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Abstract

Background: Continual progress in next-generation sequencing allows for generating increasingly large
metagenomes which are over time or space. Comparing and classifying the metagenomes with different
microbial communities is critical. Alignment-free supervised classification is important for discriminating
between the multifarious components of metagenomic samples, because it can be accomplished independently
of known microbial genomes.

Results: We propose an alignment-free supervised metagenomic classification method called DectICO. The intrinsic
correlation of oligonucleotides provides the feature set, which is selected dynamically using a kernel partial least
squares algorithm, and the feature matrices extracted with this set are sequentially employed to train classifiers by
support vector machine (SVM). We evaluated the classification performance of DectICO on three actual metagenomic
sequencing datasets, two containing deep sequencing metagenomes and one of low coverage. Validation results
show that DectICO is powerful, performs well based on long oligonucleotides (i.e., 6-mer to 8-mer), and is more stable
and generalized than a sequence-composition-based method. The classifiers trained by our method are more accurate
than non-dynamic feature selection methods and a recently published recursive-SVM-based classification approach.

Conclusions: The alignment-free supervised classification method DectICO can accurately classify metagenomic
samples without dependence on known microbial genomes. Selecting the ICO dynamically offers better stability and
generality compared with sequence-composition-based classification algorithms. Our proposed method provides new
insights in metagenomic sample classification.
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Background
Metagenomics has revolutionized microbiology by allowing
a cultivation-independent assessment and exploitation
of microbial communities present in complex ecosystems
[1, 2]. Advances in next-generation sequencing technolo-
gies, coupled with new bioinformatics developments, have
facilitated rapid and high-throughput metagenomic se-
quencing, promoting the development of metagenomics.
Consequently, thousands of metagenomic projects have
been completed, and have provided valuable insight into

many different microbial communities. For example,
among many others, metagenomes from the Sargasso
Sea [3], the human gut microbiome [4], and an acidic
mine drainage biofilm [5] have all been sequenced. The
human body is inhabited by at least ten times more mi-
crobes than the number of human cells in the body [6], and
these various microbes play fundamental roles in human
health and disease. Microbiomes are involved in human
metabolism, nutrition, immune system development, and a
wide range of other functions [7–9]. Therefore, more and
more research has focused on human microbiomes. For ex-
ample, the Human Microbiome Project [10] was funded by
the National Institutes of Health (NIH), resulting in a broad
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range of quality-controlled resources of high-throughput
metagenomic data available to the scientific community.
This large-scale source of sequencing data corresponds
to various metagenomic samples, including different indi-
vidual health states and/or different parts of the human
body. Therefore, comparing and classifying microbial
samples becomes increasing important for studying
microbiomes.
Before the emergence of the sequencing technologies,

the single-gene rRNA surveys had been an important form
of culture-independent genomics [11]. And now sequen-
cing ribosomal RNA subunits, especially 16S rRNA, has
provided valuable insights into the diversity of thousands of
uncultured microbial samples from various environments.
The global diversity of metagenomic samples can be di-
vided into three components: alpha diversity, the richness
of taxa in a single sample; beta diversity, the differentiation
between samples or communities; and gamma diversity, the
differentiation between geographic regions [12–15]. Beta
diversity can be analyzed by comparing microbial catalogs
between different samples. Sequenced 16S rRNA gene frag-
ments are first clustered into different operational taxo-
nomic units (OTUs) in 16S rRNA-based research, then
each OTU is assigned to a particular taxon by comparison
against known 16S rRNA databases (e.g., RDP, Greengene
and SILVA [16–18]). Many 16S rRNA-based analytical
pipelines have recently and widely been adopted, including
mothur [19], Qiime [20] and the RDP pipeline [17], among
many others. However, 16S rRNA-based studies can
only provide limited information, especially regarding
the functional analysis of microbiomes. In contrast, whole
metagenome shotgun sequencing (WMGS) can provide
more complete information on microbial communities.
WMGS provides not only the taxonomic profile of the
community, but also the full genetic information of all the
microbes in the community sampled, allowing a more
thorough understanding of the interactions between
microbes and the environment in which they exist.
Approaches for comparing and classifying metagenomic

samples include alignment-based and alignment-free
methods. In alignment-based methods raw reads are first
assembled into contigs. Then a taxonomic profile and a
catalog of genes are obtained for each sample by mapping
these contigs to databases of microbial genomes and genes
(e.g., the NCBI nr database, the KEGG database, and
the COG database). Differences between metagenomic
samples are calculated based on profiles of taxonomy
and function. Finally, the samples can be assigned into
informative classes by employing supervised classification
methods. Alternatively, the samples can be clustered using
unsupervised machine learning methods to find intrinsic
clusters [21–24]. However, the limitations of alignment-
based methods are obvious. A sparsity of known microbial
genomes and genes is the primary bottleneck, results in

