms of radical type and yield, as
well asin situ ATR-FTIR characterization and chronoamperometrgasurements,

were collectively applied to analyze the PS actvaprocess occurring on the NP
surface. Moreover, microscope was applied to assassmge to cell envelope, and
biomolecule assay was utilized to monitor the desion of cytoplasmic proteins and
chromosomal DNA during treatment. Furthermore, thasability and structural

stability of recycled NP were also analyzed. Thwkvmay provide a cost-effective
method for biohazards inactivation in water-scaregions, where the wastewater
reuse schemes was implemented like agricultunglaiion (Michael-Kordatou et al.,

2015 a, b).

2. Materials and methods

2.1. Chemicals. Pristine natural pyrrhotite (NP) mineral was cciél from a mining
site in Inner Mongolia province, China. Chemicabhwengers included methanol
(Sigma-Aldrich, USA), tert-butanol alcohol (TBA, ddna-Aldrich, USA),
Fe(l)-EDTA (prepared with FeSCand NaEDTA, Ajax Chemicals, Australia) and
TEMPOL (Fuchen, China). Sodium persulfate (PS),-dpethyl-1-pyrrolidine
N-oxide (DMPO) were purchased from Aladdin, Chiidl. reagents used were at

least analytical grade and prepared in ultrapurem@lillipore, Molsheim France).

2.2. Characterization. The X-ray powder diffraction (XRD) spectra of th& was
recorded on a Bruker D8 Advance X-ray powder diffoaneter (Bruker Co., Ltd.).

The surface morphology of NP was characterized waitiHitachi S-4800 field
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emission scanning electron microscope (SEM). THenea states of Fe in NP were
examined with an ESCALAB 250Xl X-ray photoelectr@pectroscopy (XPS,
Thermo). The magnetic properties of NP were detaethiby vibrating sample
magnetometer (VSM-7300, Quantum design, Lakeshd®) at 25 °C. The in situ
ATR-FTIR spectra of the NP was recorded on a NicBleurier transform infrared
spectrometer (Magna-IR 750) equipped with a Unale’STR accessory. Purified
water was used to identify background noise. Thextsp of the NP catalysts were
calibrated by subtracting the spectrum of purifieater during the scanning processes.
Details are listed as follows: First, 50 mg of NBsamixed with 10 mL purified water
or PS solution (0.5 mM). After a reaction time ofn, the solid particles from the
suspensions were scanned in the wavenumber ran@®®fto 4000 1/cm at a
resolution of 4 1/cm. The leached metal ions werantjfied by inductively coupled
plasma-optical emission spectrometer (ICP-OES, WMA12000, HORIDA). The
chemical compositions of several randomly selectatheral particles were
characterized by electron microprobe analyses (EMR2OL JCXA 733) at China

University of Geosciences (Beijing).

2.3. Experimental Procedure. Escherichia coli K-12 (Gram -veE. coli K-12) and
Saphylococcus aureus (Gram +ve,S. aureus) were chosen as model bacterium to
evaluate the inactivation ability of NP/PS systfine bacterial cells were cultured in

nutrient broth (BioLife, Milano, Italy) at 37C with shaking, then harvested in the

late exponential phase of growth. The harvestedebacwere centrifuged at 1000
rpm for 1 min, and the pellets were resuspendadtiapure water and recentrifuged
at 1000 rpm for 1 min to remove the growth medidhgen the final pellets were

resuspended in ultrapure water for experiment. ArkOsuspension including NP of
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50 mg andE. coli K-12 of 2x10 cfu (colony forming unit)/mL in a flask was
vigorously dispersed by a magnetic stirrer, folloviey adding PS (0 to 2 mM) to start
the reaction. Aliquot samples were collected ated#int time intervals and diluted
serially with sterilized saline solution, then imdnegtely spread on the nutrient agar

(Lab M, Lancashire, UK) plate. All the plates weneubated at 37C for 24 h.

Control experiments with NP or PS alone were atsndacted in triplicate, and the
detection limit of spread plate was 1 cfu/mL. Toalgme the influence of pH,
appropriate amounts of .HO, (0.1 M) or NaOH (0.1 M) was added to adjust the
initial pH. Bacterial inactivation was also condedtin authentic water matrix,
including surface water and effluents of secondaastewater, the detailed water
parameters were shown in Table S1 (Supporting nmétion). Prior to use, the water

samples were filtered by glass fiber filters.

