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2-Oxa-7-azaspiro[4.4]nonane-8,9-diones were newly synthesized in good yields by the Mn(III)-based
reaction of a mixture of 1,1-diarylethenes and 4-acylpyrrolidine-2,3-diones. Under the stated reaction
conditions, the pyrrolidinedione ring remained intact and became one of the two rings of the 2-oxa-7-
azaspiro[4.4]nonanedione scaffold. The procedure was simple and the product was easily separated.
The structure determination and the mechanism for the formation of the 2-oxa-7-azaspiro[4.4]nonane-
diones were also discussed.

� 2017 Elsevier Ltd. All rights reserved.
Introduction

The Mn(III)-based oxidation is a powerful tool in organic syn-
thesis, and new applications and protocols have been continuously
reported.1,2 Tetrahydrofuran derivatives are found in many natural
compounds, some of which derived from tetrose, pentose, hexose,
and glycoside, have a significant biological importance.3 Pyrro-
lidinediones have displayed an interesting biological activity and
been used as an inhibitor of aldose reductase4 and endothelin
receptor antagonists.5 Pyrrolidinediones6 were also used as a
versatile reagent for the preparation of b-lactams.7 We previously
reported a unique synthesis of spirodi-c-lactones,8a

spirodioxanes,8b trioxaspiro compounds,8c dioxatricyclic8d and
oxa-aza-tricyclic compounds,8e spirofurans,8f and aza-spiro
compounds8g using manganese(III) acetate dihydrate, Mn(OAc)3�
2H2O. In the course of our study, we found a simple and
straightforward route based on the Mn(III) oxidation for the
synthesis of new pyrrolidine-2,3-diones I with an ethenyl group
substituted at the a-position of the carbonyl group
(Scheme 1).9,10 At that time, we anticipated producing a spiro com-
pound (path a), but the deprotonation was fast under the stated
conditions (path b). Based on these results, we postulated if the
presence of a keto–carbonyl group at the C-4 position of the pyrro-
lidine-2,3-dione instead of an ester could allow the cyclization to
produce a spiro bicyclic compound such as a furan connected
through the a -carbon of the pyrrolidinediones. We then
attempted to verify this idea using the Mn(III)-based oxidation of
1,1-diarylethenes with 4-acylpyrrolidine-2,3-diones as the starting
material. As a result, the cyclization proceeded at the carbonyl oxy-
gen and new 1-exomethylene-2-oxa-7-azaspiro[4.4]nonane-8,9-
dione derivatives were produced in good yields as expected.

Results and discussion

The pyrrolidine-2,3-diones 2a–e9,11 were prepared by the con-
densation of 2,4-dioxoalkanoates12 with N-benzyl or N-methyl-
methanimines.13 The pyrrolidinediones were purified by silica gel
column chromatography, then recrystallization. With the starting
material of the pyrrolidinediones 2a–e in hand, we commenced
the Mn(III)-based oxidation in the presence of 1,1-disubstituted
alkenes. 1,1-Bis(4-methylphenyl)ethene (1a) and 1-benzyl-4-
isobutyrylpyrrolidine-2,3-dione (2a) were first selected and the
reaction using Mn(OAc)3�2H2O was carried out in glacial acetic acid
at 70 �C. Since the oxidant was consumed in 16 min, the reaction
was quenched and the mixture was worked up. Gratifyingly, the
desired 2-oxa-7-azaspiro compound 3aa was obtained in 38%
isolated yield (Scheme 2 and Table 1, Entry 1).
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Fig. 1. Important 1H and 13C chemical shifts (left) and HMBC study of 3aa (right).
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Scheme 1. Mn(III)-based reaction of alkene with 4-hydroxy-5-oxo-2,5-dihydropy-
rrole-3-carboxylate.

Scheme 2. Mn(III)-based reaction of alkenes 1a–e with 4-acylpyrrolidine-2,3-
diones 2a–e.