that a large number of fragments of metagenomic data
can’t map to the known database [25, 26]; In addition, the
alignment of a huge number of contigs is computationally
intensive and time-consuming. Therefore, alignment-free
methods are a promising approach for analyzing such
huge metagenomic datasets. Alignment-free methods are
based on one or more sequence features, combined with
supervised or unsupervised machine learning algorithms,
independent of reference databases, unlike alignment-based
methods. Previous observations have determined that
tetra-nucleotide frequency composition is an optimal
feature for discriminating species taxonomy [27]. Sequence
composition was first used as an alignment-free metage-
nomic binning method for clustering individual metage-
nomic fragments [28–31]. A novel sequence feature,
the intrinsic correlation of oligonucleotides (ICO), was
proposed, and has proven more powerful for distinguishing
microbial species by extracting more significant differences
between genomic sequences, than sequence-composition-
based feature methods in our previous researches [32].
Differences between the sequence feature vectors that
represent metagenomic samples can distinguish the
metagenomic samples. Previous studies have proven that
alignment-free unsupervised classification methods can
reveal dissimilarities between metagenomic samples, and
cluster those samples into reasonable classes [33–35].
However, these methods can only discover major intrinsic
clustering relations among the compared samples, and are
sometimes invalid when the classes are predefined (See
Additional file 1: Figure S1). For example, we are inter-
ested in distinguishing human gut metagenomic samples
associated with inflammatory bowel disease (IBD) from
healthy human gut metagenomes. Unfortunately, some
sample subjects also suffer from type 2 diabetes (T2D),
with a similar frequency as the IBD disease samples. An
unsupervised algorithm-based classification method may
incorrectly cluster samples into a T2D group and a healthy
group. In other words, the class of interest (here, the
IBD samples) may not dominate the assortment of data
and, therefore, may not be revealed as a separate group
in an unsupervised comparison. Supervised classification
methods are more suitable in this situation. A classifier
can be built with a specific sequence feature, to classify
samples into predefined classes, using samples with
known classification labels as training sets.
In this paper, we propose DectICO, an alignment-free

supervised algorithm that dynamically selects the ICO
set using kernel partial least squares (kpls) [36], for classi-
fying metagenomic samples, focusing on the beta diversity
of metagenomic samples. A given ICO feature set based
on long oligonucleotides usually has a high dimensionality,
resulting in an inaccurate supervised classification, owing
to an excess of noise components in the high-dimension
feature set. Furthermore, a high-dimension feature set also
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increases computational complexity. Therefore, we refine
the entire ICO feature set in our method. DectICO is a su-
pervised algorithm which uses a set of completely labeled
samples to train a classifier, and then classifies the un-
labeled samples.
We evaluated the performance of our method on three

groups of actual metagenomic sequencing data: two
containing deep sequencing metagenomes, and one
metagenome of low sequencing depth. We demonstrate
that our method performs better than a sequence-
composition-based method, especially based on long
oligonucleotides, not only for the deep sequencing
metagenomic datasets, but also for the low coverage
dataset. The sequence-composition-based method em-
ploys sequence composition instead of the ICO, but uses
the dynamic kpls feature selection as same as DectICO.
Additionally, we demonstrate that the dynamic kpls
feature selection technique performs better than the
non-dynamic kpls feature selection approach. Our experi-
mental results also demonstrate that DectICO has better
stability and generality than the recursive support vector
machine (RSVM)-based classification algorithm [37].

Methods
The algorithm of DectICO
We propose for DectICO to select an optimum feature
set from all ICO components dynamically, and to train
classifiers with feature matrices extracted from those
feature sets. The algorithm scheme is described in Fig. 1.
We let nk(0 ≤ k ≤N) stand for the size of the feature set
to be selected in round k, with descending order (n0 >
n1 >… > nN), and n0 represents the size of the entire
ICO. The maximal number of the round for selecting
features is denoted by N, which is defined by users. S0 is
defined as the entire feature set, and consists of all com-
ponents of the ICO. For each round, the selected feature
set of size nk is denoted by Sk(0 < k ≤N), which is the sub-
set of Sk − 1. The feature matrix extracted from the training
data with Sk is defined as Fk(0 < k ≤Ν) whose rows repre-
sent the feature vectors extracted from training samples.
And F0 means the feature matrix extracted from training
samples with S0. In addition, ak(0 < k ≤Ν) represents the
accuracies of a leave-one-out cross validation (LOOCV) of
the classifier trained with Fk in each round.
The entire workflow of DectICO contains the follow-

ing steps:

Fig. 1 DectICO’s algorithm scheme
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1. Input: Give a set of training samples the raw
sequencing reads and a predefined feature selection
ladder {n0… nk}(0 < k ≤Ν) of descending order.