24. Analyses. (i) Electron paramagnetic resonance (EPR) analy&issolution
containing 10 mM DMPO, 0.5 mM PS was prepared, taed 50 mg NP was added
to initiate the reaction. After 0, 5, 10 min of céan, samples were taken and
analyzed on a JEOL FA200 EPR spectromgtgrsO,  was quantitatively analyzed
by detecting the decrease in the concentratioritiaf blue tetrazolium (NBTk = 5.88

x 100 M s at a wavelength of 259 nm with a UV-vis spectapmeter
(LabTech); (i) HO, was analyzed on a Hitachi F-4500 fluorescence
spectrophotometer based on the reaction gd,Hvith courmarin to form a high
fluorescent compound (7-hydroxylcoumarin, 456 nfiw); Cell viability assayE. coli
K-12 cells treated at various times were testeciqusi LIVE/DEAD®BacLight
Bacterial Viability Kit (Molecular Probes, USA) wita fluorescence microscope; (v)

Determination of cellular ATP level&. coli K-12 cells treated at various times were
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assayed for adenosine triphosphate (ATP) by aduoifuciferase test (Bac-Titer-Glo
Microbial Cell Viability Assay Kit, Promega), andhé luminescence signals were
measured in a microplate reader (Biotek Synergy(\); Leakage of cytoplasmic
contents: The residual protein concentration indagtured sample can be measured
with the Bradford assay (SK3041, Sangon Biotechn&h Chromosomal DNA was
extracted using an Ezup Column Bacteria Genomic DN#ification Kit (SK8255,
Sangon Biotech), then verified by DNA agarose ¢gdteophoresis (0.6% agarose gel
at 100 V for 30 min in 1 x TAE buffer); (vii) Conetation of persulfate was
determined using a UV-Vis spectrophotometer (Lam®slaPerkin Elmer Inc., USA)
with a cuvette providing a light path of 10 mm. édch time interval, 1 mL sample
was transferred to a 10 mL glass vial containingnl9 distilled water, followed by
adding 0.05 g NaHC£and 1 g Kl powder (Liang et al., 2008). The migtwas then
hand shaken and set for equilibrium for 15 min befmeasuring the absorbance at
400 nm. The concentration of persulfate was caledlaccording to the calibration

curve.

2.5. Chronoamperometry. NP (5 mg) were first dispersed in 20 of nafion
perfluorinated resin solution (5 wt %, Aldrich) aB@ mL ethanol (99.9%, Aldrich).
The mixture (5uL) was dropped onto a ITO electrode and dried forniin; this
procedure was repeated three times. The reacttained a glassy carbon electrode, a
coiled Pt wire, and a Ag/AgCI/KCI (sat) electrode a working, counter, and

reference electrode, respectively and 0.1 M phdsphaffer (pH ~ 7) as an

electrolyte. Chronoamperometries were carried outh van open circuit, and
electrochemical measurements were subsequentlydaohde the electrochemical

working station at stated intervals with final centrations of 0.5 mM PS and 7 lgg
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cfu/mL E. coli K-12 cells, respectively.

3. Results and Discussions

3.1. Characterization of natural pyrrhotite

XRD pattern in Fig. 1a indicates the pristine nakyryrrhotite (NP) is composed
of mixed phases of pyrrhotite-6T (Eg, PDF 29-0725) and pyrite (FeSPDF
42-1340) (Xia et al., 2015a), as NP always occutis impurity mineral phases. SEM
image in Fig. 1b indicates NP powders are in arbgeneous size ranged from 10 to
30 um and many mechanically ground fractures are olkseon NP surface. The
surface elements of NP were also analyzed by SEM-Ebset of Fig. 1b) and XPS
(Fig. 1c). Both results confirmed the main exiseenn¢ Fe, S and O of NP, and the
estimated chemical formula of NP can be expressed Fage¢Oos2. The
nonstoichiometric Fe to S ratio revealed vacanaiese at the S sites in the crystal
structure, mainly due to the oxidation of NP suefdmportantly, the 53.2% of Fe(ll)
on pristine NP surface (Fig. 1c) indicates its greatential for catalyzing PS to
generate reactive species. Apart from Fe and $\|SK, Ca, Mg, Zn are also existed,
based on the results of EMPA in Table S2. As showhig. 1d, the magnetic loop
indicates pristine NP possesses a saturation maghet of 6 emu/g, with little
coercivity (16 Oe) and remanence (0.056 emu/g). Sh# magnetic property
indicates NP can be magnetically recycling withgutat aggregation (Xia et al.,
2016b). As shown in Fig. S1, the NP powders canrmeediately drawn to one side
of the beaker when an external magnet was placedbyeindicating its great

potential for application.
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3.2. E. coli inactivation by NP/PS system