3620 T.-T. Huynh et al. / Tetrahedron Letters 58 (2017) 3619–3622
When a similar reaction was performed at reflux temperature,
the reaction was finished in 2 min and the yield of 3aa was signif-
icantly improved (Entry 2). We then optimized the reaction and
the maximum yield of 3aa was 90% (Entry 4). The structure of
3aawas determined by IR, 1H NMR, 13C NMR, and 13C DEPT spectra,
a 2D NMR study and elemental analysis. The presence of the
dimethylmethylene group and C-5 spiro carbon was confirmed
by the NMR spectrum, and the HMBC experiment was also in good
agreement with the structure of 7-benzyl-3,3-bis(4-methylphe-
nyl)-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione
(Fig. 1).14

Having succeeded in the synthesis of the anticipated spiro com-
pound 3aa, we turned our attention to a similar reaction using the
other 1,1-diarylethenes 1b–e. The reaction was conducted under
similar conditions and the corresponding 2-oxa-7-azaspiro[4.4]-
nonane-8,9-diones 3ba–ea were obtained in good yields (Table 1,
Entries 5–8). The use of 4-propionylpyrrolidine-2,3-dione 2b
instead of 2a also gave the 2-oxa-7-azaspiro compound 3ab in
81% yield (Entry 9). Although the reaction of 5-phenyl-4-propi-
onyl- 2c and the 4-butyryl-5-phenyl-pyrrolidine-2,3-diones 2d,
both bearing a phenyl group at the C-5 position of the pyrrolidine-
Table 1
Mn(III)-based reaction of 1,1-diarylethenes 1a–e with pyrrolidine-2,3-diones 2a–e.a

Entry Ethene/1 Pyrrolidinedione/2 1:2:Mn(OAc)3b Temp/�C Time/min 3/Yield/%c

1 1a: Ar = 4-Me-C6H4 2a: R1 = R2 = Me, R3 = H, R4 = Bn 1:1.5:3 70 16 3aa (38)
2 1a 2a 1:1.5:3 reflux 2 3aa (67)
3 1a 2a 1:2:3 reflux 3 3aa (87)
4 1a 2a 1:3:5 reflux 3 3aa (90)
5 1b: Ar = Ph 2a 1:3:5 reflux 3 3ba (87)
6 1: Ar = 4-F-C6H4 2a 1:3:5 reflux 3 3ca (74)
7 1: Ar = 4-Cl-C6H4 2a 1:2:3 reflux 3 3da (68)
8 1e: Ar = 4-MeO-C6H4 2a 1:2:3 reflux 3 3ea (60)
9 1a: Ar = 4-Me-C6H4 2b: R1 = Me, R2 = R3 = H, R4 = Bn 1:2:3 reflux 3 3ab (81)
10 1a 2c: R1 = R4 = Me, R2 = H, R3 = Ph 1:3:5 reflux 3 3ac (83)
11 1a 2d: R1 = Et, R2 = H, R3 = Ph, R4 = Me 1:3:5 reflux 3 3ad (80)
12 1a 2e: R1 = R2 = R4 = Me, R3 = Ph 1:3:5 reflux 3 3ae (60)d

a The reaction of ethene 1 (1 mmol) was carried out in acetic acid (15 mL).
b Molar ratio.
c Isolated yield based on the ethene 1.
d 1-Hydroxy-1-isopropyl-3,3-bis(4-methylphenyl)-7-methyl-6-phenyl-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (4) was also isolated in 22% yield.



Fig. 4. Crystal structure of 3ae.

Scheme 3. Plausible mechanism for the formation of 3 and 4.
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dione, led to a similar result (Entries 10 and 11), the reaction
using 4-isobutyryl-1-methyl-5-phenylpyrrolidine-2,3-dione (2e)
resulted in the decreased yield of the desired product (Entry 12).
However, after a thorough chromatographic separation, 1-hydroxy-
1-isopropyl-3,3-bis(4-methylphenyl)-7-methyl-6-phenyl-2-oxa-7-
azaspiro[4.4]nonane-8,9-dione (4) was also isolated in 22% yield
probably due to the addition of water during the reaction (vide
infra).15 The 1H NMR spectrum of the 6-phenyl-2-oxa-7-azaspiro
[4.4]nonane-8,9-diones 3ac, 3ad, and 3ae deserves comments.16–18

