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Herein, we describe the preparation of trifluoromethylthiol-substituted oxindoles by silver-mediated
aryltrifluoromethylthiolation of activated alkenes, using S-trifluoromethyl 4-methylbenzenesulfonoth-
ioate as a F3CS radical source and showing that the reagent availability, mild conditions, and broad func-
tional group compatibility of this transformation make it a viable alternative strategy of constructing
Csp3ASCF3 bonds.

� 2018 Elsevier Ltd. All rights reserved.
Introduction

Trifluoromethylthiolation has recently emerged as a hot
organic/medicinal chemistry research field.1 Since the trifluo-
romethylthiol (CF3S) group is highly lipophilic (Hansch parameter
pR = 1.44)2 and electron-withdrawing, its incorporation into bioac-
tive molecules can improve their cell membrane permeation abil-
ity3 and metabolic stability,4 which makes the development of
mild and efficient trifluoromethylthiolation methods a task of high
significance.

In addition to nucleophilic trifluoromethylthiolation employing
AgSCF3,5 CuSCF3,6 or Me4NSCF37 as SCF3� sources, great progress has
been made in the field of electrophilic trifluoromethylthiolation,
with a series of easy-to-handle and shelf-stable trifluoromethylth-
iolation reagents currently being available.8 However, although a
number of aromatic molecules have been trifluoromethylthiolated
by the above nucleophilic/electrophilic reagents, the radical triflu-
oromethylthiolation of alkenes remains underexplored, mainly due
to the limited number of reliable methods of generating the F3CS
radical. The most common F3CS radical source, used in many
impressive transformations, is AgSCF3, which, however, is expen-
sive and requires in situ oxidation by a strong oxidant to generate
the SCF3 radical (Scheme 1, Eq. 1).9 In 2016, Hopkinson et al.
reported visible-light-promoted radical trifluoromethylthiolation
of styrenes by 2-((trifluoromethyl)thio)isoindoline-1,3-dione (1)
(Scheme 1, Eq. 2).10 Recently, Dagousset and Magnier reported
visible-light-driven radical trifluoromethylthiolation of alkenes
s.
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by N-trifluoromethylthiosaccharin (2) (Shen’s reagent) (Scheme 1,
Eq. 3).11 However, the preparation of compounds 1 and 2 requires
the use of expensive AgSCF3 or CuSCF3. In 2016, Shen et al. reported
an elegant radical-mediated phenylsulfonyl-difluoromethylthio-
1,2-difunctionalisation of alkenes by S-difluoromethyl benzenesul-
fonothioate (3).12 Recently, Xu et al. reported a gold and visible-
light mediated phenylsulfonyl-trifluoromethylthio-1,2-difunction-
alisation of alkenes by S-trifluoromethyl 4-methylbenzenesul-
fonothioate (4).13 Due to being interested in the development of
efficient CAS bond construction methods,14 we herein utilised
compound 4, easily prepared from trimethyl(trifluoromethyl)si-
lane (5), N,N-diethyl-1,1,1-trifluoro-l4-sulfanamine (6), aniline
(7), and sodium 4-methylbenzenesulfinate (8) in two steps,8a,15

as an alternative F3CS radical source, successfully achieving sil-
ver-mediated oxidative aryltrifluoromethylthiolation of activated
alkenes to produce trifluoromethylthiol-substituted oxindoles
(Scheme 1, Eq. 4).
Results and discussion

Treatment of N-methyl-N-phenylmethacrylamide (9a) with 4 in
the presence of AgNO3, K2S2O8, and hexamethylphosphoramide
(HMPA) in dimethyl sulfoxide (DMSO) at 40 �C afforded the desired
aryltrifluoromethylthiolation product 10a (24% yield, Table 1,
entry 1) and the non-desired arylsulfoxidation product 11a (40%
yield). When the reaction was carried out without HMPA, the yield
of 10a increased to 38%, with only trace amount of 11a detected
(Table 1, entry 2). To optimise the reaction conditions, various oxi-
dants (Na2S2O8, (NH4)2S2O8, t-BuOOH, and (t-BuO)2 (Table 1,
entries 3–6)) were investigated, but none of them was superior
to K2S2O8, with subsequent screening of silver salts (AgSbF6, AgOTf,
and AgF) showing that AgF afforded the best yield (Table 1, entries
Table 1
Optimisation of aryltrifluoromethylthiolation of 9a by 4 in the presence of diverse silver s

Entry 4/equiv. Ag(I)/equiv. Oxidant/equiv.

1 1.2 AgNO3/1.2 K2S2O8/3.6
2 1.2 AgNO3/1.2 K2S2O8/3.6
3 1.2 AgNO3/1.2 Na2S2O8/3.6
4 1.2 AgNO3/1.2 (NH4)2S2O8/3.6
5 1.2 AgNO3/1.2 t-BuOOH/3.6
6 1.2 AgNO3/1.2 (t-BuO)2/3.6
7 1.2 AgSbF6/1.2 K2S2O8/3.6
8 1.2 AgOTf/1.2 K2S2O8/3.6
9 1.2 AgF/1.2 K2S2O8/3.6
10 1.5 AgF/1.5 K2S2O8/3.6
11 1.8 AgF/1.8 K2S2O8/3.6
12 2.0 AgF/2.0 K2S2O8/3.6
13 1.8 AgF/1.8 K2S2O8/3.6
14 1.8 AgF/1.8 K2S2O8/3.6
15 1.8 AgF/1.8 K2S2O8/3.6
16 1.8 AgF/1.8 K2S2O8/3.6
17 1.8 AgF/1.8 K2S2O8/3.6
18 1.8 AgF/1.8 K2S2O8/3.6
19 1.8 AgF/1.8 K2S2O8/3.6