3.2.1 Reactivity of natural pyrrhotite

The adsorption and inactivation profileskfcoli K-12 against the reaction time
in various situations are shown in Fig. 2a. The dlbhe had no obvious adsorption
towardE. coli K-12, as no cells’ loss occurred within 30 min. adavhile, less than
0.2 logo cfu/mL of cells’ loss was noticed with PS aloneiggesting that the
production of oxidizing radicals from PS alone whsmited within 30 min.
Impressively, a rapid decrease of thecoli K-12 concentration was observed once
the NP was involved, which exhibited a pseudo-fnster kinetics over exposure
time with a rate constant of 0.34 1/min. Similatlge Gram-positive bacteria &
aureus with thicker cell envelope was found to exhibiingar inactivation kinetics
with E. coli K-12 (Ng et al., 2016). This result evidenced tifngt combination of NP
with PS can efficiently inactivate both types ofise

In contrast with NP, the synthesized ZVI of nammeswas also utilized to
catalyze PS foE. coli inactivation. Attributed to its large specific ar&VI exhibited
a better performance than NP, which can totallctiva 7 logo cfu/mL of E. coli
within 15 min (0.44 1/min, Fig. 2a). The resultdizate the catalytic activity of NP is
still not comparable with commercial ZVI. Howev@&P may still can work as an
alternative material for PS activation, attributedts merits like earth abundant and
well enough catalytic activity.

To further evaluate the catalytic activity from ¢bad ions of NP, the ions
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leaching in the NP/PS system was also monitoregl &2). In the NP solution, which
releases Fé slowly and the observed aqueous concentratiomtaf tissolved iron
(9.96 mg/L) is comparable to the #econcentration (9.66 mg/L). In the NP/PS
system, the total dissolved iron concentration gadlgl increases to 4.99 mg/L while
Fe?* are maintained at relatively low concentrationd (@g/L). This suggests that the
released F& could react with PS instantly and form*EeNotably, due to the fact that
some of the F& could form Fe(OH) or Fe(OH)} and precipitate, thereby the
concentration of total soluble Fe amount was haivethe presence of PS. Similar
observation was also obtained in other study (Liabgal. 2010). It would be
worthwhile observing that leached Fe (especial/)Rmight be problematic for some
applications like wastewater treatment. Therefar&yrther precipitation step may be
needed to eliminate the dissolved Fe, which capnltained by the addition of base
like NaOH to form Fe(OH) Meanwhile, equivalent amount of leaked'Rd.0 mg/L)

or F€* (10 mg/L) was respectively added to catalyze REfeoli K-12 inactivation.
As shown in Fig. 2a, due to the low concentratibrFre&’, the Fé" was consumed
quickly and can’t trigger enough ROS to att&ckcoli, thereby only a slight decrease
of cell density was noticed. This result also ssggéhat the bacterial inactivation due
to the F&" ion-leaching induced homogeneous catalytic remstimas negligible

when NP was used as catalysts.

The decomposition of PS by NP was also studiedutfiraneasuring the residual
persulfate anion (®s%). The added PS (0.5 mg/L) was sharply decomp@@gb) in
the presence of NP, which followed a first-orderetics’ model K = 0.021 1/min, Fig.

2b). Moreover, a notable observation was that tBedecay by NP was further



296 enhanced byE. coli, indicatingE. coli can accelerate the PS activation by NP. In
297  contrast, no noticeable PS decomposition occurieghvonlyE. coli added under the
298 same conditions. Thus, it is concluded that theidNEfficient to activate the PS for
299  inactivatingE. coli.

300

301 3.2.2. Effect of initial NP, E. coli K-12 and PS concentration

302 First, E. coli K-12 inactivation was carried out to explore thée&s of NP
303 loading in the NP/PS system (Fig. 2c). An increes®&P loading had an obvious
304 positive effect ork. coli inactivation when NP loading increased from 0.25tg 1
305  g/L, with k value increased from 0.21 1/min to 0.34 1/minpeesively. When NP
306 loading further increased to 1.25 g/L, a slightluhec (0.32 1/min) in theE. coli
307 inactivation efficiency was noticed, suggestingtttiee NP dose was the controlling
308 factor of radicals’ generation. This inhibition @ft at 1.25 g/L of NP can be related to
309 the scavenging effect of the NP, because radiedIS,() would be mainly generated
310 by NP activation but they can also react with stefae&Fe(ll) on NP in a
311  heterogeneous system. Similar results were alsairedat in other work (Yan et al.,
312 2011; Guan et al., 2013).

