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Abstract

Background: Analysis of the stool samples is an essential part of routine diagnostics of the helminthes infections.
However, the standard methods such Kato and Kato-Katz utilize only a fraction of the information available. Here
we present a method based on the nuclear magnetic resonance spectroscopy (NMR) which could be auxiliary to the
standard procedures by evaluating the complex metabolic profiles (or phenotypes) of the samples.

Method: The samples were collected over the period of June-July 2015, frozen at −20 °C at the site of collection and
transferred within four hours for the permanent storage at −80 °C. Fecal metabolites were extracted by mixing aliquots
of about 100 mg thawed stool material with 0.5 mL phosphate buffer saline, followed by the homogenization
and centrifugations steps. All NMR data were recorded using a Bruker 600 MHz AVANCE II spectrometer equipped with
a 5 mm triple resonance inverse cryoprobe and a z-gradient system.

Results: Here we report an optimized method for NMR based metabolic profiling/phenotyping of the stools samples.
Overall, 62 metabolites were annotated in the pool sample using the 2D NMR spectra and the Bruker Biorefcode
database. The compounds cover a wide range of the metabolome including amino acids and their derivatives,
short chain fatty acids (SCFAs), carboxylic acids and their derivatives, amines, carbohydrates, purines, alcohols and
others. An exploratory analysis of the metabolic profiles reveals no strong trends associated with the infection
status of the patients. However, using the penalized regression as a variable selection method we succeeded in
finding a subset of eleven variables which enables to discriminate the patients on basis of their infections status.

Conclusions: A simple method for metabolic profiling/phenotyping of the stools samples is reported and tested
on a pilot opisthorchiasis cohort. To our knowledge this is the first report of a NMR-based feces analysis in the
context of the helminthic infections.

Background
Analysis of stool samples is an essential part of routine
diagnostics of the helminthes infections. For years, des-
pite a consistent background of criticism and occasional
new developments, the direct smear and Kato-Katz tech-
niques remain the gold standard diagnostic tests for
schistosomiasis, opisthorchiasis and the soil-transmitted
helminthiasis [1]. However, here we introduce a method
based on nuclear magnetic resonance spectroscopy
(NMR), which could be auxiliary to the standard meth-
odologies. In contrast to the Kato and Kato-Katz tests

which use only the eggs count as a measure, we examine
the complex metabolic profile of the sample. In other
words we are applying the metabolomics approach.
Metabolomics is a discipline studying the metabolome -
a totality of the metabolites that can be measured in a
biological sample. The metabolites are defined as the
end products and the intermediates of the metabolism.
In the clinical setting the metabolomics studies are com-
monly based on the analysis of the body fluids. Urine
and blood (serum or plasma) are being the most com-
mon sample types due to the minimally invasive proce-
dures of sample collection. Feces as a material for
metabolomics studies has only recently started to gain
the deserved attention [2, 3]. Over recent years few
metabolomics studies in such areas as e.g. dietary
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interventions [4], inflammatory bowel disease [5, 6] and
colorectal cancer [7] have been published.
Indeed, the fecal masses are the physiological product

of the gastrointestinal tract, one of the key metabolic
systems of the human body. Thus, it is logical to assume
that their composition should reflect current metabolic
status of the digestive tract or its metabolic phenotype
[8]. The human gut represents a complex ecosystem and
harbors gut bacteria outnumbering the cells in our
organism [9] and the analysis of the fecal masses or/and
their derivatives (e.g. extracts or fecal waters) offers the
most direct access to the physiological processes con-
trolling the gastrointestinal system homeostasis, gut
bacteria-host interactions and interaction between the
hosts and parasitic helminthes. For example, the hel-
minth infections are often accompanied by such symp-
toms as diarrhea, abdominal pain and blood in the stool.
The given examples represent the extreme cases, but
they provide a clear illustration of the parasite’s ability
changing the metabolic homeostasis of the host and the
host’s digestive system in particular. This, in turn, makes
metabolic analysis of the fecal masses an interesting,
non-invasive way to monitor such changes.
Here we present a simple NMR based metabolomics

workflow for the analysis of fecal samples. For this pilot
study we used stool samples of patients diagnosed with
opisthorchiasis and a group of matched controls.
Opisthorchiasis is parasitic disease caused by trematodes
belonging to the family Opisthorchiidae (Opisthorchis
felineus, Opisthorchis viverrini) [10]. According to WHO
there are about 17 million infected people and approxi-
mately 112 million people exposed or at risk of infection.
The workflow presented here is only a proof of principle,
but it can be easily scaled, tuned towards a quantitative
analysis and implemented into other case studies or in fu-
ture routine screening without fundamental modification
of the sample collection or the exiting diagnostic routines.