2. Initialization: Set S0 as the entire ICO and extract
the feature matrix F0 from the training set. Initialize
k = 1.

3. Recursion: Select the feature set Sk from Sk − 1 by
kpls and extract Fk from the training samples with
Sk. Train a classifier with Fk and record the accuracy
by LOOCV of ak. Let k = k + 1 and repeat this
process until k =N.

4. Output: Select the optimal classifier with the
minimal number of feature components nk and the
maximal accuracy by LOOCV of ak.

DectICO employs the kpls algorithm to select the entire
ICO set dynamically. Therefore, the key characteristics of
our algorithm are its use of the ICO and dynamic feature
selection. We compared classification performance be-
tween our ICO-based and a sequence-composition-based
method, as well as between dynamic and non-dynamic
feature selection methods.
Non-dynamic feature selection methods select a feature

set from the entire feature only once for each size of se-
lected set. Furthermore, feature selection by kpls is based
on the weights of all features defined by kpls. The weight
rank of the entire feature is not necessarily suitable for each
size of feature set. Dynamic feature selection overcomes
this problem by selecting the entire feature many times,
which updates the weight of the selected feature set in each
round. DectICO is implemented in Perl and Matlab, and
was built using kernelPLS [36] and Libsvm [38], it can run
both on the Windows and the Linux system. Source code
is available at https://github.com/dingxiao8715/DectICO.
Although DectICO isn’t characterized by fast and low
RAM consumed, we also gathered a statistics of the run-
time and required RAM of DectICO (See Additional file 1:
Table S6 ~ S9). The results indicate that DectICO has ac-
ceptable runtime and consumed RAM.

Intrinsic correlation of oligonucleotides
The sequence feature itself is the most important element
of alignment-free classification methods. There are two
kinds of sequence features: sequence composition and
sequence correlation. Sequence composition measures
the content of different components in a DNA sequence,
such as a single base or an oligonucleotide component, and
it is wide used in genome analysis. However, sequence cor-
relation represents the relationship among different compo-
nents in genomes, which contains deeper information of
genomes. In this study, we investigated classification per-
formance for both the ICO and a sequence-composition-
based method.

As a kind of sequence correlation, ICO represents the
correlation between two consecutive parts of oligonucle-
otides with fixed length [32]. Given an oligonucleotide
with length k (i.e., k-mer), we can separate it into two
consecutive parts i and j with length m and n respectively
(m ranges from 1 to k-1 and n = k-m). The ICO (m, n) for a
genomic sequence S is defined as a descriptor that indicates
the correlation between any consecutive part i and j within
S. Let A and B be sets of all oligonucleotides with length m
and n respectively. The counts of components in sets A
and B depend on the length of i and j. For example, when
we evaluate ICO (1, 3), i represents arbitrary single base like
A, C and j means arbitrary trimers like ACT or GAT, all
components in A are {A, C, T, G} and B contains all 64
kinds of trimers {AAA, AAC… GGG}. According to the
rationale above, the ICO for a genomic sequence S based
on the k-mer is a combination of k-1 types of ICO, i.e., ICO
(1, k-1), ICO (2, k-2)…ICO (k-1, 1). For example, the ICO
based on 4-mer contains ICO (1, 3), ICO (2, 2), and ICO
(3, 1). In general, the ICO (m, n) consists of two sections:
the first section describes the correlation between two con-
secutive oligonucleotides (or bases), namely i and j, and the
second section represents the average mutual information
between them. The definition for the first section follows:

f ij ¼
pij
pipj

where pij represents the probability of occurrence of
junction between the two oligonucleotides i and j, and pi
and pj represent the probability of occurrence of i and j,
respectively, in a sequence.
The second section of the ICO vector is based on in-

formation theory. We proposed this section to help ex-
plore deeper relationships between two oligonucleotides.
The definition for this section is:

I ið Þ ¼
X
j∈B

pj=i log2
pij
pipj

 !
i ∈ Að Þ

where A and B are the sets of all oligonucleotides with
length m and n respectively, respectively. I(i) represents
the average mutual information of i acquired from j. pi,
pj, and pij are the same as in the above equation. pj/i rep-
resents the conditional probability of the occurrence of j,
on the condition that i is fixed. The performance of dis-
tinguishing genomes with the ICO is detailed by [32].
It is noteworthy that we calculate the feature vector for

each metagenomic sample, which is regarded as an inte-
grated one, instead of extracting the feature of each read in
a sample, and then computing the average feature vector.
The ICO and composition (each component repre-

sents the occurrence frequency of every oligonucleotide
in a metagenomic sample) vectors are not of the same
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magnitude; therefore, we employ a simple normalization
method described below:

vi
0 ¼ vi− vmin

vmax− vmin
i ¼ 1…nð Þ

We assume the feature vector has n dimensions, and
denote the original and normalized vector element by vi
and vi

' , respectively. vmax and vmin represent the max-
imum and minimum value among these components,
respectively.