313 Insignificant difference in inactivation kineticsag observed for different initial
314 E. coli K-12 concentrations ranging from 5 to 8 degfu/mL (Fig. 2d), and the
315 measured value from three batch experiments can be destrimsonably well by a
316  similar k value (0.36, 0.34, 0.35 1/min, one way ANOVA, @®X25). The observed
317 insensitivity to initial cell density is consistewith other disinfection processes like
318  chlorine or ferrate (Luh et al., 2007; Hu et a012).

319 Fig. 2e presents the inactivation efficiencies€otoli K-12 at a varying dosage

320 of PS. TheE. coli K-12 removal was enhanced with the PS concentratioreased
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from 0.25 mM (0.12 1/min) to 1 mM (0.47 1/min), pestively. This increased
inactivation efficiency was mainly resulted fronetaccelerated generation of radicals
that occurred with higher doses of PS. Furthereiasing the PS concentration to 2
mM (0.36 1/min) did not enhance the inactivatioficefncy but resulted in a slight
inhibition, perhaps due to the quenching of 25Ky surface Fe(ll) of NP (Guan et al.,

2013).

3.3. Reactive species and possible mechanism

Obviously, the goocE. coli inactivation performance of NP/PS system was
mainly attributed to the NP activated PS and itsaggeneration of various reactive
species. To analyze the presence and contribubibtiee specific reactive specids,
coli inactivation performance was thus examined byraglgarious scavengers in the
NP/PS system, including methanol for «SOtert-butyl alcohol (TBA) for <OH,
Fe(l)-EDTA for H,O,, TEMPOL for «Q (Xia et al., 2013; Liu et al., 2014). In the
control experiment without PS, no significant celiss was observed by adding 2
mM of each scavenger, indicating no toxicity ofdhehemical scavengers to the
coli within test time period (Fig. S3). First, the intiikn of E. coli K-12 inactivation
was not accompanied by adding 2 mM TEMPOL, indigatihe weak bactericidal
contribution of «@Q (Fig. 3a). The is mainly due to the limited formatof <O, in the
NP/PS system, consistent with the result in Figa. 8dthough Q is known to readily
accept electron from transition metal to produce s@hich is unstable and may
readily converse into ¥, or «SQ,, thereby limited detection occurs in the present
condition (Zhang et al., 2017). Second, the invaigat of HO, was affirmed by the
moderate decrease in the inactivation kineticsr aftieling 2 mM Fe(ll)-EDTA (1.9

logyo cfu/mL of cells survived, Fig. 3a). Generally, whiee S is exposed to the air,
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H,O, can be thermodynamically generated by either twexteon reduction of
surface-adsorbed arom Fe(ll) or disproportionate reaction of twoHCLiu et al.
2015; Fang et al., 2016). As show Fig. S4b, theatggeneration of KD, was
accumulated to almost 5 uM without @urging. Third, methanol and TBA were used
to differentiate «S@ from *OH, because TBA without an alpha hydrogers &0
readily reactive toward *OH, but their reactionlwa6Q, was over 1000-fold slower
than methanol (Gao et al., 2016). Obviously, #Slayed the leading role rather than
*OH was virtually observed, based on the more rkatde inhibition when 2 mM
methanol added (5.5 lggcfu/mL of cells survived, Fig. 3a) than that ofrtM TBA
(3.2 logo cfu/mL of cells survived, Fig. 3a). Therefore,can infer that «SQ is
mainly responsible for bacterial inactivation irethlP/PS system. Moreover, EPR
results in Fig. 3b shows the obvious signals ofhbBMPO--OH (1:2:2:1) and
DMPO--SQ (1:1:1:1:1:1), indicating large quantities of be@®H and +S@ radicals
were generated immediately in the NP/PS systemn@Xet al., 2014). As identified
above, all of the extracellular radicals «S@OH and HO, work collectively for the
inactivation ofE. coli K-12.

To analyze the interaction occurred on NP surfdcR/PS system, thm situ
ATR-FTIR characterization was conducted and resuése shown in Fig. 3c. After
addition of PS, the FTIR spectrum of pristine NBwed an increased absorption at
around 1273 1/min and 1046 1/m{the symmetric and asymmetric vibrations of
S=0=S of sulfonate group), indicating the adsogpiivteraction of PS occurred on
NP surface (Lee et al. 2016). Meanwhile, the srafld occurred at 1057 1/cm of
pristine NP was blue shifted to 1079 1/cm aftera8ition, suggesting the formation
of a complex at NP surface. It is thus inferred tha interaction between Fe(ll) and