Methods
Sample collection
The study was reviewed and approved by the local ethics
committee of the Siberian State Medical University
(Tomsk, Russia). The samples were collected over the
period of June-July 2015. The samples were frozen at
−20 °C at the site of collection and transferred within four
hours for the permanent storage at −80 °C. The diagnosis
of opisthorchiasis was confirmed by the Kato-Katz test
[1]. Table 1 summarizes the demographic data of the pa-
tients. In total the samples of 30 patients (16 infected and
14 uninfected) were used.

Fecal metabolites extraction
Fecal metabolites were extracted as described elsewhere
[11] with some minor modifications. Briefly, the aliquots

of about 100 mg thawed stool material were mixed with
0.5 mL phosphate buffer saline (1.9 mM Na2HPO4,
8.1 mM NaH2PO4, 150 mM NaCl, pH 7.4; Sigma-
Aldrich, Germany) containing 10% deuterated water
(D2O 99.8%; Cortecnet, France) and 0.05 mM sodium
3-trimethylsilyl-propionate-d4 (TMSP-2,2,3,3-d4; Cam-
bridge Isotope Laboratories Inc., UK) as chemical shift
reference. The mixtures were homogenized by bead
beating with zirconium oxide beads of 1 mm diameter
for 30 s at 4 °C in a Bullet Blender 24 (Next Advance
Inc., USA). The fecal slurry was then centrifuged at
16100×g for 15 min at 4 °C. Supernatants were col-
lected and centrifugation was repeated. Finally, the
resulting fecal extracts were transferred to a 96 well
plate (Bruker, Germany) and 190 μL of each sample
was transferred to a 3 mm NMR tube in SampleJet 96
tube rack (Bruker, Germany) using 215 Gilson liquid
handler. The samples were then placed in a SampleJet
system and kept cooled at 6 °C while queued for NMR
measurements.
Alternative protocols for fecal extraction, as described

elsewhere [5, 12, 13] were also applied using technical
replicates and the same equipment and chemicals de-
scribed above. For filtration we used the Whatman filters
with 0.2 μm diameter pores (GE Healthcare, UK). An
ultracentrifugation step with filtration was also tested
using Amicon Ultra cellulose centrifugal filters with a
cut-off MW of 3000 Da (Millipore Ireland, Ltd). The fil-
ters were washed with doubly distilled water before use
and tested for impurities and presence of additives using
a blank PBS buffer sample and acquisition of NMR spec-
tra with the same parameters as those used for fecal
extracts measurements (see below).

NMR spectroscopy
All NMR data were recorded using a Bruker 600 MHz
AVANCE II spectrometer equipped with a 5 mm triple
resonance inverse cryoprobe and a z-gradient system.
The temperature of the samples was controlled at 27 °C
during measurement. Prior to data acquisition, tuning
and matching of the probe head followed by shimming
and proton pulse calibration were performed automatic-
ally for each sample. One-dimensional (1D) 1H NMR
spectra were recorded using the first increment of a

Table 1 Characteristics of participants

Parameter Summary Opisthorchiasis (n = 16) Control (n = 14)