Kernel partial least squares
We employ the kpls algorithm [36] for feature selection,
which was first proposed for selecting features from
microarray gene expression data for cancer sample classi-
fication. Kpls is based on pls [39] and the theory of Repro-
ducing Kernel Hilbert Space [40]. In the following, we
introduce the basic algorithm of kpls briefly.
Pls is one of a broad class of methods for modeling rela-

tions between sets of observed features by means of latent
variables called components [41]. In order to describe the
algorithm conveniently, we denote X as a data matrix with
N samples and y� as the class vector of the samples. The

basic goal of pls is to obtain a low dimensional approxima-
tion of a data matrix X such that the approximation will
be as close as possible to a given vector y� . Namely, pls

seeks a k × 1 vector w� satisfying w�
�� �� ¼ 1 and that maxi-

mizes cov Xw� ; y�

� �
. Xw� is denoted by t� , and is called the

component of X respect to y� . The approximation errors of

X and y� are defined as E ¼ X−t�p�
T and f ¼ y�−qt� respect-

ively, where p� is a k × 1 vector minimizing X−t�p�
T

��� ��� and q

is a scalar minimizing y�−qt�
��� ���. Here p� and q are called the

loadings of t� with respect to X and y� , respectively. This

process can be repeated until the required halt condition
is satisfied. A more detail description of the algorithm can
be found in [42].
However, in real biological applications, linear relation-

ships often fail to fully capture all the information among
feature vectors extracted from biological data. Kernel
methods project the data onto a high dimensional feature
space to approach the problem, and are commonly used
for revealing the intrinsic relationships hidden in the raw
data. The kernel version of pls uses a nonlinear transform-
ation Φ(.) to map the feature matrix into a higher-
dimensional kernel space K, i.e., Φ : xi ∈XN× k→Φ(xi) ∈K.
However, we only need to state the entire algorithm in
terms of dot products between pairs of inputs and substi-
tute the kernel function K(.,.) for it, instead of calculating
the specific mathematical expression of nonlinear mapping.
A detailed description of kpls can be found in [36].

Description of the datasets
We conducted our experiments on three actual collec-
tions of metagenomes: two containing deep Illumina-
based metagenomes, and one metagenomic dataset of low
coverage sampled using 454 FLX Titanium technology.
The first deep dataset was derived from the metagenomic
project “A human gut microbial gene catalog established
by deep metagenomic sequencing”, which was obtained
from the faecal samples of 124 European individuals, and
contains 25 IBD samples and 99 control samples [43]. The
second deep dataset was derived from the metagenomic
project “BGI Type 2 Diabetes study”, which was also ob-
tained from the faecal samples, but from 145 Chinese indi-
viduals living in the south of China, and includes 71 T2D
samples and 74 control samples [44]. The low coverage
dataset was from the metagenomic study “Southampton
Asthma metagenomics” which was obtained from both
the sputum and the bronchoalveolar lavage samples of 55
individuals, and includes 66 asthma samples and 22 con-
trol samples [45]. The information of the three metage-
nomic datasets are detailed in the supplement (Additional
file 1: Table S2).

Verification experiment
Our work in this paper focuses on verifying the stability
and generality of the DectICO algorithm, and comparing
the classification performance of our proposed method
with existing metagenomic sample classification methods.
Therefore, we conducted two kinds of experiments, and
defined them as stability test and generality test, in terms
of differing purpose.
In the practical application of metagenomic sample

classification, different researchers have usually sampled
from different individuals for a specific disease. Conse-
quently, multiple classifiers targeting the same disease
will be trained by different samples. The similarity
among the performance of classifiers reflects the stability
of the metagenomic classification algorithm used. There-
fore, we propose that the classification algorithm is con-
sidered stable, if the classifiers, which have been trained
on a given kind of metagenomic data with different
training sets, have similar classification performance.
Our stability test was designed to verify the stability of a
classification algorithm. Initially different groups of dis-
eased and control samples are randomly selected from
all of the samples 20 times with sample size, and then
classifiers are trained based on these 20 training sets.
Classification algorithm stabilities can be compared
using the cross validation accuracies of the 20 classifiers.
The acquisition of diseased samples for a specific dis-

