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1. Introduction 

The synthesis and utilization of extended 2-substituted-4, 5-

diaryloxazoles has found interesting applications in the synthesis 

of natural products, medicinal chemistry and photochemistry. In 

natural products synthesis, the 4,5-diaryloxazole group has 

functioned as an effective masked carboxyl derivative and 

functions well when introduced during the early or late stages of 
a total synthesis.

1
 Medicinal chemistry groups have investigated 

the diaryloxazole system in the design and evaluation of 

prostanoid analogues.
2
 While the 2-substituted 4,5-diaryloxazole 

group responds well in photochemical reactions involving singlet 

oxygen, there is an inherent photochemical response exhibited by 

these compounds which has potential in scintillation technology.
3
 

Basically three to four general strategies may be followed when 

preparing extended oxazoles at the 2-position and all these allow 

for a varied pattern of substituents as well as a varied degree of 

substituent reactivity or functional group types (Scheme 1). 

Lithiation of the 2-position of 4,5-diaryloxazoles may be 

accomplished followed by reactions with a series of electrophiles 
(Eq 1, Scheme 1), however, the reaction may be complicated by 

ring-opening to the isonitrile enolate.
4
 2-methyl-4,5-diaryl-

oxazoles may be deprotonated (LDA) and alkylated to provide 

extended, fully functionalized oxazoles at the 2-position (Eq 2, 

Scheme 1). The ring-closure strategy toward 2-extended 

oxazoles involves the fairly standard benzoin ester formation 
followed by generation of the heterocycle with ammonium  

acetate in acetic acid (Eq 3, Scheme 1).
5
 Typically, the ring-

closure strategy is limited by the types of substituted benzoins as 

well as the carboxylic acid portion of the ester which bears the 

soon-to-be 2-appendage at the α-position of the carbonyl. While 

2-(halomethyl)oxazoles (X=Br, Cl) were first proposed as atom 

transfer radical polymerization (ATRP) initiators,
6
 our earlier 

work showed their synthetic utility in preparing 2-

(azidomethyl)oxazole click reactants.
5
 Considering the facile 

formation of azides from the title compounds, we now report a  
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 2-(Halomethyl)-4,5-diphenyloxazoles are effective, reactive scaffolds which can be utilized for 

synthetic elaboration at the 2-position. Through substitution reactions, the chloromethyl 

analogue is used to prepare a number of 2-alkylamino-, 2-alkylthio- and  2-alkoxy-(methyl) 

oxazoles. The 2-bromomethyl analogue offers a more reactive alternative to the chloromethyl 

compounds and is useful in the C-alkylation of a stabilized (malonate) carbanion as exemplified 

by a concise synthesis of Oxaprozin. 
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diverse manifold of substitution when these halogenated 

compounds are reacted with appropriate nucleophiles such as 
amines, alkoxides, thiolates, triphenylphosphine or cyanide ion 

thereby providing a number of interesting intermediates (Eq 4, 

Scheme 1). In terms of fundamental nitrogen substitution on the 

2-(methylene) position of oxazoles, the simplest, most 

unambiguous nitrogen nucleophile, i.e. azide ion, was utilized 

toward the goal of only providing click intermediates.   Chain-
lengthening of the 2-azidoalkyl group for the purpose of 

furnishing homologous 2-(aminoalkyl)oxazoles would 

necessitate oxazole closure of the corresponding homologous 2-

(azidoalkyl)esters followed by reduction of the azido group. 2-

(Aminoalkyl)-4,5-diphenyloxazoles have been investigated for 

analgesic and anti-inflammatory activity in rodent models using 
phenylbutazone and diethamphenazole as standards. Herein, we 

first show the synthetic variability of the 2-(halomethyl)oxazoles 

by reaction with suitable amine derivatives under a variety of 

conditions (Compounds 3-9, Table 1). While nucleophilic 

substitution of amines on various halogenated centers are well-

known reactions,
7
 we find that the 2-halomethylene unit of the 

title reactants (1, X=Cl; 2, X=Br) offers reactivity characteristic 

of a benzylic chloromethyl group. Primary alkyl-/aromatic 

amines such as ethanolamine, cyclohexylamine and  aniline are 

capable of providing the corresponding N-substituted (2-
aminomethyl) oxazoles (3,4 and 5, Table 1), while diethylamine, 