a Reaction conditions: 9a (0.25 mmol), 4 (0.3–0.5 mmol), Ag(I) salt (0.3–0.5 mmol), an
b Yield of isolated product after silica gel chromatography.
c HMPA (0.125 mmol) was used as an additive.
d DMSO (2 mL) was used.
e DMSO (4 mL) was used.
7–9). Finally, the loading of 4 and AgF, reaction temperature, reac-
tant concentration, and solvent were examined. When the loadings
of 4 and AgF were increased from 1.2 to 1.8 equivalents, the yield
of 10a increased from 42 to 58% (Table 1, entries 10 and 11). How-
ever, a further loading increase to 2.0 equivalents was counterpro-
ductive (Table 1, entry 12). Decreasing the reaction temperature to
20 �C improved the yield to 71% (Table 1, entry 13), whereas
increasing the concentration of 9a from 0.083 to 0.125 M or
decreasing it from 0.083 to 0.063 M diminished the yield (Table 1,
entries 14 and 15). When other solvents such as acetonitrile (CH3-
CN), toluene, and 1-methylpyrrolidin-2-one (NMP) were used, no
desired product was obtained, except for DMF, in which case 10a
was isolated in 34% yield (Table 1, entries 16–19). Thus, the opti-
mised reaction conditions for the aryltrifluoromethylthiolation of
9a were as follows: 9a (0.25 mmol), 4 (0.45 mmol), AgF (0.45
mmol), K2S2O8 (0.9 mmol), and DMSO (3 mL) at 20 �C.

With the optimised reaction conditions in hand, the scope of
activated alkenes was investigated, with the results presented in
Scheme 2. N-Methyl-N-phenylmethacryl amides 9 with both elec-
tron-donating and electron-withdrawing substituents in ortho-,
meta-, and para-positions of the aniline ring (9b–9l) were smoothly
converted into the corresponding oxindoles. Notably, when N-
methyl-N-(pyridin-2-yl)methacrylamide (9m) and N-methyl-N-(-
naphthalen-1-yl)methacrylamide (9n) were employed as sub-
strates, the desired products 10m and 10n were obtained in
relatively low yields. Then, other N-substitutes-N-phenylmethacryl
amides (9o–9s) were tested, affording the desired aryltrifluo-
romethylthiolation products in moderate yields except for 9r,
which was transformed into 10r in 34% yield. Finally, a-substituted
acrylamides (9t–9w) were examined, and it was found that ethyl,
benzyl, and methoxymethyl substituents were tolerated, and the
desired products (10t–10w) were obtained in moderate to good
yields.16
alts and oxidants.a

Temperature (�C) Solvent Yield of 10a (%)b

40 DMSO 24c

40 DMSO 38
40 DMSO Trace
40 DMSO 29
40 DMSO 0
40 DMSO 0
40 DMSO 40
40 DMSO 40
40 DMSO 42
40 DMSO 55
40 DMSO 58
40 DMSO 52
20 DMSO 71
20 DMSO 58d

20 DMSO 65e

20 CH3CN 0
20 Toluene 0
20 NMP 0
20 DMF 34

d oxidant (0.9 mmol) in solvent (3 mL) for 5 h at the indicated temperature.



Scheme 2. Substrate scope of activated alkene aryltrifluoromethylthiolation.

Scheme 3. Additional experiments performed to understand the reaction
mechanism.

Scheme 4. Proposed aryltrifluoromethylthiolation mechanism.
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To understand the mechanism of the above transformation, a
series of experiments were carried out. In the absence of K2S2O8

or in the presence of 1.8 equivalents of TEMPO as a radical scav-
enger, no desired product was detected (Scheme 3, Eqs. 1 and 2,
respectively), which supported the hypothesis that the reaction
proceeded via a radical pathway. To gain further insights, 4 was
treated with AgF in the presence of K2S2O8 in DMSO at 20 �C, and
the reaction was monitored by 19F NMR for 3 h, with peaks of
1,2-bis(trifluoromethyl)disulfane (11) (d = �46.2 ppm) and AgSCF3
(d = �20.8 ppm) observed as a result (Scheme 3, Eq. 3).17 Notably,
when 4 was treated with AgF in DMSO at 20 �C for 12 h in the
absence of K2S2O8, peaks of 4-methylbenzenesulfonyl fluoride 12
(d = �64.8 ppm) and AgSCF3 were observed (Scheme 3, Eq. 4).16

Based on the available literature9a,18 and the abovementioned
results, the investigated aryltrifluoromethylthiolation was thought
to proceed as follows (Scheme 4). Initially, 4 reacts with AgF to
form AgSCF3, which is oxidised by K2S2O8 to Ag(II)SCF3, with
decomposition of the latter species affording Ag (I) and F3CS�. Sub-
sequently, the addition of F3CS� to 9 affords alkyl radical intermedi-
ate A that cyclises to afford aryl radical B. Finally, oxidation of B by
Ag(II) or SO4

�� followed by deprotonation affords the desired pro-
duct 10.

Conclusion

We have successfully developed silver-mediated radical aryltri-
fluoromethylthiolation of activated alkenes by 4-methylbenzene-
sulfonothioate as a F3CS radical source to afford
trifluoromethylthiol-substituted oxindoles. The readily accessible
reagents, mild reaction conditions, and broad functional group
compatibility of the above transformation make it an alternative
and practical strategy of constructing Csp3ASCF3 bonds, with the
extension of this strategy to other substrates currently being inves-
tigated in our lab.
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