ease can be a limiting factor. The classifier trained by
the samples labeled limited should distinguish all, or the
major part of the unlabeled samples accurately. Namely,
the classifiers trained by a classification algorithm should
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have good generality. Our generality test was designed
to evaluate the generality of our method. Initially we
select a group of the diseased and control samples ran-
domly from all samples, and a classifier is trained by the
training set. Next, 20 groups of the testing sets are

selected of the same sample size randomly from the rest
of the samples. The classification accuracies of these
testing sets can then be obtained by the trained classi-
fier. The generality of our proposed method can be
assessed using the differences between the classification

a

b

c

Fig. 2 Comparison of LOOCV accuracies between DectICO and the sequence-composition-based method on the three metagenomic datasets. The
average of LOOCV accuracies of the 20 classifiers trained in the stability test are compared between DectICO and the sequence-composition-based
method based on the three collections of metagenomes. a corresponds to the asthma metagenomic samples. b and c correspond the IBD and T2D
metagenomes, respectively. The solid lines with the square tags represent the classification performances of DectICO, while the dotted lines with the
rhombic tags correspond to the sequence-composition-based method. The X-axis represents the length of the oligonucleotides, and the
Y-axis corresponds to the average LOOCV accuracy
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accuracies. The number of samples in the training and
testing sets for the three metagenomic datasets is de-
scribed in the Additional file 1 (Table S3).
Note that the numbers of the diseased and the control

samples of the testing sets in our generality test are un-
balanced (Additional file 1: Table S3). Therefore, we
used the F1-measure to evaluate the classifying perform-
ance of the testing sets. The F1-measure is defined in
the Additional file 1.

Results and discussion
DectICO performs better based on long oligonucleotides
Figure 2 shows classification performance for the three
metagenomic datasets obtained in our stability test. The
average accuracy of the LOOCV procedure for the 20
trained classifiers using DectICO is compared with the
sequence-composition-based method. The sequence fea-
tures were extracted based on oligonucleotides with lengths
varying from 3 to 8.
Primarily, for each kind of metagenome, we find the

average LOOCV accuracies of DectICO increase as the
length of oligonucleotide becomes longer. The accuracies
of 8-mers are the highest among the varied lengths of
oligonucleotides tested. Additionally, experimental results
show that the average accuracies of DectICO are higher
than the sequence-composition-based method for dif-
ferent lengths of oligonucleotides. Results illustrate
the classifier trained by DectICO is more accurate for
longer oligonucleotides, and also performs better than
those trained by the sequence-composition-based method
based on same length oligonucleotide. However, the
difference in LOOCV accuracy between DectICO and
the composition-based method for each classifier (See
Additional file 2: Table S1) shows that DectICO does
not outperform the composition-based method signifi-
cantly for short oligonucleotides.
We also performed paired-sample t-test for the 20

groups of LOOCV accuracies of the classifiers between
trained by DectICO and those trained by the sequence-
composition-based method. The p-values of paired t-test
were used to evaluate the statistical significance of the
difference of classification performance between the two

kinds of methods. Table 1 summarizes the p-values of
paired t-test on the three kinds of metagenomic datasets.
Results show that the p-values are less than 0.05 except
for the 3-mer on the asthma dataset. Additionally, the p-
values of paired t-test for the 3-mer and 4-mer are
greater than based on the 7-mer and 8-mer in general.
These results indicate that DectICO’s superior classifica-
tion performance becomes more obvious as oligonucleo-
tides get longer. Therefore, our experimental results
illustrate that DectICO has better classification perform-
ance based on long oligonucleotides.
The above results all indicate that DectICO signifi-

cantly outperforms the sequence-composition-based
method based on long oligonucleotides. Apparently, the
longer the oligonucleotide, the higher the dimensionality
of the extracted sequence feature vector becomes, and
the more information the sequence feature vector con-
tains, from the metagenomic sample. Therefore, we con-
clude that the different diseased states of the samples
are being represented sufficiently enough by the high-
dimensional ICO vectors to give the classification high
performance.

DectICO is more stable and generalized than the
sequence-composition-based method
We conducted our stability test on three actual metage-
nomic datasets to investigate DectICO’s stability. We then
analyzed the difference in LOOCV accuracies among 20
trained classifiers for each kind of metagenome.
The LOOCV accuracy standard deviations for the

20 classifiers trained by DectICO and the sequence-
composition-based method are presented in Table 2.
This shows that the LOOCV accuracy standard devia-
tions for the classifiers trained by DectICO are smaller
than by the sequence-composition-based method, based
on all different lengths of oligonucleotides, except for
the 5-mer in the asthma dataset, the 3-mer in the IBD
dataset, and the 3-mer and 4-mer in the T2D dataset.