Age (year) range (21, 64) (24, 63)

median 44 44

Gender male 0 0

female 16 14

BMI range (18.4, 43.6) (21.7, 32.5)

median 26.22 27.53
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NOESY pulse sequence with presaturation (γB1 = 50 Hz)
for water suppression during a relaxation delay of 4 s
and a mixing time of 10 ms [14, 15] 64 scans of 65,536
points covering 12,335 Hz were recorded and zero filled
to 65,536 complex points prior to Fourier transform-
ation, an exponential window function was applied with
a line-broadening factor of 1.0 Hz. The spectra were
automatically phase and baseline corrected and refer-
enced to the internal standard (TMSP; δ 0.0 ppm).
After tube filling, 30 μL from the leftovers of each

sample were combined to form a pool sample mix.
The pool sample was aliquoted and used for acquisi-
tion of two-dimensional (2D) NMR spectra to aid the
assignment of fecal metabolites. The set of 2D experi-
ments included a J-resolve (J-res), 1H-1H correlation
spectroscopy (COSY), 1H-1H total correlation spec-
troscopy (TOCSY), 1H-13C heteronuclear single
quantum correlation (HSQC) and 1H-13C heteronuc-
lear multiple bond correlation spectroscopy (HMBC)
using the standard parameters implemented in Top-
spin 3.0 (Bruker Biospin, Germany).

NMR data processing
NMR data were further processed using in house rou-
tines written in Matlab 2014a (The Mathworks, Inc.,
USA) and Python 2.7 (Python Software Foundation,
www.python.org). Briefly, the obtained 1H spectra were
re-evaluated for incorrect baselines and corrected using
a polynomial fit of degree 5. The spectral region from
0.5 to 9.7 ppm was binned using an in-house algorithm
for adaptive intelligent binning, which is based on the
original paper of De Meyer et al. [16]. Initial bin width
was set to 0.02 ppm and final variable bins sizes were
calculated based on the peaks position and width in the
spectra. The spectral region with the residual water peak
(4.5 – 5.1 ppm) was excluded from the data. The final
data consisted of 429 bins that were normalized by the
Probabilistic Quotients Normalization method [17] to
correct for dilution differences from sample to sample.
Data were first normalized to unit total area and subse-
quently, the variables of each sample were divided by
those of a reference sample, in this case the median
spectrum. Each sample was subsequently scaled by its
median quotient, which represents the most probable di-
lution factor. Finally, the normalized data was autoscaled
prior to statistical analysis.

Data analysis
All the analysis was performed in the R statistical software
environment (http://www.r-project.org/, R version 3.2.3.).
Exploratory data analysis was performed using the pack-
age “pcaMethods” [18]. Variable selection was performed
with the “glmnet” package [19]. For data visualization the
“ggplot2”, “GGally” and “gridExtra” packages were used.

Results
Optimization of the sample preparation
In contrast to other body fluids like urine and blood for
which the well-established standard operating proce-
dures (SOP) exist, no consensus for feces handling has
been reached yet. Thus, to get an optimal extraction of
the feces samples several protocols described in the lit-
erature [11–13] were tested. A detailed overview of the
available methods can be found in recent review by
Deda et al. [2]. In our case, a minimally modified proto-
col of the one recently suggested by Lamichhane et al.
[11] provided an optimal outcome in terms of spectra
quality and the number of the metabolites detected. In
the original manuscript, the authors suggested mixing
the fecal material with 2 volumes of PBS (Wf:Vb; mg of
feces x μL−1 of PBS buffer), which according to them
provides better signal to noise ratios and minimal com-
promise for peak shifting due to small inter-sample pH
differences. They also used a freeze-thaw cycle with cen-
trifugation of the fresh fecal slurry, storage at −80 °C
and thawing at the day of analysis followed by a second
centrifugation. Since, the samples used in our study were
already frozen and stored at −80 °C at the site of collec-
tion we opted to avoid the extra freeze-thaw step. There-
fore, after thawing the frozen fecal aliquots and the
homogenization of the fecal slurry, we performed two
consecutive centrifugation steps at 4 °C. The suggested
1:2 Wf:Vb ratio did not work well in our case as the su-
pernatants could not be easily separated from the pre-
cipitated material even after extending the centrifugation
time. An obvious solution would be to include a filtra-
tion step but this would require an extra step to wash
the filters, which increases the time and costs of the
protocol. On the other hand, we found that by using the
1:5 Wf:Vb and 7 min 1D 1H-NMR acquisition method
(64 scans per sample) the losses in the signal to noise ra-
tion were minimal even for the weak signal of formic
acid (SNR 36.3 and 29.8 for 1:2 and 1:5 Wf:Vb, respect-
ively) while the peak shifting of pH sensitive protons
was reduced comparing to 1:2 Wf:Vb as an effect of bet-
ter pH control. We therefore decided to follow the 1:5
Wf:Vb mixing with PBS for all the samples analyzed in
this study. Figure 1 shows a schematic representation of
the entire workflow.
Figure 2 shows the 1H spectrum of a pooled sample with