PS leads to the formation of a weak bond at thefaser of NP like
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=Fe(Il)---O3S0O-0SQ (eq 1), based on Lei et al.’s work (201Bhe weak bond of
=Fe(Il)---O3SO-0SQ could trigger the broken of O-O bond, accomparbgdthe
generation oEFe(lll) and «SQ (eq 2) (Duan et al., 2015, 2016). Meanwhile, thie N
surface HO/-OH bond at 3100 1/cm became relatively invisiafeer PS addition,
suggesting the complex and generated ,»S@ay promote absorbed,®/-OH to
transform into «OH through eq 3, because sJf@ssesses higher oxidative potential
(2.5-3.1 V) than *OH (Gao et al., 2016). This wasfetmed by the observation in
Fig. 3b, the DMPO-+SQ signals diminished a little, accompanied by altgligcrease
in the DMPO-+OH signals from 1 min to 5 min in NB/Bystem, indicating the
DMPO-+SQ™ adduct can converse into DMPO-+OH adduct over tj@t®ng et al.,
2015). Subsequently, *OH may also thermodynamictdlyn into HO, through

disproportionated reaction (eq 4) (Avetta, et2015; Liu et al., 2015).

=Fe(ll) + O;S0-0SQ — =Fe(ll)--0;S0-0SQ (1)

=Fe(ll)---0sS0-0SQ — =Fe(lll) + *SQ + SO (2)

*SO; + H,O/OH— *OH , SO (3)

*OH + «OH— HyO, (4)

To further analyze the complex and electron transfe current change toward

the NP electrode was detected in the chronoampérocmeeasurements when PS and

E. coli K-12 wereadded in turn (Fig. 3d). After the injection of REsmall negative

current peak was detected due to the instant efeatiovement from the NP electrode
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to PS, most likely through the formation of chargeansfer complex
(=Fe(l)---OsSO-0SQ). Subsequently, upon the addition ©f coli K-12, a slight
positive current flow forms indicated electrons evémansferred fronk. coli K-12 to
the NP/PS complex, likely due to the oxidation atterial cells occurred. In contrast,
no current change occurred whencoli K-12 was directly added on NP (Fig. S5),
suggesting no electron transfer reaction happeniéldowt PS. Therefore, the PS
activation by NP involved electron transfer from WPPS, ancE. coli inactivation
involved electron transfer frof. coli to NP/PS complex, in which NP/PS complex

engagement as a facile electron mediation was &slsen

3.4. Influences of several factorsto NP/PS system

3.4.1. Effect of temperature, pH, dissolved oxygen

Reaction temperature is a key operating factor @PA. Generally, increasing
temperature can accelerate the decomposition r&tdPS) thus increase the
concentration of S, which also in turn facilitates the AOP reactidnét al., 2015).
Therefore,E. coli inactivation was examined within a temperaturegeaaf 20 °C to
50 °C in NP/PS system. First, the results of cdngmperiment at different
temperature in Fig. S6a exhibited negligible loksedls within 30 min, indicating the
contribution to cells’ loss from thermal activatioh PS is limited within this time
period. Although the thermal activation of PS toigmte sulfate radicals was really
occurred at higher temperature like 50 °C (Ji et2015, 2016), some injured cells
still can survive after cultivation because of fimaited reaction time, thereby no
significant loss oE. coli density can be observed. In fact, elevated tenyreranay

still favor oxidative reactions based on thermodwitalaw. As shown in Fig. 4a, the



421 inactivation kinetics in NP/PS system are similathvthe general trend, indicating
422  higher temperature resulting in higher inactivatieificiency. The measured rate
423  constant increased roughly 2-fold when temperatas increased from 20 °C (0.34
424 1/min) to 50 °C (0.69 1/min). On the basis of ttiend, it might be deduced that PS
425 activation process by NP is endothermic: higher perature would shift the
426  equilibrium to produce more reactive species ands timprove the bacterial
427  inactivation efficiency (Feng et al. 2016).

428 Inactivation kinetics (Fig. 4b) in NP/PS system vi@snd to be highly dependent
429 on pH, lower pH can obtain a higher inactivationrf@enance. The control
430 experiments with PS alone at different pH was alseducted, and no significaht
431 coli’ loss occurred within 20 min, indicating the pHshao obvious effect on cells’
432  viability (Fig. S6b). In general, «SObased AOP can achieve a higher oxidative
433  activity at higher pH, due to the «$@ould provoke an accelerated PS decomposition
434  and transformation reactions generating additie® under alkaline condition (Lei
435 et al.,, 2015; Neta et al.,, 1988). However, PS smiutvith a pH 3.0 (0.68 1/min)
436  demonstrated the best inactivation performance aantl.5-fold decline was observed
437 at pH 5.0 (0.45 1/min). When pH was increased frof@.30 1/min) to 9 (0.17 1/min),
438 the inactivation kinetics were observed to decreasghly 1.7-fold. To analyze the
439  pH effect, the surface charge of NP dhadcoli have been detected at different pH
440  conditions. As shown in Fig. S7, the zero chargd\Bfis 4.6, whileE. coli exists
441  predominantly in its deprotonated form at pH 3.0011Therefore, the high
442  inactivation efficiency at acidic condition (pH %) can be attributed to the
443  electrostatic adsorption, while the low inactivatiat pH 9, 11 was probably in part
444  due to the electrostatic repulsion between thealepatedE. coli and NP, because