The ortho-protons of the phenyl group appeared around d 6.3 as
a broad singlet because of the rotational barrier of the phenyl
group by the C-1 exomethylene group (Fig. 2). Simultaneously,
the H-4 proton (ca. d 3.4) was deshielded by the ring current effect
of one of the C-3 aryl groups. When the NMR spectrum of 3ae was
taken in CDCl3 at 50 �C, the broad peak of the phenyl protons
became sharp (See Supplementary data). In addition, the H-10
sp2 proton (d 3.37) of 3ac and 3ad, and the C-11 methyl group
(d 0.67) of 3ae were shielded by the anisotropic effect of the C-9
carbonyl group. In the case of the by-product 4, the anisotropic
effect of the C-9 carbonyl group was extremely strong toward
one of the methyl groups of the isopropyl group, showing d 0.00
(3H, d, J = 6.7 Hz) (Fig. 3).15 Fortunately, we got a single crystal of
3ae from chloroform and finally established the structure by an
X-ray crystallographic measurement (Fig. 4 and supplementary
data).19

It was reported that the Mn(III)-enolate complex formation is
the rate-determining step in the Mn(III)-based reaction of the
a-alkyl-substituted 1,3-dicarbonyl compounds with alkenes.1c,20

In this case, a similar enolization of 2 with Mn(OAc)3 would
occur during the first stage, producing complex A (Scheme 3).
Complex A is electron deficient, thus an electron-rich alkene 2
should be easily oxidized to give radical B, which would be
further oxidized to produce the carbocation C. The cation C
would spontaneously cyclize with the carbonyl oxygen and
undergo subsequent b-proton elimination that produces the 2-
oxa-7-azaspiro compounds 3. The formation of the stable tertiary
carbocation C is crucial for the next O-cyclization to produce 3.
In fact, the reaction using styrene and terminal alkenes such as
1-hexene was complicated. When 4-isobutyryl-1-methyl-5-
phenylpyrrolidine-2,3-dione (2e) was subjected to the oxidation,
the desired 1-exomethylene-2-oxa-7-azaspiro compound 3ae
was mainly produced along with the hydroxy-2-oxa-7-azaspiro
compound 4 formed by nucleophilic addition of water to the
intermediate cation D due to relief of the steric hindrance.

In conclusion, our initial forecast was proved to be correct by
the fact that the 2-oxa-7-azaspiro[4.4]nonane-8,9-dione deriva-
tives 3 containing tetrahydrofuran and 2,3-pyrrolidinedione rings
could be successfully synthesized in good yields by the Mn(III)
oxidation of a mixture of 1,1-diarylethenes 1 and 4-acylpyrro-
lidine-2,3-diones 2. The reaction was straightforward, the reaction
time was significantly short, and the procedure was simple to
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obtain the desired product 3. In addition, the structures of the
products 3 and 4 were well characterized by spectroscopic meth-
ods including the X-ray single crystal analysis of 3ae, and the
mechanism for the formation of the products 3 and 4 was logically
interpreted by the Mn(III)-based oxidation chemistry.1,2,20,21 Fur-
ther optimization of the reactions listed in Table 1, application of
the reaction using the pyrrolidinediones 2 bearing other sub-
stituents, and bioassay of the pyrrolidinediones 2 and the products
3 for antibacterial, antiviral, bactericidal, insecticidal, herbicidal
activities are currently underway.
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for C30H30NO3 452.2226 (M+H); found 452.2225. Anal Calcd for C30H29NO3�4/
5H2O: C, 77.33; H, 6.62; N, 3.01. Found: C, 77.08; H, 6.37; N, 2.98.