Table 1 P-values of paired t-test for the 20 groups of LOOCV
accuracies between DectICO and the sequence-composition-based
method

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

Asthma 1.65E-01 4.18E-04 1.60E-05 1.36E-05 2.14E-05 7.42E-06

IBD 1.32E-02 1.57E-04 3.89E-08 5.93E-07 4.95E-11 1.42E-10

T2D 2.91E-06 7.33E-12 1.40E-09 1.10E-08 7.25E-07 1.76E-06

The paired-sample t-test for the 20 groups of LOOCV accuracies of the classifiers
between those trained by DectICO and those trained by the sequence-composition-
based method was also performed. And the p-values of paired t-test were used to
evaluate the statistical significance of the difference of classification performance
between the two kinds of methods

Table 2 Comparison of the standard deviations of LOOCV
accuracies for the 20 classifiers between DectICO and the
sequence-composition-based method

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

Asthma com-based 0.057 0.064 0.061 0.068 0.069 0.063

DectICO 0.053 0.048 0.065 0.033 0.033 0.031

IBD com-based 0.045 0.081 0.065 0.056 0.034 0.042

DectICO 0.063 0.057 0.048 0.041 0.031 0.027

T2D com-based 0.041 0.026 0.034 0.039 0.057 0.051

DectICO 0.048 0.028 0.027 0.037 0.038 0.034

We investigated DectICO’s stability using the results of stability test on three
actual metagenomic datasets. The difference in LOOCV accuracies among 20
trained classifiers was analyzed with the LOOCV accuracy standard deviations
for the 20 classifiers trained by DectICO and the
sequence-composition-based method
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The standard deviations for DectICO range from 0.03 to
0.04 in the asthma and T2D datasets, while the standard
deviations for the sequence-composition-based method
are larger than 0.05 based on the 6-mer, 7-mer, and 8-
mer. This result indicates that the difference in LOOCV

accuracies among the 20 classifiers trained by DectICO
is smaller than that by the sequence-composition-based
method, especially based on long oligonucleotides. The
classifiers trained by the different training sets with
DectICO have more similar classification performances
than those by the sequence-composition-based method.
Therefore, we conclude our method is more stable than
the sequence-composition-based algorithm.
We used the results of our generality test to compare

the generality of DectICO and the sequence-composition-
based algorithm. We also compared the standard devia-
tions of the F1-measure for different testing sets between
DectICO and the sequence-composition-based method
(Table 3). Results show the standard deviations for
DectICO range from 0.01 to 0.03, except for the 5-mer in
the asthma dataset. However, the standard deviations cor-
responding to the sequence-composition-based method
are all more than 0.03. The standard deviations for the se-
quence-composition-based method range from 0.047

Table 3 Comparison of the F1-measure standard deviations for the
20 testing sets between DectICO and the sequence-composition-
based method

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

Asthma com-based 0.039 0.040 0.052 0.046 0.039 0.043

DectICO 0.013 0.011 0.039 0.023 0.012 0.026

IBD com-based 0.031 0.043 0.038 0.038 0.064 0.040

DectICO 0.017 0.024 0.029 0.022 0.027 0.022

T2D com-based 0.052 0.052 0.052 0.047 0.052 0.054

DectICO 0.028 0.030 0.030 0.029 0.032 0.029

The generality of DectICO and the sequence-composition-based algorithm was
compared with the standard deviations of the F1-measure for different testing
sets in our generality test

a

b

Fig. 3 Comparison of classification performance between DectICO and the non-dynamic feature-selection-based method on the asthma and
IBD datasets. The comparisons of the average LOOCV accuracies of the 20 classifiers between those trained by DectICO and those by the non-dynamic
feature-selection-based method are presented. a and b correspond to the asthma and IBD metagenomes, respectively. The solid lines with the square tags
represent the classification performances of DectICO, while the dotted lines with the rounded tags correspond to the non-dynamic feature-selection-based
method. The framework of this figure is the same as Fig. 2
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to 0.054 for different lengths of oligonucleotides in
the IBD dataset. These results demonstrate that the
classification performance for different unlabeled samples
with DectICO is more similar; that is, the DectICO
algorithm is more generalized than the sequence-
composition-based method.
The results above indicate that the classification per-

formance of the DectICO algorithm is more similar for
different training sets and for different testing sets.
Therefore, DectICO is both more stable and more gen-
eralized than the sequence-composition-based method.