445 almost all of the cells had a negative charge ursleah conditions (Fig. S7).
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Moreover, at alkaline condition, the oxidized®F®ns may form oxyhydroxides like
FeOH*/Fe(OH),'/Fe(OH} to precipitate on the surface of NP, which covettesl

surface reactive sites of NP and caused inhibitaynactivating PS to forme SO,

(Zhang et al., 2017). Notably, the pH variatiorNIR/PS system was also monitored at
five initial pH, all the pH values were decreaselittie and rapidly to a specific pH
value (Fig. S8), this is mainly due to the partissolution of Fg,S in the water (Liu
et al., 2015). Since the pH was rapidly attainearicequilibrium, and no significant
cells’ loss was observed with NP alone/PS alone ewveh in the pH controlled
solution, it is reasonable to indicate that thecoli inactivation by dissolved NP
induced pH interference may not that significartterefore, the inactivation kinetics
revealed that the bacterial inactivation process mare favorable in acidic and mild
alkaline conditions.

Dissolved Q has an impact on PS activation agi®an electron acceptor. As
shown in Fig. 4c, the total inactivation of 7 {pgfu/mL of E. coli was obtained at 15
min with air purging (0.46 1/min) and 20 min withair purging (0.34 1/min), while
only 4.6 logo cfu/mL of E. coli was obtained at 20 min undes purging (0.23 1/min).
When Fe(ll) is exposed to the air, molecular €@@uld be reduced to «Oor H,O,
directly by Fe(ll) via single- or two-electron tisfer routes (Harrington et al., 2012;
Jones et al. 2013), which would accelerate thed®8ation to produce *SQO(Zhang
et al., 2017) (egs. 5-8). To test the effects skdived @, the generated «Oand
H,O, concentrations were determined. Results in Fig. (8ésent the little formation
of <O, (no NBT transformation occurred at three condgjpnwhile HO,
concentration increased in the order gffdrging-pyrite system (8M) > no purging
pyrite system (4.995M) > air purging-pyrite system (5.68M) (Fig. S4b). Therefore,

increasing @ concentration could lead to the generation of nit¥@,, thus to trigger
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more generation of «SQ collectively resulting in a higher inactivatioffieiency.

Fe(ll) + O, — <Oy + Fe(lll) (5)

2 Fe(ll) + Q + 2H — H,0, + 2Fe(lll) (6)

S,05" + *0; — *SOy + SO + 0y (7)

S0 + 2H,0, — 2°SOy + 2H,0 + O, (8)

3.4.2. Effect of bicarbonate, NOM.

Bicarbonate was the representative of inorganibaraexisted in natural water at
the range of 0.1 to 50 mg/L, which can quench &ddito inhibit oxidation process
(Wu et al., 2015). As shown in Fig. 4d, a NaHC€ncentration to 1 mg/L (0.34
1/min) exhibited similar inactivation kinetics withat of no NaHC@addition (0.34
1/min); with further addition of NaHC§) the inactivation efficiency decreased
significantly (one way ANOVA, p < 0.05) in the pesge of 5 mg/L NaHC§(0.29
1/min) and almost totally inhibited when 20 mg/LHN20O; (0.055 1/min) were added.
Wu et al. (2015) suggested that bicarbonate caartth tomplexes on catalyst surface
and even quench the *$0to generate the *GQ The great consumption of *$0O
and the relative lower reactivity of *GO(2.09 eV) than *S@~ (2.5-3.1 eV, Zhao et
al., 2010) would cause the detrimental effect tdm8’system, thus to greatly inhibit
E. coli K-12 inactivation.