annotations of the identified metabolites. Overall, 62 me-
tabolites were annotated in the pool sample using the 2D
NMR spectra and the Bruker Biorefcode database (Bruker
Biospin, Germany). The detected compounds cover a wide
range of the metabolites including amino acids and their
derivatives, short chain fatty acids (SCFAs), carboxylic
acids and their derivatives, amines, carbohydrates, purines,
alcohols and others. The complete list of metabolites is
enumerated in the legend of Fig. 2.
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Fig. 1 A schematic outline of the sample preparation workflow

Fig. 2 Regions of the 600 MHz 1D 1H NMR spectrum of the pool sample mix of all fecal extracts used in this study. The regions on top are
multiplied 16 times for better visualization. 60 fecal metabolites were identified with most of them annotated on the spectrum. Metabolites and
their numbering as displayed in figure: 1: 2-methylbutyrate; 2: Valerate; 3: n-butyrate; 4:Leucine; 5:Isoleucine; 6: Valine; 7:Propionate; 8: Isobutyrate;
9: 3-methyl-2-oxoisovalerate; 10: 2-oxoisovalerate; 11: Ethanol; 12: 3-hydroxybutyrate; 13: Threonine; 14: Lactate; 15: 2-hydroxyisobutyrate; 16:
3-hydroxy-2-butanone; 17: Alanine; 18: Lysine; 19: Thymine; 20: Acetate; 21: 5-aminopentanoate; 22: Ornithine; 23: Proline; 24: Glutamate; 25:
Methionine; 26: Glutamine; 27: Succinate; 28: 2-oxoglutarate; 29: 3-phenylpropionate; 30: Aspartate; 31: Methylamine; 32: Malate; 33: Trimethylamine; 34:
Tyrosine; 35: Malonate; 36: Choline; 37: D-glucose; 38: Taurine; 39: Methanol; 40: Glycine; 41: D-xylose; 42: D-galactose; 43: Fructose; 44: Dihydroxyacetone;
45: Uracil; 46: Fumarate; 47: Urocanate; 48: Ethanolamine; 49: Xanthine; 50: Hypoxanthine; 51: Nicotinate; 52: 3-hydroxyphenylacetate; 53: Tryptophan; 54:
Phenylalanine; 55: Orotate; 56; UDP-glucuronate; 57: Formate; 58: Benzoate; 59: 4-aminohippurate; 60: Homovanillate; 61: Putrescine; 62: Asparagine
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Exploratory analysis of the data
The main purpose of an exploratory data analysis is to
reveal the major trends in the data as well as the pos-
sible analytical and/or biological confounders if any.
Principal Component Analysis (PCA) is commonly used
method for such analysis. Figure 3 shows a combined
score plot of the first three principal components of the
PCA model. The first three components cover almost
50% (~ 49) of the total variance in the data but appar-
ently the infection status does not represent a visible
trend in the data. Since initial PCA model failed to de-
scribe any tendencies in the data associated with the
study design we built a two-class Partial Least Squares
Discriminant Analysis (PLS-DA) model with infections
status as a class ID. The model proved to be a statisti-
cally poor and described the data narrowly better than a
random one (data not shown). One could interpret the
results as a lack of association between infection status
and metabolic composition of the feces. The perform-
ance of the PLS-DA model clearly supports such
interpretation. However, the structure of our data set
(30 observations and 429 variables) is such that the
number of predictive variables (p) is much larger than
the number of samples (n). The PLS-DA method,

despite being one of the most popular classification
methods in metabolomics analysis, is a suboptimal
choice for the p> > n data sets [20]. Thus, we decided
to employ an alternative data analysis strategy includ-
ing a variable selection step which could identify a
subset of predictors relevant to the study design.