17. The structure of 3ad was determined by spectroscopic methods, a 2D NMR
study and elemental analysis.3,3-Bis(4-methylphenyl)-7-methyl-6-phenyl-1-
propylidene-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ad): colorless needles
(from chloroform/hexane); mp 188–189 �C; IR (CHCl3) m 1767 (C@O), 1717
(NAC@O); 1H NMR (500 MHz, CDCl3) d 7.42 (2H, d, J = 8.2 Hz, ArH), 7.27 (2H, d,
J = 8.2 Hz, ArH), 7.21 (2H, d, J = 8.3 Hz, ArH), 7.17 (3H, t, J = 7.5 Hz, ArH), 7.05
(2H, d, J = 8.3 Hz, ArH), 6.31 (2H, br. s, ArH), 4.42 (1H, s, H-6), 3.37 (1H, dd,
J = 6.7, 6.3 Hz, H-10), 3.35 (1H, d, J = 12.8 Hz, Ha-4), 2.90 (1H, d, J = 12.8 Hz,
Hb-4), 2.90 (3H, s, N–Me), 2.43 (3H, s, Me), 2.26 (3H, s, Me), 2.07 (1H, m, H–CH),
1.86 (1H, m, HC–H), 0.55 (3H, t, J = 7.5 Hz, Me); 13C NMR (125 MHz, CDCl3) d
198.5 (C-9), 160.0 (C-8), 149.1 (C-1), 142.2, 140.8, 137.5, 137.0, 134.9 (arom C),
129.3 (2C), 128.9 (2C), 128.5, 128.3 (2C), 126.0 (2C), 125.1 (4C) (arom CH),
107.5 (C-10), 87.9 (C-3), 70.1 (C-6), 60.1 (C-5), 52.8 (C-4), 30.8 (N-Me), 21.1,
20.8 (Me), 18.7 (CH2), 13.7 (Me); FAB HRMS (acetone/NBA): calcd for
C31H32NO3 466.2382 (M+H); found 466.2377.

18. The structure of 3ae was determined by spectroscopic methods, a 2D NMR
study and elemental analysis.3,3-Bis(4-methylphenyl)-7-methyl-6-phenyl-1-
(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ae): colorless
microcrystals (from chloroform/hexane); mp 174–175 �C; IR (CHCl3) m 1765
(C@O), 1717 (NAC@O); 1H NMR (500 MHz, CDCl3) d 7.53 (2H, d, J = 8.3 Hz,
ArH), 7.27 (2H, d, J = 8.5 Hz, ArH), 7.21 (2H, m, ArH), 7.19 (2H, d, J = 8.3 Hz,
ArH), 7.15 (1H, t, J = 8.03 Hz, ArH), 7.05 (2H, d, J = 8.3 Hz, ArH), 6.50 (2H, br. s,
ArH), 4.55 (1H, s, H-6), 3.42 (1H, d, J = 12.8 Hz, Ha-4), 3.00 (3H, s, NAMe), 2.89
(1H, d, J = 12.8 Hz, Hb-4), 2.39 (3H, s, Me), 2.26 (3H, s, Me), 1.58 (3H, s, Me-12),
0.67 (3H, s, Me-11); 13C NMR (125 MHz, CDCl3) d 197.4 (C-9), 160.0 (C-8), 143.9
(C-1), 143.7, 141.2, 137.6, 136.8, 135.0 (arom C), 129.3 (2C), 128.9 (4C), 128.3,
127.8 (2C), 126.1 (2C), 125.0 (2C) (arom CH), 107.0 (C-10), 86.8 (C-3), 69.5
(C-6), 60.2 (C-5), 54.7 (C-4), 31.2 (N-Me), 21.0, 20.9 (Me), 20.5 (Me-11), 17.5
(Me-12); Anal Calcd for C31H31NO3: C, 79.97; H, 6.71; N, 3.01. Found: C, 79.73;
H, 6.78; N, 3.07.

19. X-ray crystal data of 3ae (Fig. 4): Empirical Formula C31H31NO3; Formula
Weight 465.59; Crystal Color, Habit colorless, block; Crystal Dimensions
0.370 � 0.327 � 0.187 mm; Crystal System triclinic; Lattice Type Primitive;
Lattice Parameters a = 9.6559(4) Å, b = 9.9138(5) Å, c = 14.9614(8) Å, a = 75.345
(2)�, b = 69.807(2)�, c = 78.722(1)�, V = 1291.2(1) Å3; Space Group P-1 (#2); Z
value 2; Dcalc 1.197 g/cm3; F000 496.00; l(MoKa) 0.763 cm�1; R1 (I > 2.00r(I))
0.0688; R (All reflections) 0.1444; wR2 (All reflections) 0.2614; Goodness of Fit
Indicator 1.131.

20. Snider BB. Tetrahedron. 2009;65:10738–10744.
21. Cossy J, Bouzide A, Leblanc C. J Org Chem. 2000;65:7258–7265.
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