Similarly, natural organic matter (NOM) is usualfyesent in the aquatic

environment, which can act as radical scavengecaapeting for «OH and «SO As
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shown in Fig. 4eE. coli inactivation rate was firstly promoted to 0.36 with the
addition of 1 mg/L NOM, in contrast with free NOM).B4 1/min). In fact,
hydroquinones, quinones and phenols in NOM can fimtm semiquinone radicals,
which might stimulate the decomposition of PS in@@H and «S@, similar to the
way of reducing HO, to *OH, thus to accelerate the AOP process (De knal.,
2011). However, thé&. coli inactivation rate then decreased significantlynfr6.23
1/min to 0.055 1/min when NOM further increasednird mg/L to 20 mg/L,
indicating the stimulated effect of NOM was overnirhed by its detrimental effect.
Michael-Kordatou et al. (2015b) suggested that N@bhtains many phenolic
hydroxyl and carboxyl groups, which can be adsordm®od catalyst surface and block

reactive sites, thus to inhibit the oxidation pisxe

3.5. Cdll destruction process
The bacterial envelope, composed of outer membiewtjdoglycan layer, and

cytoplasmic membrane, always worked as the fingietaof being exposed to ROS
attack (Xia et al., 2016a). First, the BacLightfkitorescent microscopic method was
utilized to directly observe the permeability chasgf cell envelop in the NP/PS
system. As shown in Fig. 5a, the viable cells weith intense green fluorescence.
After being treated for 10 min, most cells turnedéd fluorescence, indicating most
cells were disrupted and intracellular componentrewstained. With prolonged
treatment to 20 min, all the images were in redjcating cells’ envelope were all
broken with more red stained intracellular compase8imilarly, compared with the
SEM image of initial intacE. coli K-12 cells (O min) in Fig. 5b, the treated cell
envelope was deformed after 20 min treatment. Algtutine cell envelope contains

essential protein components such as respirat@w ctvhich generate energy (ATP)
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with functionalized electron chains, playing a Vitale in bacterial metabolism
(Bosshard et al., 2010). Associated with the damh@yeelope, the cells were almost
instantaneously inactivated by metabolic arrest asnsequence of a drastic drop in
the ATP level within initial 10 min treatment (Fi§c). Generally, ROS has been
found to inhibit ATP formation either by behavintkd a protonophore or by
inhibiting enzymes in the respiratory chain to ghage the proton motive force (Park
et al. 2009).

After the penetration of cell envelope, the ROS sabsequently injure the cells
by reacting with various biomolecules, such as gigsmic protein and genome (Sun
et al., 2014). As shown in Fig. 5d, the proteinteah of treated cells (10 mL) in
Bradford assay was maintained at around 142 mg/nthirwthe initial 20 min but
then decreased a little to 136.7 mg/mL at 20 nssumed to be indicative of starting
peroxidation of protein during treatment. The dagion of genomic DNA could be
observed in Fig. 5e because the fluorescent iriteasthe DNA bands started to fade
around 20 min and then totally disappeared witHgmged to 1 h. Damage t6.
coli’s genome is lethal to the cells, which could eé#intly disrupt events instrumental
to the bacterial life cycle. Or else cells in ableabut non-culturable state may still
survive to cause the health risks in water (Zhang.e2015). These results revealed
that the cell envelope dE. coli K-12 was firstly decomposed, then cytoplasmic

components leaked and degraded, finally resultirthe cells’ mineralization.

3.6. Stability and recycle of NP
The stability of NP was investigated by repeatigoli inactivation experiments
with recycled NP. After each experiment, NP was medigally captured on the

bottom of flask and the supernatant was pouredtbahE. coli K-12 cells and PS
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solution were added to start the next run. After fames’ recycling, thé&. coli K-12
inactivation efficiency decreased with about 4,¢ocfu/mL cells’ inactivation (Fig.
6a), which was likely due to the loss of activeesibn the NP surfaces, including
oxidation of surface Fe(ll) and adsorptionEfcoli oxidation products. XPS results
(Fig. 1c) confirmed that the atomic ratio =iFe(ll)/=Fe(lll) was decreased from 1.14
(53.2%/46.8%) for pristine NP to 0.93 (48.1%/51.9%%)used NP, thus resulting in a
decreased performance. Meanwhile, FTIR analysig. (B9) also show that
out-of-plane was bend of amide A (3274 1/min) amida B (3060 1/min) groups of
E. coli after treatment, which inhibit the surface Fe(tl)contact with PS (Xia et al.,
2013). The semi-quantitative analysis of XRD patt@tig. 1a) showed that the ratio
of py/ph decreased from 745/370 (2.01) to 405/31.&7), which may suggest the
partial crystalline change from py to ph after teat However, no significant
difference was observed in the saturated magndimsinveen fresh and recycled NP
(Fig. 1a, d), indicating the magnetism of NP welik maintained even after 4 runs’
test. After the fourth run, the recovered NP washea by ultrapure water and dried
for the fifth run. TheE. coli inactivation efficiency almost recovered to thatratial
run (Fig. 6a). This is mainly due to the cellulabds were removed from NP after
wash treatment, as the characteristic peaks ofnargnctional groups greatly

weakened (Fig. S9).