Variable selection and validation of the selected subset
The analysis of high dimensional datasets has progressed
enormously since the beginning of “omics” era. Several
methods specifically addressing p> > n problem are de-
scribed and tested in practice, but the area of application
for the methods is mainly restricted to the genomics
data [21, 22]. We deiced to use the penalized regression
approach based on its “track record” in solving compar-
able problems, namely a high number of the variables
and the limited number of the observations [22, 23]. A
penalized variable section belongs to the class of the
regulations methods: the methods which improve the es-
timates “for over-parameterized problems through the
use of additional assumptions, prior information or pen-
alties” [24]. A subset of eleven variables was selected
using a lasso type of penalty. Before subjecting the set of
selected variables to the next statistical test we have also
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made an inventory of the selection trying to estimate
whether the feature selecting routine has picked the
NMR spectral areas influenced by the noise and/or any
baseline effect. Figure 4 shows the box plots for all
eleven predictors selected by this method. Table 2 sum-
marizes all the selected bins showing their correspond-
ing spectral regions, identity and Benjamini-Hochberg
corrected p-values. Finally, we have included the selected
variables into a logistic regression model. The resulting
model is characterized by the chi square 27.74 and chi
square probability of 1.05E-4.

Discussion
Here we present an analytical workflow for 1H-NMR ana-
lysis of feces with special emphasis on application in the
field of the helminthes infections. The described proced-
ure resulted in rich spectra where 62 metabolites are an-
notated (Fig. 2). Using our set of the samples selection we
were able to dissect a subset of the metabolites (Fig. 4)
which may be discriminative for the infections status. This
subset includes such common constituents of human bio-
fluids as threonine, asparagine, lactate and hypoxanthine.
Asparagine is higher in the samples of the control patients
while the other selected compounds have higher levels in
the infected samples. The limited number of samples is a

clear limitation of this study and therefore we restrain
ourselves from the discussion of the possible physiological
models based on the selected markers or the attempts to
deconvolute the metabolic profiles into the infection pre-
dictive patterns. On the other hand the proposed method
clearly stresses out the potential for a new window of in-
formation that can be used in such case studies. In
principle, the fact that a subset of the discriminative
metabolites can be dissected gives a clear illustration of
the method’s potential. A combination of a simple,
commonly accepted diagnostic method and such ad-
vanced analytical method as NMR provides a powerful
research tool which enables the collection of a wealth
of information without interference or in parallel with
the routine diagnostics or epidemiological studies. Tak-
ing advantage of the robustness and quantitative nature
of this technology, obtaining the metabolic profiles of
fecal material is rather straightforward and provides
both an insight into biochemistry/physiology of the host-
pathogen interaction and the possibility of accessing the
morbidity and eventually play an auxiliary role in the diag-
nostics. The main limitations of this approach arise mainly
from the absence of standard procedures in stool collec-
tion rather than the technology itself. However, taking into
account the increasing interest in using the NMR (as well
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as mass spectrometry) based metabolomics approaches in
fecal samples, we envisage that more established routines
and practices in sample collection will be developed in the
near future which will reveal the underlying potential of
this type of analysis.

Conclusions
In summary, a simple method for metabolic profiling/
phenotyping of the stools samples is reported and tested
on a pilot opisthorchiasis cohort. To our knowledge this
is the first report of a NMR-based feces analysis in the
context of the helminthic infections. With this study, an
attempt was made to extend a conventional way of the
stool analysis adding an extra dimension which can be
used for metabolic phenotyping of the patients, in depth
exploration of the host-parasite interaction and search
for metabolic morbidity or/and infection markers. To
extend and take full advantage of the possibilities offered
by NMR based metabolic profiling much larger cohorts
than the one used in this study are needed, preferably,
even collected in the different endemic areas. With this
report however, we provide a simple proof of concept
aiming to introduce a well-established technology in the
field of infectious diseases and fecal material analysis and
with this, trigger future studies in this direction.
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