Dynamic feature selection can promote the performance
of the classifiers
As described in Algorithm, DectICO employs dynamic
feature selection. Therefore, we also compared its classi-
fication performance against a non-dynamic feature-
selection-based method using our stability test. The
non-dynamic feature-selection-based method also em-
ploys the kpls feature selection algorithm and the ICO
vectors.
Figure 3 presents comparisons of the average LOOCV

accuracies of the 20 classifiers between those trained
by DectICO and those by the non-dynamic feature-
selection-based method, on the asthma and IBD data-
sets. The results on the T2D dataset are shown in the
Additional file 1 (Figure S2). We find that the average

accuracies of the classifiers trained by DectICO are higher
than those by the non-dynamic feature-selection-based
method for different length oligonucleotides. The maximal
difference of the average accuracies reaches 15 % for the 8-
mer in the asthma dataset. Similar to Fig. 3, the classifica-
tion performances for our method with T2D metagenomic
dataset are also better than the non-dynamic feature-
selection-based method (Additional file 1: Figure S2).
Table 4 shows the p-values of paired t-test for the 20
groups of LOOCV accuracies of the classifiers between
trained by DectICO and those trained by the non-dynamic
feature-selection-based method on the three metagenomic
datasets. Apparently, the p-values are all less than 0.05,
which means the classification performances of DectICO
are different from the non-dynamic feature-selection-
based method significantly. That is, DectICO has an
obvious superiority in classification compared to the
non-dynamic feature-selection-based method.
The results indicate that DectICO outperforms the

non-dynamic feature-selection-based method. Therefore,
we conclude that the dynamic feature selection method
is more suitable for screening out useless information
and noise in alignment-free metagenomic classification
methods.

DectICO outperforms the RSVM
Cui and Zhang recently proposed an alignment-free
supervised metagenomic sample classification algorithm
[37]. Their classification method employs the RSVM
algorithm to perform feature selection and the classifica-
tion is based on sequence composition. Consequently,
we compared classification performance between DectICO
and the RSVM-based algorithm for the three groups of
metagenomic datasets. Because DectICO uses ICO vectors
for classification, we also employed ICO vectors in the

Table 4 P-values of paired t-test for the 20 groups of LOOCV
accuracies between DectICO and the non-dynamic feature-
selection-based method

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

Asthma 1.30E-09 1.37E-04 1.25E-05 2.29E-10 1.31E-08 3.41E-10

IBD 2.39E-12 2.31E-11 1.06E-10 1.59E-07 2.15E-04 5.17E-04

T2D 3.28E-07 1.16E-09 6.93E-10 3.70E-08 2.90E-08 2.83E-08

Fig. 4 Comparison of classification performance between DectICO and RSVM based on the ICO with the IBD dataset. The solid lines with the
square tags represent the classification performance of DectICO, while the dotted lines with the triangular tags correspond to the RSVM-based
method. The framework of this figure is the same as Fig. 2
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RSVM-based algorithm to make the comparison more
reasonable.
Figure 4 presents the average LOOCV accuracy of the

20 classifiers in our stability test trained by DectICO and
RSVM with ICO vectors with the IBD dataset. Compari-
sons with the asthma and T2D datasets are shown in the
Additional file 1 (Figure S3). We note that DectICO out-
performs the RSVM-based method for all of the differ-
ent length oligonucleotides tested with the IBD dataset.
However, the classification superiority of DectICO with
short oligonucleotides is less than it is for long oligonu-
cleotides. The average LOOCV accuracy of our method
is similar to the RSVM-based method with 3-mers. Add-
itionally, comparisons with the asthma and T2D datasets
(Additional file 1: Figure S2) show that the average
LOOCV accuracies for DectICO are similar to those of
RSVM for 3-mers and 4-mers. The difference in classifi-
cation performance between DectICO and the RSVM-
based method increases as the oligonucleotides become
longer. The conclusion can also be derived from the p-
values of the sample-paired t-test for the 20 groups of
LOOCV accuracies of the classifiers between trained by
DectICO and those trained by the RSVM-based method
(Table 5). As shown in Table 5, the p-values for the 3-mer
and 4-mer on the asthma dataset are 0.272 and 0.669
(>0.05) respectively, whereas the p-values are much less
than 0.05 when the oligonucleotide length increases more
than 6. Similar results can be obtained on the other two
datasets. These results illustrate that DectICO outper-
forms the RSVM-based on ICO vectors method for long
oligonucleotides more significantly so than for short
oligonucleotides.
The stability and generality of DectICO were also com-