3.7. Environmental implications for authentic water treatments.

As a preliminary step in investigating the potengipplication of NP/PS system,
the inactivation experiments were thus conductetkuauthentic matrices of surface
water (SW) and secondary wastewater effluents (WW)contrast with that of

ultrapure water (UPW), the inactivation kinetics BW and WW decreased
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significantly, with the order of: UPW > SW > WW (iS10). Based on the water
parameters in Table. S1, it can conclude that Ibeesl performances in SW and
WW, were mainly caused by the natural water comptsnike natural organic matter
(TOC represents NOM) and inorganic ions (bicarbenaSQ™ can react selectively
against the prevailed nitrogen-containing organitsNOM through an electron
transfer oxidation mechanism, thus the SW (TOC7Z Gng C/L) and WW (TOC =
5.4 mg C/L) are suspected to have a high sS@activity hindering the bacterial
inactivation (Avetta, et al., 2015). Meanwhile, tpaf «<SQ; may complex or react
with CO” present in the SW (bicarbonate = 6 mg/L) and W\i¢afibonate = 12
mg/L), also can greatly inhibit bacterial inactreat (Michael-Kordatou et al., 2015b).
Moreover, both water matrices are at alkaline ciors (pH 8.3 of SW and pH 7.64
of WW) may also inhibit the inactivation efficiendg some content, based on the
study of pH effect in Fig. 4b.

When the PS amount increased to 1 mM, NP/PS caliytabactivate the cells
within 25 min in SW; while 3.5 log cfu/mL of E. coli still survive within 30 min in
WW (Fig. S10). Further increase the PS amountrd\V®, there are 2 log cfu/mL of
E. coli still survive in WW (Fig. S10). Obviously, the itavation efficiency was
greatly enhanced with the increase amount of P&th water matrices. The higher
the concentration of PS, the more PS anions caactieated by NP, together with
more sulfate radicals and derived ROS to inacticatks (Feng et al., 2016). Based on
the results, the selected suitable amount of PSlwaM for SW and 2 mM for WW,

respectively.

In contrast, ZVI was also utilized to activate gsected amount of PS f&r coli
inactivation, which exhibiting a slightly higher ppgrmance than that of NP/PS

system in both UPW and authentic water matriceg. @b). This is probably occurred,



596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

because ZVI can accelerate the Fe(lll)-Fe(ll) cydleus to accelerate the PS
activation (Liang et al., 2010). Meanwhile, ZVI @lsan react with dissolved oxygen
to generate *© and a series of other ROS to further enhance thetivation

efficiency (Zhong et al., 2015). Although the cwtal activity of NP is still not

comparable with commercial ZVI in different wateatmices, NP still can be utilized
as a cost-effective alternative material for amgilan, attributed to its merits like
earth abundant, good catalytic activity, and easyyclable. In the framework of
implementing safe wastewater reuse schemes, ogicbnadlogical parameters like
reactor size, stirring velocity, etc., should bettar optimized to meet the current

challenges associated with hazardous bacteriagpreathe environment.

4. Conclusions

Natural occurring pyrrhotite exhibited a notabléatgic activity to PS folE. coli
inactivation.E. coli inactivation by NP/PS was enhanced with the irszezf PS and
NP doses at respective range of 0.2-1.0 mM and-DQ5g/L. It showed an
independence on initial cell density, but greatypendent on acidic pH and dissolved
O.. NOM stimulatecE. coli inactivation at the concentration of 1 mM but inted at
5-20 mg/L. Bicarbonate inhibited tHe coli inactivation at the range of 0.1-2.0 mg/L.
The bactericidal role of generated ROS was idexntifo be «S@ > «OH > H0,. The
surface complex of NP played an important rolehe generation of radicals from
NP/PS. Catalytic oxidation oE. coli by NP/PS was also effective under the

backgrounds of investigated actual waters, whicvide a reference for application.
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Highlights

» Natural magnetic pyrrhotite showed notable cdéiabctivity to PS.

» Effects of pH, NOM, bicarbonate, oxygen on reattiof NP/PS were studied.

* The bactericidal role of generated ROS rankeds&s > *OH > HO..

» Charge transfer complexKe(ll)---OsSO-0SQ) was formed in NP/PS system.
* Cell-envelope lesions aggravated biomolecularatgero cause bacterial death.