morpholine, N-methyl piperazine, and imidazole easily form the 

corresonding N,N-disubstituted products (6-9, Table 1). We 

further demonstrate the synthetic utility of the 4,5-diphenyl-2-

(halomethyl)oxazoles by reaction with various alkoxides or 

otherwise in situ-generated phenoxide in affording the 
corresponding alkyl or phenyl ethers (10-12, Table 1). The 

resulting 2-(alkoxymethyl)- or 2-(phenoxymethyl)-oxazoles have 

been of interest as anti-inflammatory and analgesic agents whose 

mechanism of action depends on the modulation of 

cyclooxygenase activity.
8
 Sulfur nucleophiles such as thiocyanate 

and thiophenoxide afford the corresponding 2-(methylthio) 
cyanate 13 or the 2-(phenylthiomethyl) oxazole 14 in high yield 

(Table 1). During the formation and purification of 13, no 

isomerization to the corresponding isothiocyanate was observed.
9
 

With respect to the 2-(phenylthiomethyl) oxazole 14 (thiop-

henol/NaH), we find that this compound is easily oxidized to the 

corresponding sulfone,
10

 a compound which exhibits excellent 
stabilized anion reactivity for carbon-carbon bond formation.  

The preparation of triphenylphosphonium salt 15 



  

(PPh3/toluene/heat) was the result of another heterocyclic 

scaffold modification whereby the potential for carbon-carbon 
bond formation and oxazole extension exists through Wittig 

chemistry.
11

 The 2-(cyanomethyl)oxazole 16 was prepared by 

cyanide (NaCN/DMF) substitution of 1.
12

 The nitrile group of 15 

should offer excellent potential for carbon-carbon bond formation 

at the 2-methylene position, through carbanion formation, as well 

as providing a reactive acceptor for alkyllithiums toward gaining 
carbonyl products. We demonstrate the usefulness of the 2-

halomethyloxazoles 1 and 2 in carbon-carbon bond formation by 

a synthesis of the non-steroidal anti-inflammatory Oxaprozin 

(Scheme 2).
13

 Chloromethyloxazole 1 is reacted with the anion of 

diethylmalonate (NaH/THF) which affords the diester 17 in 40% 

isolated yield. Under the same conditions, alkylation with the 
more reactive bromomethyloxazole 2 provides the diester 17 in  

90% isolated yield. Saponification of 17 (aq. NaOH) followed by 

acidification (dil. HCl/reflux) then gives Oxaprozin in 47% yield. 

O

N

X

 Reagents and conditions:(a) NaH/diethyl malonate/THF/

5oC to rt/16h (40%, X=Cl; 90%, X=Br). (b) 20% aq. NaOH/

rt/16h. (c) 10% aq. HCl, pH 3-5/reflux/3h (47% for b,c).

a

O

N

CH(COOEt)2

1, X=Cl
2, X=Br

b, c

O

N

COOH

Scheme 2. Synthesis of Oxaprozin:

17

18, Oxaprozin

 
 

Within the realm of amine substitution at the 2-methylene 

position of the 4,5-diaryloxazoles, we note that in preliminary 

experiments, our previously-reported 4,5-diphenyloxazole 

aldehyde 19
5a,11

 reacts as a convenient partner in a Schiff base 

formation/reduction sequence to give secondary amines. 
Therefore the employment of the oxazole aldehyde will provide a 

useful alternative to the halomethyl intermediates in providing 2-

aminomethyl-substituted oxazole scaffolds.
14

 For example, the 

reaction of 19 with (+)-R-α-methylbenzylamine (methanol/ 

reflux/16 h) gave the expected intermediate Schiff base (73%) 

which was directly reduced with sodium borohydride 
(methanol/rt/1h) to provide the chiral amine 20 (76%).  

In summary we have shown that 2-(chloromethyl)-4,5-

diphenyloxazoles, which are readily available from the 
corresponding chloroacetyl  esters of benzoin or substituted 

benzoins, are excellent reactive scaffolds for synthetic 

elaboration at the 2-(methylene) position. The 2-

(bromomethyl)oxazole analogue is best suited for a concise 

synthesis of Oxaprozin using malonate alkylation as the key step.  

A number of diverse amine nucleophiles may be used to prepare 
2-methyloxazole-derived primary or secondary amines. 