pared with RSVM using our stability test and generality
test. Table 6 presents the LOOCV accuracy standard devi-
ations for the 20 classifiers using out stability test and the
F1-measure standard deviations for the 20 testing sets
using our generality test for DectICO and the RSVM-
based method. The results in Table 6 only correspond to
the IBD dataset; results for the asthma and T2D metage-
nomic datasets are shown in the Additional file 1 (Table S4
and S5).
The LOOCV accuracy standard deviations for the 20

classifiers trained by DectICO are smaller than those for
the RSVM-based method in general (Table 6), indicating
that the performance of the classifiers trained by DectICO

are more similar to each other than those by RSVM. Fur-
thermore, the standard deviations of our method for 6-
mers, 7-mers, and 8-mers range from 0.027 to 0.041
(Table 6, S3 and S4); however, the standard deviations
corresponding to the RSVM-based method range from
0.057 to 0.09. Therefore, these results demonstrate that
DectICO is more stable than RSVM, especially for long
oligonucleotides. Similar situations occur in compari-
sons of generality between the two classification methods;
DectICO outperforms RSVM again. However, the super-
iority of our method is not as significant as the stability,
because the standard deviations of the RSVM-based
method in our generality test are smaller than in the
stability test, ranging from 0.022 to 0.059 (Table 6,
Additional file 1: Table S3 and S4).
In summary, experimental results demonstrate that

DectICO classifies metagenomic samples more accurately
than the RSVM-based method with a set of completely
labeled samples as training set, both with low and deep
sequence depth metagenomic datasets. Additionally, our
method is more stable and more generalized than the
RSVM-based method.

Conclusion
The alignment-free supervised classification method
DectICO can accurately classify metagenomic samples
without dependence on known microbial genomes.
Selecting the ICO dynamically offers better stability and
generality compared with sequence-composition-based
classification algorithms. However, the metagenomic
sample information obtained by the sequence features is
limited. Subsequent work will focus on finding a hybrid
feature combining sequence and functional features, also
selected by kpls. Such a classification method is expected
to have even better classification performance.

Additional files

Additional file 1: Figure S1. Comparisons of classification performance
between DectICO and the unsupervised alignment-free metagenomic
clustering methods. Table S2. The information of the three collections of
metagenomes. Table S3. The sizes of the training and testing sets for
three collections of metagenomes used in our stability test and generality

Table 5 P-values of paired t-test for the 20 groups of LOOCV
accuracies between DectICO and the RSVM-based method

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

Asthma 2.72E-01 6.69E-01 1.41E-02 2.91E-08 4.42E-11 2.26E-09

IBD 4.63E-02 3.02E-06 7.89E-08 5.25E-11 2.37E-10 3.13E-09

T2D 5.42E-01 6.27E-01 2.28E-02 4.59E-03 4.07E-05 1.34E-05

Table 6 Comparison of the stability and generality between
DectICO and the RSVM/ICO

3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

RSVM (stability test) 0.099 0.054 0.069 0.057 0.074 0.063

DectICO (stability test) 0.063 0.057 0.048 0.041 0.031 0.027

RSVM (generality test) 0.036 0.022 0.040 0.045 0.044 0.036

DectICO (generality test) 0.017 0.024 0.029 0.022 0.027 0.022

The stability and generality between DectICO and the RSVM/ICO are compared
on the basis of the results of the stability test and generality test respectively
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test. Figure S2. Comparisons of classification performances between DectICO
and the non-dynamic feature-selection-based method on the T2D dataset.
Figure S3. Comparisons of classification performances between DectICO and
RSVM that based on the ICO on the asthma and T2D datasets.
Table S4. Comparisons of the stability (from stability test) and
generality (from generality test) between DectICO and the RSVM that
with the ICO on asthma dataset. Table S5. Comparisons of the
stability (from stability test) and generality (from generality test)
between DectICO and the RSVM that with the ICO on T2D dataset.
Table S6. The runtime of calculation for the feature vectors of ICO based
on three kinds of metagenomic samples and 1 Mbp contig. Table S7. The
consumed RAM of calculation for the feature vectors of ICO based on three
kinds of metagenomic samples. Table S8. The runtime of classification
process with varying rounds of feature selection and different numbers of
samples in training set on the T2D metagenomes. Table S9. The consumed
RAM of classification process with varying rounds of feature selection and
different numbers of samples in training set on the T2D metagenomes.
Table S10. The ICO vector dimension for different length oligonucleotides.
(DOCX 76 kb)

Additional file 2: Table S1. The difference of the LOOCV accuracy
between DectICO and the-sequence-composition-based method for each
classifier. (XLSX 13 kb)
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