Similarly, the halomethyloxazoles react well with alkoxides or 

phenoxides to give the corresponding ethers which have anti-

inflammatory or analgesic activity. Sulfur nucleophiles such as 

thiocyanates and thiophenoxides react in high yield to give the 

corresponding carbon-sulfur bond motif whereby the 2-
phenylthiomethyl analogue will show promise in further reaction 

scenarios. 

Acknowledgments 

 The measurement of high resolution mass spectra by the 
Texas A&M University Laboratory for Biological Mass 

Spectrometry is acknowledged. Financial support from the 

NIH/NIDCR through grant 1RO1DE023206 is gratefully 

acknowledged. 

Supplementary Material 

Supplementary data (
1
H NMR, FTIR) for compounds 2-18, 

20; and additional 
13

C NMR data for new compounds 5, 9, 12-15, 

17, 18, 20. HRMS data are included for compounds 9, 10-16, 20; 

along with experimental procedures associated with this article 

can be found, in the online version at http://dx.doi.org/j.tetlet. 

 

References and notes 

1. (a) Wasserman, H. H.; McCarthy, K. E.; Prowse, K. S. Chem. Rev. 

1986, 86, 845-856. (b) Evans, D. A.; Nagorny, P.; Reynolds, D. J.; 

McRae, K. J. Angew. Chem. Int. Ed. 2007, 46, 541-544. (c) Tius, 

M. A.; Astrab, D. P.; Fauq, A. H.; Ousset, J.-B.; Trehan, S. J. Am. 

Chem. Soc. 1986, 108, 3438-3442. 

2. (a) Ullapu, P. R.; Ku, S. J.; Choi, Y. H.; Park, J.; Han, S.-Y.; 

Baek, D. J.; Lee, J.; Pae, A. N.; Min, S.-J.; Cho, Y. S. Bull. 

Korean Chem. Soc. 2011, 32, 3063-3068. (b) Hattori, K.; Okitsu, 

O.; Tabuchi, S.; Taniguchi, K.; Nishio, M.; Koyama, S.; Seki, J.; 

Sakane, K. Biorg. Med. Chem. Lett. 2005, 15, 3279-3283. (c) 

Meanwell, N. A.; Rosenfeld, M. J.; Wright, J. J. Kim; Brassard, C. 

L.; Buchanan, J. O.; Federici, M. E.; Fleming, J. S.; Gamberdella, 

M.; Hartl, K. S.; Zavoico, G. B.; Seiler, S. M. J. Med. Chem. 

1993, 36, 3871-3883. (d) Marchetti, E. Ger. Offen. 2108437, 

1971; Chem. Abs. 1972, 76, 46188. (e) Mattaglia, G.; Marchetti, 

E. Il Farmaco 1971, 26, 512-519.  

3. Mahuteau-Betzer, F.; Piguel, S. Tetrahedron Lett. 2013, 54, 3188-

3193. 

4. For recent reviews, See: (a) Haldon, E.; Nicasio, M. C.; Perez, P. 

J. Org. Biomol. Chem. 2015, 13, 9528-9550. (b) Thirumurugan, 

P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905-4979. 

(c) Pedersen, D. S.; Abell, A. Eur. J. Org. Chem. 2011, 2399-

2411. 

5. (a) Patil, P. C.; Luzzio, F. A.; Demuth, D. R. Tetrahedron Lett. 

2015, 56, 3039-3041. (b) Loner, C. M; Luzzio, F. A.; Demuth, D. 

R. Tetrahedron Lett. 2012, 53, 5641-5644. 

6. Zhang, L.; Xu, Q.; Lu, J.; Xia, X.; Wang, L. Euro. Poly. J. 2007, 

43, 2718-2724. 

7. Smith, M. B. March’s Advanced Organic Chemistry, John Wiley 

and Sons: Hoboken, 2013, pp 481-487. 

8. Talley, J. J. World Patent Application WO 96/36617, 1995; Chem. 

Abstr. 1997, 126, 74828. 

9. (a) Bound, D. J.; Bettadaiah, B. K.; Srinivas, P. Synth. Commun. 

2013, 43, 1138-1144. (b) Meshram, H. M.; Thakur, P. B.; Babu, 

B. M.; Bangade, V. M. Tetrahedron Lett. 2012, 53, 1780-1785. (c) 

Gorjizadeh, M.; Sayyahi, S. Chinese Chem. Lett. 2011, 22, 659-

662. (d) Li, J.; Cao, J.-J.; Wei, J-F.; Shi, Y.Y.; Zhang, L.-H.; Feng, 

J.-J.; Chen, Z.-G. Eur. J. Org. Chem. 2011, 229-233. (e) 

Mohanazadeh, F.; Aghvami, M. Tetrahedron Lett. 2007, 48, 7240-

7242. (f) Ju, Y.; Kumar, D.; Varma, R. S. J. Org. Chem. 2006, 71, 

6697-6700. (g) Kamal, A.; Chouan, G. Tetrahedron Lett. 2005, 

46, 1489-1491. (h) Erian, A.; Sherif, S. M. Tetrahedron 1999, 55, 

O

NPh

Ph

O

H

19

O

NPh

Ph

HN

20

Ph

CH3

H

http://dx.doi.org/j.tetlet


  

7957-8024. (i) Ando, T.; Clark, J. H.; Cork, D. G.; Fujita, M.; 

Kimura, T. J. Org. Chem. 1987, 52, 681-685. 

10. For a sulfonyl(methylene) oxazole with similar activating 

potential, See: Sakamoto, T.; Kondo, Y.; Suginome, T.; Ohba, S.; 

Yamanaka, H. Synthesis 1992, 552-554. 

11. For heterocyclic-substituted (methyl) triphenylphosphonium salts 

of heterocycles, See for example: (a) Morais, G. R.; Miranda, H. 

V.; Santos, I. C.; Santos, I.; Outeiro, T. F.; Paulo, A. Bioorg. Med. 

Chem. 2011, 19, 7698-7710. (b) Hoffman, J. M.; Smith, A. M.; 

Rooney, C. S.; Fisher, T. E.; Wai, J. S.; Thomas, C. S.; 

Bamberger, D. L.; Barnes, J. L.; Williams, T. M.; Jones, J. H. 

Olson, B. D.; O’Brien, J. A.; Goldman, M. E.; Nunberg, J. H.; 

Qintero, J. C.; Schleif, W. A.; Emini, E. A.; Anderson, P. A. J. 

Med. Chem. 1993, 36, 953-966. 

12. (a) Meanwell, N. A.; Rosenfeld, M. J.; Wright, J. J. K.; Brassard, 

C. L.; Buchanan, J. O.; Federici, M. E.; Fleming, J. S.; 

Gamberdella, M.; Hartl, K. S.; Zavoico, G. B.; Seiler, S. M. J. 

Med. Chem. 1993, 36, 3871-3883. (b) Kotani, E.; Kobayashi, S.; 

Adachi, M.; Tsujioka, T.; Nakamura, K.; Tobinaga, S. Chem. 

Pharm Bull. 1989, 37, 606-609. (c) Kim, T. Y.; Shik, H.; Chung, 

Y. M.; Kim, J. N. Bull. Korean Chem. Soc. 2000, 21, 673-674. 

13. (a) Imai, S.; Kikui, H.; Moriyama, K.; Togo, H. Tetrahedron 

2015, 71, 5267-5274. (b) Saito, Akio; Taniguchi, A.; Kanbara, Y.; 

Hanzawa. Y. Org. Lett. 2013, 15, 2672-2675. (c) Zheng, Y.; Li, 

X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 

2012, 77, 10353-10361. (d) Božić, B. D.; Trišović, N. P.; Valentić, 

N. V.; Ušćumlić, G. S.; Petrović, S. D. Hem. Ind. 2011, 65, 551-

562.  

14. (a) Ref. 5a. (b) Šagud, I.; Faraguna, F.; Marinić, Z.; Šindler-

Kulyk, M. J. Org. Chem. 2011, 76, 2904-2908. (c) Šagud, I.; 

Antol, I.; Marinić, Z.; Šindler-Kulyk, M. J. Org. Chem. 2015, 80, 

9535-9641.  

 



  

Graphical Abstract 

Synthesis of extended oxazoles II: Reaction 

manifold of 2-(halomethyl)-4, 5-

diaryloxazoles 

Pravin C. Patil and Frederick A. Luzzio* 

 

O

N

X

Ph

Ph O

N

R

Ph

Ph O

NPh

Ph

OH

OxaprozinX=Br, Cl
O

R=N,O,S,C
 

Leave this area blank for abstract info. 


